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Abstract—The financial crisis made companies around the 

world search for cheaper and more efficient solutions to cover 

their needs in terms of computational power and storage. Their 

quest came to end with the birth of Cloud Computing 

infrastructures. However, along with the new promising 

technology, new attack vectors were born, and one old and 

known threat, that of Malicious Insiders reappeared. Insiders 

can use their privileged position inside the Cloud 

infrastructure to accomplish or help in attacks against a Cloud 

infrastructure. In this paper, we propose a practical and 

efficient intrusion detection system solution for Cloud 

infrastructures based on Graphical Processing Unit (GPU) 

acceleration. Our solution monitors the deployed virtual 

machines operations and especially those of the host Operating 

System’s, known as Dom0, correlating the collected 

information to detect uncommon behavior based on the Smith-

Waterman algorithm. Our proposal makes possible the 

cooperation of a variety of known hypervisors along with every 

known GPU acceleration unit used, thus offering the maximum 

of security mechanics while at the same time minimizing the 

imposed overhead in terms of Central Processing Unit (CPU) 

usage. 

Keywords-Cloud Computing; Security; Malicious Insider; 

IDS; GPU Acceleration. 

I.  INTRODUCTION 

While economic growth is considered low in the vast 
majority of the global market, Cloud Computing 
infrastructures have grown beyond imagination. Their 
revenues jumped by 25% for 2016 with strong estimated 
growth ahead. Leading Amazon Web Services (AWS) and 
Microsoft Azure grew 53% in 2016 [9]. AWS, which 
introduced the concept of Cloud Computing managed to 
generate revenue of 13 billion dollars in 2016. As migration 
services become more convenient and at the same time more 
appealing, more companies will choose the pay-per-use 
model that Cloud Computing offers. 

Cloud Computing by design cannot offer physical 
isolation among Virtual Machines (VMs), since all resources 
are shared. Various attack vectors have been developed [24] 
and continue to be updated following the lead of security 
experts, trying to identify shared resources and gain 
unauthorized access to them. Hypercall attack injection [18], 
co-residency detection, shared memory vulnerabilities [26] 
and privilege escalation [7], are only a few examples of the 

attack vectors that could harm the confidentiality, integrity 
and availability of Cloud systems and data. It is a fact that 
Cloud infrastructure’s attack surface is an expanded version 
of older Information Technology (IT) infrastructures, 
because a potential adversary can make use of additional 
attacking points to explore a vulnerability (e.g., a VM, a 
management platform or other components). Malicious 
Insider threat has reappeared and has become the main 
reason for data leakage as 1 out of 3 organizations have 
experienced an insider attack in the year 2016 [10].  

Several approaches have been proposed to augment 
security in Cloud infrastructures. Most of them inherit their 
operational methodologies from conventional IT systems. 
The most popular approaches among the community try 
either to scatter the information among the whole 
infrastructure (in terms of data storage) [13] or implement 
multiple Intrusion Detection Systems (IDS) [17] and audit 
mechanisms [15]. Several of them monitor system calls to 
detect malicious activities [2][25][29]. The recent trend is to 
migrate the entire VM to another part of the infrastructure, 
thus forcing the potential attacker to be one step behind [43]. 
Most of them are unable to detect attacks against the Cloud 
from privileged users and especially attacks, which are 
orchestrated by multiple VMs. 

Thus, we introduce Modified And Deterring Realtime 
Observation Wards (MAD CROW) for detecting malicious 
activities against the VM and against the Cloud infrastructure 
itself. The principle of our approach is to monitor the 
hypercalls of the VMs independently and the system calls of 
the privileged domain (Dom0 in XEN [41], Virtual Machine 
Manager (VMM) in Kernel-based Virtual Machine (KVM) 
[14]), in a way similar to a host based IDS, combining all 
gathered information to protect each VM and the whole 
Cloud infrastructure at the end of the day.  

To be more specific, we make use of mechanisms that 
trace hypercalls (Xentrace in the case XEN [42], Perfm 
KVM in the case of KVM [20]) and systemcalls (strace 
command [34]) and process them in order to generate attack 
patterns and process abnormal behaviors. In contrast to other 
cloud IDSs [5] that use machine learning classifiers as black-
box, the proposed system generates attack patterns using the 
Smith-Waterman algorithm [30] and performs similarity 
tests between the attack patterns and the data (hypercalls and 
system calls) collected to decide whether the cloud 
infrastructure is under attack or not, with a certain level of 
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confidence. Since our approach operates on the Cloud 
infrastructure as a service layer, in a transparent manner, no 
modifications to the underlying layers are required. 

Overall, the contributions of the paper could be 
summarized as follows: 

 We introduce a hybrid solution, which depends on 
hypercalls and system calls to detect abnormal 
behavior in Cloud infrastructures. 

 We enhance the performance of this solution using 
GPU acceleration instead of CPU computational 
resources 

 Our solution is adaptable depending on the resources 
(GPU) and the Cloud infrastructure (hypervisor used) 

The rest of the paper is organized as follows: Section II 
offers some background information while Section III 
provides a related literature review. Section IV introduces 
the malicious insider threat model. Section V presents our 
approach to detect malicious activities in Cloud 
infrastructure. Finally, Section VI draws the conclusions 
giving some pointers for future work as well.  

II. BACKGROUND 

A. Hypervisors 

A hypervisor is in most cases a software, which acts as a 
layer between the hardware and the VMs. Basically, it is a 
level of abstraction that isolates either operating systems or 
applications from the underlying computer hardware. This 
abstraction allows the underlying host machine hardware to 
independently operate one or more virtual machines as 
guests, allowing multiple guest VMs to effectively share the 
system's computational resources, such as processor, 
memory, storage, network bandwidth, etc. There are two 
implementations of the hypervisor concept worth 
mentioning, one is XEN and the other is KVM. 

 

 
Figure 1.  XEN Architecture. 

In the case of XEN in Figure 1. , its designers developed 
a microkernel, placed over the computer’s hardware, making 
possible to run many instances of the operating system. 
Domain 0 is the privileged VM, containing all the drivers for 

the hardware and the control platform for the rest of the 
VMs. As demonstrated in Figure 2. KVM is also a mini 
kernel, this time completely attached to the Linux kernel, 
meaning that every distribution after 2.6.20 contains the 
KVM hypervisor by default. The difference is that instead of 
using a middleware with drivers, as XEN does, KVM has 
excellent hardware support. 

 

 
Figure 2.  KVM Architecture. 

B. Hypercalls 

In either case, as the hypervisor is responsible for 
monitoring all privileged actions, VMs have to transfer 
control into the hypervisor to execute sensitive instructions. 
This procedure is materialized by hypercalls. The latter are 
very similar to system calls in conventional operating 
systems. A software interrupt transfers control from the VM 
into the hypervisor, where every operation is validated and 
then executed. After the operation is completed, the control 
returns to the VM that made the call initially. Hypercalls, as 
system calls, differ depending if the architecture is x86 or 
x64. Their structure is similar to system calls, including 
parameter passing (for example a XEN hypercall definition: 
HYPERVISOR_mmu_update(const struct mmu_update 
reqs[], unsigned count, unsigned *done_out, unsigned 
foreigndom)). 

 

C. Graphical Processing Unit Acceleration 

The creation and usage of more computational resources 
demanding algorithms, along with the birth of big data, 
pushed the worldwide community towards parallel 
computing. As CPUs can be too expensive, the scientific 
community turned to GPUs. Modern GPUs have an 
architecture that enables them to make fast simple 
mathematical and logical calculations, using multiple cores, 
which were commonly used for graphics representation. 
When a medium ranged GPU can offer more than 1000 
cores, it is more energy and cost efficient than any other 
CPU antagonist. There are two technologies commonly used, 
NVIDIA’s Compute Unified Device Architecture (CUDA) 
[19] and AMD’s High Performance Computing [4], which 
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relies on OpenCL™ cross-platform programming language 
[45].  

It is feasible to access GPUs at high performance, within 
all the major hypervisors, thus taking advantage of all the 
benefits that Cloud Computing platforms can offer, along 
with the accessibility of on-demand accelerator hardware. 
This procedure is called GPU passthrough technology and 
permits any virtual machine to access one or more GPUs. It 
is accomplished using two strategies, either API remoting 
with device emulation or PCI passthrough. Recently, 
researchers proved that GPU passthrough technology can 
take advantage of 96-100% of the base systems performance 
[39]. 

III. RELATED WORK 

Several attempts to track, disable or counter the 
malicious insider threat have been recorded. However, the 
majority of these solutions achieve their goal by focusing on 
a very specific aspect of the cloud, such as the employees or 
the network, while only a minority of them aim to provide a 
general purpose solution [3][11][15][28][32][33][35][36]. 
Solutions that propose monitoring of system calls and 
invocation of statistical methods for identifying normal and 
malicious acts are [2][8][12][21][23][25][29]. 

Coull’s work [6] has inspired the initial CROW method. 
They used the system calls as a series of genes and made use 
of the Smith Waterman algorithm. However, they did not use 
entire patterns, something that has resulted in many false 
positives and false negatives. Compute Unified Device 
Architecture (CUDA) involvement was proposed by 
Ioannidis et al. [37] for executing Snort [31]. In [1] Haddad 
et al. propose a scheme aiming to detect network attacks, 
consisting of Snort for signature based detection and Support 
Vector Machine (SVM) for anomaly detection.  Furthermore, 
Vasiliadis et al. [38] proved that GPU acceleration is so 
efficient that can be used by malicious parties in order to 
increase the robustness of malware against analysis and 
detection. 

Milenkoski et al. [18] created “HInjector”, which is a 
customizable framework, able to inject hypercall attacks 
during regular operation. This is the reason why Wang et al. 
[40], created a mechanism that aims to protect the hypercall 
interface by preventing untrusted hypercalls from running, 
using randomization techniques. 

IV. THREAT MODEL 

According to Maybury et al. [16] the term “insider”, for 
an organization system, applies to anyone with approved 
access, privilege, or knowledge of the information system 
and its services and missions. “Malicious insider” is defined 
as someone  motivated to adversely impact an organization’s 
mission through a range of actions that compromise 
information confidentiality, integrity, and/or availability 
taking advantage of his/her privileges. This terminology 
covers mostly traditional IT systems. A modern update 
would be that a malicious insider is someone who acts either 
actively or passively. In the first case, an active malicious 
insider is motivated by himself to harm an organization. A 
passive malicious insider, is a victim of phishing or other 

social attack (social engineering, phishing, etc.), whose 
actions are orchestrated by an external attacker. 
Consequently, he uses his privileges to harm an organization, 
without his will. 

In the case of Cloud Computing, we define as insider an 
entity who: (a) Works for the cloud host, (b) Has privileged 
access to the cloud resources and (c) Uses the cloud services. 
All cloud insiders are mostly privileged users, who either at 
will or not, compromise a Cloud infrastructure’s security. 
Depending on their privileges, the impacts from their actions 
vary from a temporary break of network or a service, to 
users’ privacy violation or loss/exposure of data. There is 
infrastructure related information, such as the network 
topology that can be extracted only by privileged users. For 
example, a malicious user will try to make a map of all 
available VMs, in order to choose his next target, which will 
give him more information and will help him to violate the 
security of a Cloud infrastructure or a user’s privacy. 

As hypercalls are like system calls, this gives the ability 
to the potential attackers to perform or inject hypercall 
attacks, which can take any form known from system calls, 
such as argument highjacking or mimicry [44]. Another 
tactic commonly used, is to fake a series of hypercalls with 
ultimate purpose to sniff the information from other VMs. In 
addition to that, Cloud infrastructures lack physical isolation 
by default because of their architecture, something that offers 
the opportunity to several VMs to get information from 
shared sources of the Cloud ecosystem such as memory 
(cache or main memory) retrieving personal information for 
the co-residents. Ristenpart et al. [26] first proved this 
concept by performing cross VM side channel attacks on 
Amazon EC2, measuring in that way the activity of other 
users. Similarly, Rochsa and Correia [27] proved that, by 
using the memory of a VM, sensitive information about its 
users can be acquired, such as social security number, 
credentials and other personal information. 

There are other cases, where attackers combine utilities 
and tools, whose functionalities are commonly perceived as 
benign, in order to perform an attack. An example of such a 
case are the commands “nslookup”, “ping” and the nmap 
tool, which can access publicly available information 
regarding network topologies and OS, for a specific 
ecosystem of VMs. The results from those commands 
orchestrate a “co-residence” or “co-tenacy” attack [26]. 
Furthermore, following the way of thinking of commonly 
employed Advanced Persistent Threats, this kind of 
information may prove useful in the future as it leads to 
exploits of vulnerabilities relevant to OS version and the 
other characteristics of a VM. Another kind of attack that can 
be performed inside a virtual network, is a network stress 
attack named “smurf” where the attacker launches numerous 
ping requests, thus congesting the corresponding public and 
private interfaces and eventually causing Denial Of Service. 
Modified And Deterring Cloud Realtime Observation Wards 

A. Overview 

The proposed scheme, namely MAD CROW is a 
modified and improved version of another proposed solution 
[22]. Its goal is to facilitate detection of malicious privileged 
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users in the cloud, regardless of if they use the non-
privileged VM, or the privileged VM Domain0 or Dom0 or 
VM0. It also provides functionality of traditional IDS 
implementations by individually monitoring the health of 
each employed VM. Its unique feature is the use of both 
hypercalls for the non-privileged VMs and system calls for 
Dom0. To the best of our knowledge, it is the first of this 
kind. It’s high level architecture is depicted in Figure 3.  

 
Figure 3.  The MAD CROW Architecture. 

 
As highjacking techniques exist and can fool the system 

call tracing inside a VM, the proposed scheme makes use of 
a filtering system for hypercalls. Each time a hypercall is 
initiated, it is recorded in the hypercall sequence of the 
specific VM that made the call into the audit VM. So, we 
propose a unified mechanism, which has signatures in terms 
of hypercall sequences relevant to the operations of each 
VM. This mechanism constantly detects the hyper calls 
through the hypervisor, using GPU acceleration instead of 
CPU usage. Whenever an attack signature is detected by the 
audit VM, a security alert is generated for the security 
officers to act. In the case of Dom0 as it is the privileged VM 
and the highest in the hierarchy, being able to damage the 
entire cloud infrastructure, the system calls detection is 
mandatory. To be specific, a mechanism is installed inside 
the privileged VM and detects its system calls through the 
kernel. Whenever something abnormal is detected, an alert 
reaches the audit VM. In both cases, the detection is 
achieved using GPU acceleration and passthrough 
technology, in both the Audit VM  and privileged VM 
tracking mechanism. 

The sub-system, which implements the audit mechanism, 
is responsible to monitor the health of each of the VMs either 
through hypercalls (non-privileged) or through system calls 
(privileged). Additionally, it generates new attack signatures, 
based on the hypercall and system call patterns of the 
attacks. The proposed scheme makes also use of a detection 
module, which monitors each VM and utilizes the attack 
signatures for computing their similarity with the sequences 
of hypercalls generated by the non-privileged VMs. In the 
case of the privileged VM, the same monitoring is achieved 
using system calls attack signatures. Calculating the 
similarity score is a very intense procedure, in computational 
terms, especially in terms of CPU and RAM. 

With respect to GPU passthrough technology, our 
approach focuses on transferring the majority of the 
introduced overhead to the GPUs. Consequently, the rest of 
the computational resources of the infrastructure remain 
almost idle in terms of usage so as to serve the needs of the 
other users. This procedure has become possible through the 
architectures of NVIDIA’s Compute Unified Device 
Architecture (CUDA) and AMD’s High Performance 
Computing, which uses OpenCL™ cross-platform 
programming language [45]. Both are parallel computing 
platforms that provide access to the virtual instruction set 
and memory of GPUs. 

B. Attack Signature Generation 

The attack signature generation process is very similar to 
the CROW methodology [22], but with one major difference. 
This time we track system calls, for the privileged VM, and 
hyper calls for all other VMs. The methodology is very 
simple and intuitive. A significant number of hypercalls and 
system call patterns is collected, following multiple 
executions of the same attack. Then, we make use of the 
Smith Waterman algorithm [30], to process our data. Each 
hypercall and system call consists of symbols, drawn from a 
finite discrete alphabet. So, our goal is to find the longest 
common subsequence to all sequences in a set of sequences, 
making the Smith Waterman algorithm an excellent choice 
for our purpose. 

The signature extraction is very similar to malware 
analysis, since the attack is known a priory. Thus, the 
malware is executed several times in order to get the 
corresponding signatures. More specifically, the algorithm 
runs in pairs of sequences of the hypercalls or system calls 
for the same attack. Then, the number of sequences is 
reduced to half, using the best similarity match either for 
hyper calls or for system calls. After all results have been 
processed, the attack signature is generated. It must be 
stressed that the privileged VM is able to execute a 
significant number of attacks on its own, while all the others 
can both act alone or even cooperate in order to achieve a 
successful attack. Consequently, according to Figure 4. the 
proposed methodology can retrieve the appropriate 
information and when all the segments of an attack are 
collected to signal an alarm, even though other benign 
executions interfere and create noise in the sequences of 
either hypercalls or system calls. We should not forget that 
simple commands, such as “nslookup” are harmless on their 
own, but when combined with others may result in mapping 
an entire network ecosystem [26]. 
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Figure 4.  The segments of the attack pattern are found through the 

hypercall sequence using as analysis the Smith-Waterman algorithm 
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C. Detection 

The attack signatures created from the former procedure, 
either as sequences of hypercalls or as sequences of system 
calls, are used for the detection of potential malicious acts. 
Specifically, the audit VM, keeps signatures in a database. 
To achieve the detection of an attack against the VM or the 
cloud infrastructure itself, the hypercalls of the VMs and the 
system calls of the privileged VM are monitored and 
forwarded to the detection module.   

Its task is to identify the attack segments into the entire 
sequence of hypercalls or system calls, avoiding the possible 
noise that has been created by various other irrelevant system 
procedures and thus making the same steps as the attack 
signature generation. In the case where all the segments of an 
attack are identified, then an alert in the audit VM is 
triggered. This alert motivates the operators of the audit 
station to take immediate action and enforce the employed 
policy. 

It must be noted that even in cases where the attack 
segments are executed in different VMs, which is a typical 
choice of attackers in order to avoid detection, the proposed 
scheme will again detect the attack. Additionally, a 
handshake, between the audit station and each of the VMs, is 
initiated every two seconds in order to update the audit 
station about VM communication and thus protect the 
system from potential actions that aim to hide an attack.  

V. CONCLUSIONS AND FUTURE WORK 

Considering modern IDS systems do not focus on cloud 
insider attacks, the MAD CROW detection method has been 
proposed. It utilizes both hypercalls and system calls to 
detect privileged user attacks. The detection mechanism is 
based on Smith Waterman algorithm, adapted in a parallel 
implementation, usable by any GPU architecture and 
passthrough technology. 

Currently, we are experimenting with different 
implementations and GPU setups, willing to achieve 
maximum stability, efficiency and productivity. Our 
experimentation includes different machine learning 
techniques and feature extraction that would allow us to 
improve the signature generation mechanism and 
consequently the accuracy of our detector. 
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