
Using Bayesian Networks to Reduce SLO Violations in a Dynamic Cloud-based
Environment

Agam G. Dua

Tandon School of Engineering
New York University
Brooklyn, New York

Email: agam@nyu.edu

Aspen Olmsted

Fisher College
Boston, Massachusetts

Email: aolmsted@fisher.edu

Abstract—As more organizations move critical infrastructure
to the cloud and leverage features like auto-scaling to grow
according to the customer demand, we see a new set of challenges
specific to this class of dynamic, distributed systems. In this paper,
we propose a model leveraging Bayesian networks to help in
the diagnostics of these systems during failures to considerably
shorten the time to localize the cause of Service Level Objectives
violations. The model subsequently reduces the violation duration
by reducing the Mean Time To Resolution.

Keywords–Bayesian network, Machine Learning, Cloud Com-
puting, Auto scaling, Service Level Objective, Availability.

I. INTRODUCTION

The move of modern software to the cloud has been in-
creasing over the past decade, and organizations are migrating
more distributed systems to execute in the cloud environment.
One of the reasons for this migration is the advanced custom
auto-scaling abilities [1] provided by the cloud vendors. While
deploying distributed systems has become a lot easier, im-
provements like these make it radically different from the older
model of deploying systems on a mostly static infrastructure
and introduces its own set of challenges.

However, businesses must continue to be actively mindful
of the availability that their users expect. Most organizations
design deployments around a set of metrics known as Ser-
vice Level Objectives (SLOs). We define SLOs in terms of
performance, reliability, and availability of the application and
quantify the SLOs in metrics such as downtime, error rates,
end-to-end request latencies, etc. An example latency metric
would be to expect an average of 200ms response time over
5 minutes for a server side HTTP application. Exceeding this
threshold would be considered an SLO violation. The expec-
tations for a well-engineered application is high availability,
i.e., infrequent SLO violations. This infrequency, and many
metrics that are recorded for each system make it especially
complicated to detect, localize and fix the system during a
violation. This complication can result in the Mean Time To
Resolution (MTTR) being unacceptable to the stakeholders of
the system.

This paper focuses on the automated localization of the
problem in a distributed system with each service leveraging
shared infrastructure, such as network equipment, resource
capacity, and even a shared database. We assume that an
issue has been detected in at least one part of the distributed
system. We do not specifically attempt to surface the root
cause of the problem. However, we expect that by localizing

the problem automatically, the MTTR decreases significantly.
The decrease comes by allowing further human intervention to
determine the root cause faster. In the proposed strategy, we
leverage Bayesian networks and as a custom reactive probing
framework that observes the state of a subset of previously
hidden nodes in the Bayesian network.

The paper’s organization is as follows: Section II describes
the related work and the implementations of current methods.
In Section III, we provide a motivating example where this ap-
plication is useful. Section IV details the underlying framework
and the methodology, along with the results, while Section V
concludes and describes future work.

II. RELATED RESEARCH

There is an existing body of literature that tackles the
problem of automated diagnosis of SLO violations in dis-
tributed systems, which broadly categorizes the diagnosis into
two parts. The first part is localizing the issue to a specific
subset of the system. Zhang, et al. [2] focus on response
time problems caused by abnormally slow services, and use
Bayesian networks to diagnose the issues. This approach’s
primary focus is using the response time of individual observed
services and total end-to-end response time to infer time
taken by unobserved (uninstrumented) services. A limitation
of this model is that the localization’s granularity is only up
to a specific service, which itself could be a complex system
and hard to debug. The research assumes that parts of the
system which are not instrumented to report SLO violations
of their own. Our research will aim at yielding a more granular
diagnosis by introspecting services and their dependencies.

Cohen et al. [3], attempt to correlate system metrics in a
distributed system with the SLO violations. They explicitly do
not use application metrics, focusing instead on system-level
metrics from the server such as CPU time in user mode, disk
read frequency, etc. where each metric they use is specific to
the system of a particular application, enabling a more granular
localization of the problem. However, they require training
the classifier on past data which is hard to come by since
SLO violations are infrequent in a well-engineered system.
Our research leverages Bayesian networks, where the prior
probabilities are calibrated by a domain expert who has access
to past data. Furthermore, the study mentioned above does not
consider the cloud platform, which can be responsible for a
separate class of SLO violations related to newer features they
provide.

14Copyright (c) IARIA, 2020. ISBN: 978-1-61208-778-8

CLOUD COMPUTING 2020 : The Eleventh International Conference on Cloud Computing, GRIDs, and Virtualization

The second part of the problem is root cause analysis,
which can be computationally intensive and therefore is not
viable for large volumes of data or compromises accuracy due
to many metrics and a large number of data points for the
metrics. Natu et al. [4] apply feature selection to prune the
search space of irrelevant and redundant metrics. Our approach
does not attempt to prune the search space but does try and
glean as much information as possible from the available
metrics while maintaining focus on solving the first part of
the problem.

III. MOTIVATING EXAMPLE

When an error occurs in a dynamically scaled distributed
system SLO violations are often caused by time spent col-
lecting the information needed to understand the root cause.
In the case of the services we are researching, we consider a
response latency over 400ms to be an SLO violation as this
has been demonstrated to cause user impact.

We measure this SLO on a subset of the distributed system
that corresponds to synchronous operations that directly impact
the “real-time” user experience. We do not consider scheduled
or deferred jobs in this. For example, we observe the time to
load a specific URL on the website, or a view in the mobile
application, but we do not consider a violation of a queued
email sending job.

The following graph shows the full duration of SLO
violations by time period that have been recorded in official
postmortems in the company:

Total 2018 Jan-July 2018 Jan-July 2019

10

20

30

40

44.7
42.87

12.07

D
ur

at
io

n
(H

ou
rs

)

Figure 1. SLO Violations in Hours.

In particular, there was one incident where the cloud
provider the company infrastructure is deployed on was facing
issues in one subnet, which prevented scaling new servers to
accommodate user load. It took 6 hours to mitigate user impact,
2.5 hours (˜42%) of which was spent in localizing the issue
to that particular subnet. In this incident, we were alerted that
we had scaling issues, without further specificity.

IV. METHODOLOGY AND EMPIRICAL EVIDENCE

To form the model, one should reason about what the SLO
violation in such a distributed systems setup in the cloud could
be caused by:

• Database issues: If the database was under load,
e.g. due to too many queries per second, or other
availability concerns.

• Application Errors: If there were application errors
due to a bug or application level dependency issues.

• Resource starvation: If the servers were being limited
by CPU, memory, network, etc.

• Bad deployment: If there was an issue with the de-
ployment process itself.

Similarly, resource starvation can be caused by buggy
code or scaling issues. Here, the buggy code would likely be
unrelated to the business logic of the application. An example
of such a problem one might encounter is a memory leak
by the application not correctly freeing the memory allocated
for an operation. In a database-backed application, as we are
examining, this can be discovered in a bug in the database
access layer where too many connections are open, tying up
the resources of both the application and the database server.

Scaling issues are best described as the service’s inability
to receive more capacity, despite the metrics indicating a need
for this extra provisioning. An example here would be when
a service exceeds the aggregate CPU utilization threshold
over a cluster of hosts for a service and triggers the cloud
configuration scaling but is denied extra capacity.

Furthermore, resource starvation can be caused by buggy
code or scaling issues, and scaling issues can be caused by:

• Cloud limits: If the cloud resource limits set by an
agreement with the company and the cloud vendors
was hit.

• Recent configuration change in the infrastructure: If
a potential new bug was introduced.

• Infrastructure or external dependency issue: If there
was an issue with other services or infrastructure that
we depend on for scaling up.

With this in mind, a causal, directed acyclic graph on which
the Bayesian network would be built was created to reflect the
infrastructure:

Database
Issues

Application
Errors

Resource
Starvation

Bad
Deployment

SLO
Violation

Buggy
Code

Scaling
Issues

Cloud
Resource

Limits

Configuration
Change

External
Dependency

Figure 2. Causal, Directed Acyclic Graph for the Bayesian Network

15Copyright (c) IARIA, 2020. ISBN: 978-1-61208-778-8

CLOUD COMPUTING 2020 : The Eleventh International Conference on Cloud Computing, GRIDs, and Virtualization

https://www.google.com/url?q=https://landing.google.com/sre/sre-book/chapters/service-level-objectives/&sa=D&ust=1565839036608000

The model’s implementation used the pomegranate python
library [5], and a series of implemented checks to make
some of the nodes “observed”. The checks linked into various
monitoring systems and ruled out cloud limits, recent config-
uration changes, database issues, and application errors. This
was determined by leveraging APIs (Application Programming
Interfaces, in this case over the HTTPS protocol) of the
monitoring systems and comparing with the conditions for the
nodes in the Bayesian network, e.g., whether a deployment
occurred in a period of time that correlates with the timeline
of the incident.

The nodes for which information is not available are known
as unobserved nodes and form the crux of the model. With
the help of the pomegranate library, the output of the model
results in the unobserved nodes of the Bayesian network
being associated with their updated probabilities, given the
information gathered from the monitoring systems, i.e., the
observed nodes. These calculated probability values show with
reasonable certainty that the issue was an external dependency
or infrastructure issue and that deploy issues and errors are un-
likely. This also indicates that there is a high chance the alerted
scaling issues are causing an SLO violation. The specific
probabilities generated with the above mentioned methodology
associated with the nodes in the Bayesian network can be seen
in Table I.

TABLE I. CALCULATED PROBABILITIES OF OUTCOMES

Node Name P(True) P(False)
Resource Starvation 0.9899687033177891 0.10031296682210913
SLO 0.9810724570630289 0.018927542936970975
External Dependencies 0.6070287539936117 0.39297124600638844
Bad Deployment 0.10035812797969593 0.8996418720203041
Application Errors 0.09677684818274046 0.9032231518172594

V. CONCLUSION AND FUTURE WORK

In this paper, we addressed the problem of minimizing
SLO violations in an organization’s infrastructure. We argued
that using Bayesian networks and leveraging past data to
assist with localizing of the problem can drastically reduce
the Mean Time To Resolution of incidents. In this paper,
we addressed this issue of minimizing SLO violations by
designing a Bayesian network that incorporates causal relations
and is initialized by a subject matter expert leveraging past data
and experience with the system. We demonstrated in a specific
type of incident that the model could correctly determine the
cause and provide alternative paths in decreasing order of
likelihood of occurrence.

In the future, we will prove the model can be generalized
across a variety of incidents, and not just the specific motivat-
ing example in this paper. Furthermore, the model should be
able to update itself with new data over time, so the relevance
of the prior probabilities defined by a subject matter expert will
decrease. Eventually, a pluggable architecture can be provided
where the prior probabilities can be generated by automation
leveraging historical data in the various monitoring systems.

REFERENCES

[1] “Big Day for Amazon EC2: Production, SLA, Windows, and 4
New Capabilities,” 2008, URL: https://aws.amazon.com/blogs/aws/
big-day-for-ec2/ [accessed: 2020-03-03].

[2] R. Zhang, S. Moyle, S. Mckeever, and A. Bivens, “Performance problem
localization in self-healing, service-oriented systems using bayesian
networks abstract,” in Proceedings of the ACM Symposium on Applied
Computing, 01 2007, pp. 104–109.

[3] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and J. Symons,
“Correlating instrumentation data to system states: A building block for
automated diagnosis and control.” in Proceedings of the 6th conference
on Symposium on Operating Systems Design —& Implementation -
Volume 6, 01 2004, pp. 231–244.

[4] M. Natu, S. Patil, V. Paithankar sadaphal, and H. Vin, “Automated debug-
ging of slo violations in enterprise systems,” in 2010 2nd International
Conference on COMmunication Systems and NETworks, COMSNETS
2010, 02 2010, pp. 1 – 10.

[5] J. Schreiber, “pomegranate,” 2016, URL: https://github.com/jmschrei/
pomegranate/ [accessed: 2020-03-03].

16Copyright (c) IARIA, 2020. ISBN: 978-1-61208-778-8

CLOUD COMPUTING 2020 : The Eleventh International Conference on Cloud Computing, GRIDs, and Virtualization

https://aws.amazon.com/blogs/aws/big-day-for-ec2/
https://aws.amazon.com/blogs/aws/big-day-for-ec2/
https://github.com/jmschrei/pomegranate/
https://github.com/jmschrei/pomegranate/

	Introduction
	Related Research
	Motivating Example
	Methodology and Empirical Evidence
	Conclusion and Future Work
	References

