
The Greater The Power, The More Dangerous The Abuse: Facing Malicious

Insiders in The Cloud

Nikolaos Pitropakis

School of Electrical and Computer Engineering

Georgia Institute of Technology

Atlanta, United States of America

e-mail: pitropakis@gatech.edu

Christos Lyvas, Costas Lambrinoudakis

Department of Digital Systems

University of Piraeus

Piraeus, Greece

e-mail: {clyvas,clam}@unipi.gr

Abstract—The financial crisis made companies around the

world search for cheaper and more efficient solutions to cover

their needs in terms of computational power and storage. Their

quest came to end with the birth of Cloud Computing

infrastructures. However, along with the new promising

technology, new attack vectors were born, and one old and

known threat, that of Malicious Insiders reappeared. Insiders

can use their privileged position inside the Cloud

infrastructure to accomplish or help in attacks against a Cloud

infrastructure. In this paper, we propose a practical and

efficient intrusion detection system solution for Cloud

infrastructures based on Graphical Processing Unit (GPU)

acceleration. Our solution monitors the deployed virtual

machines operations and especially those of the host Operating

System’s, known as Dom0, correlating the collected

information to detect uncommon behavior based on the Smith-

Waterman algorithm. Our proposal makes possible the

cooperation of a variety of known hypervisors along with every

known GPU acceleration unit used, thus offering the maximum

of security mechanics while at the same time minimizing the

imposed overhead in terms of Central Processing Unit (CPU)

usage.

Keywords-Cloud Computing; Security; Malicious Insider;

IDS; GPU Acceleration.

I. INTRODUCTION

While economic growth is considered low in the vast
majority of the global market, Cloud Computing
infrastructures have grown beyond imagination. Their
revenues jumped by 25% for 2016 with strong estimated
growth ahead. Leading Amazon Web Services (AWS) and
Microsoft Azure grew 53% in 2016 [9]. AWS, which
introduced the concept of Cloud Computing managed to
generate revenue of 13 billion dollars in 2016. As migration
services become more convenient and at the same time more
appealing, more companies will choose the pay-per-use
model that Cloud Computing offers.

Cloud Computing by design cannot offer physical
isolation among Virtual Machines (VMs), since all resources
are shared. Various attack vectors have been developed [24]
and continue to be updated following the lead of security
experts, trying to identify shared resources and gain
unauthorized access to them. Hypercall attack injection [18],
co-residency detection, shared memory vulnerabilities [26]
and privilege escalation [7], are only a few examples of the

attack vectors that could harm the confidentiality, integrity
and availability of Cloud systems and data. It is a fact that
Cloud infrastructure’s attack surface is an expanded version
of older Information Technology (IT) infrastructures,
because a potential adversary can make use of additional
attacking points to explore a vulnerability (e.g., a VM, a
management platform or other components). Malicious
Insider threat has reappeared and has become the main
reason for data leakage as 1 out of 3 organizations have
experienced an insider attack in the year 2016 [10].

Several approaches have been proposed to augment
security in Cloud infrastructures. Most of them inherit their
operational methodologies from conventional IT systems.
The most popular approaches among the community try
either to scatter the information among the whole
infrastructure (in terms of data storage) [13] or implement
multiple Intrusion Detection Systems (IDS) [17] and audit
mechanisms [15]. Several of them monitor system calls to
detect malicious activities [2][25][29]. The recent trend is to
migrate the entire VM to another part of the infrastructure,
thus forcing the potential attacker to be one step behind [43].
Most of them are unable to detect attacks against the Cloud
from privileged users and especially attacks, which are
orchestrated by multiple VMs.

Thus, we introduce Modified And Deterring Realtime
Observation Wards (MAD CROW) for detecting malicious
activities against the VM and against the Cloud infrastructure
itself. The principle of our approach is to monitor the
hypercalls of the VMs independently and the system calls of
the privileged domain (Dom0 in XEN [41], Virtual Machine
Manager (VMM) in Kernel-based Virtual Machine (KVM)
[14]), in a way similar to a host based IDS, combining all
gathered information to protect each VM and the whole
Cloud infrastructure at the end of the day.

To be more specific, we make use of mechanisms that
trace hypercalls (Xentrace in the case XEN [42], Perfm
KVM in the case of KVM [20]) and systemcalls (strace
command [34]) and process them in order to generate attack
patterns and process abnormal behaviors. In contrast to other
cloud IDSs [5] that use machine learning classifiers as black-
box, the proposed system generates attack patterns using the
Smith-Waterman algorithm [30] and performs similarity
tests between the attack patterns and the data (hypercalls and
system calls) collected to decide whether the cloud
infrastructure is under attack or not, with a certain level of

156Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

confidence. Since our approach operates on the Cloud
infrastructure as a service layer, in a transparent manner, no
modifications to the underlying layers are required.

Overall, the contributions of the paper could be
summarized as follows:

 We introduce a hybrid solution, which depends on
hypercalls and system calls to detect abnormal
behavior in Cloud infrastructures.

 We enhance the performance of this solution using
GPU acceleration instead of CPU computational
resources

 Our solution is adaptable depending on the resources
(GPU) and the Cloud infrastructure (hypervisor used)

The rest of the paper is organized as follows: Section II
offers some background information while Section III
provides a related literature review. Section IV introduces
the malicious insider threat model. Section V presents our
approach to detect malicious activities in Cloud
infrastructure. Finally, Section VI draws the conclusions
giving some pointers for future work as well.

II. BACKGROUND

A. Hypervisors

A hypervisor is in most cases a software, which acts as a
layer between the hardware and the VMs. Basically, it is a
level of abstraction that isolates either operating systems or
applications from the underlying computer hardware. This
abstraction allows the underlying host machine hardware to
independently operate one or more virtual machines as
guests, allowing multiple guest VMs to effectively share the
system's computational resources, such as processor,
memory, storage, network bandwidth, etc. There are two
implementations of the hypervisor concept worth
mentioning, one is XEN and the other is KVM.

Figure 1. XEN Architecture.

In the case of XEN in Figure 1. , its designers developed
a microkernel, placed over the computer’s hardware, making
possible to run many instances of the operating system.
Domain 0 is the privileged VM, containing all the drivers for

the hardware and the control platform for the rest of the
VMs. As demonstrated in Figure 2. KVM is also a mini
kernel, this time completely attached to the Linux kernel,
meaning that every distribution after 2.6.20 contains the
KVM hypervisor by default. The difference is that instead of
using a middleware with drivers, as XEN does, KVM has
excellent hardware support.

Figure 2. KVM Architecture.

B. Hypercalls

In either case, as the hypervisor is responsible for
monitoring all privileged actions, VMs have to transfer
control into the hypervisor to execute sensitive instructions.
This procedure is materialized by hypercalls. The latter are
very similar to system calls in conventional operating
systems. A software interrupt transfers control from the VM
into the hypervisor, where every operation is validated and
then executed. After the operation is completed, the control
returns to the VM that made the call initially. Hypercalls, as
system calls, differ depending if the architecture is x86 or
x64. Their structure is similar to system calls, including
parameter passing (for example a XEN hypercall definition:
HYPERVISOR_mmu_update(const struct mmu_update
reqs[], unsigned count, unsigned *done_out, unsigned
foreigndom)).

C. Graphical Processing Unit Acceleration

The creation and usage of more computational resources
demanding algorithms, along with the birth of big data,
pushed the worldwide community towards parallel
computing. As CPUs can be too expensive, the scientific
community turned to GPUs. Modern GPUs have an
architecture that enables them to make fast simple
mathematical and logical calculations, using multiple cores,
which were commonly used for graphics representation.
When a medium ranged GPU can offer more than 1000
cores, it is more energy and cost efficient than any other
CPU antagonist. There are two technologies commonly used,
NVIDIA’s Compute Unified Device Architecture (CUDA)
[19] and AMD’s High Performance Computing [4], which

157Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

relies on OpenCL™ cross-platform programming language
[45].

It is feasible to access GPUs at high performance, within
all the major hypervisors, thus taking advantage of all the
benefits that Cloud Computing platforms can offer, along
with the accessibility of on-demand accelerator hardware.
This procedure is called GPU passthrough technology and
permits any virtual machine to access one or more GPUs. It
is accomplished using two strategies, either API remoting
with device emulation or PCI passthrough. Recently,
researchers proved that GPU passthrough technology can
take advantage of 96-100% of the base systems performance
[39].

III. RELATED WORK

Several attempts to track, disable or counter the
malicious insider threat have been recorded. However, the
majority of these solutions achieve their goal by focusing on
a very specific aspect of the cloud, such as the employees or
the network, while only a minority of them aim to provide a
general purpose solution [3][11][15][28][32][33][35][36].
Solutions that propose monitoring of system calls and
invocation of statistical methods for identifying normal and
malicious acts are [2][8][12][21][23][25][29].

Coull’s work [6] has inspired the initial CROW method.
They used the system calls as a series of genes and made use
of the Smith Waterman algorithm. However, they did not use
entire patterns, something that has resulted in many false
positives and false negatives. Compute Unified Device
Architecture (CUDA) involvement was proposed by
Ioannidis et al. [37] for executing Snort [31]. In [1] Haddad
et al. propose a scheme aiming to detect network attacks,
consisting of Snort for signature based detection and Support
Vector Machine (SVM) for anomaly detection. Furthermore,
Vasiliadis et al. [38] proved that GPU acceleration is so
efficient that can be used by malicious parties in order to
increase the robustness of malware against analysis and
detection.

Milenkoski et al. [18] created “HInjector”, which is a
customizable framework, able to inject hypercall attacks
during regular operation. This is the reason why Wang et al.
[40], created a mechanism that aims to protect the hypercall
interface by preventing untrusted hypercalls from running,
using randomization techniques.

IV. THREAT MODEL

According to Maybury et al. [16] the term “insider”, for
an organization system, applies to anyone with approved
access, privilege, or knowledge of the information system
and its services and missions. “Malicious insider” is defined
as someone motivated to adversely impact an organization’s
mission through a range of actions that compromise
information confidentiality, integrity, and/or availability
taking advantage of his/her privileges. This terminology
covers mostly traditional IT systems. A modern update
would be that a malicious insider is someone who acts either
actively or passively. In the first case, an active malicious
insider is motivated by himself to harm an organization. A
passive malicious insider, is a victim of phishing or other

social attack (social engineering, phishing, etc.), whose
actions are orchestrated by an external attacker.
Consequently, he uses his privileges to harm an organization,
without his will.

In the case of Cloud Computing, we define as insider an
entity who: (a) Works for the cloud host, (b) Has privileged
access to the cloud resources and (c) Uses the cloud services.
All cloud insiders are mostly privileged users, who either at
will or not, compromise a Cloud infrastructure’s security.
Depending on their privileges, the impacts from their actions
vary from a temporary break of network or a service, to
users’ privacy violation or loss/exposure of data. There is
infrastructure related information, such as the network
topology that can be extracted only by privileged users. For
example, a malicious user will try to make a map of all
available VMs, in order to choose his next target, which will
give him more information and will help him to violate the
security of a Cloud infrastructure or a user’s privacy.

As hypercalls are like system calls, this gives the ability
to the potential attackers to perform or inject hypercall
attacks, which can take any form known from system calls,
such as argument highjacking or mimicry [44]. Another
tactic commonly used, is to fake a series of hypercalls with
ultimate purpose to sniff the information from other VMs. In
addition to that, Cloud infrastructures lack physical isolation
by default because of their architecture, something that offers
the opportunity to several VMs to get information from
shared sources of the Cloud ecosystem such as memory
(cache or main memory) retrieving personal information for
the co-residents. Ristenpart et al. [26] first proved this
concept by performing cross VM side channel attacks on
Amazon EC2, measuring in that way the activity of other
users. Similarly, Rochsa and Correia [27] proved that, by
using the memory of a VM, sensitive information about its
users can be acquired, such as social security number,
credentials and other personal information.

There are other cases, where attackers combine utilities
and tools, whose functionalities are commonly perceived as
benign, in order to perform an attack. An example of such a
case are the commands “nslookup”, “ping” and the nmap
tool, which can access publicly available information
regarding network topologies and OS, for a specific
ecosystem of VMs. The results from those commands
orchestrate a “co-residence” or “co-tenacy” attack [26].
Furthermore, following the way of thinking of commonly
employed Advanced Persistent Threats, this kind of
information may prove useful in the future as it leads to
exploits of vulnerabilities relevant to OS version and the
other characteristics of a VM. Another kind of attack that can
be performed inside a virtual network, is a network stress
attack named “smurf” where the attacker launches numerous
ping requests, thus congesting the corresponding public and
private interfaces and eventually causing Denial Of Service.
Modified And Deterring Cloud Realtime Observation Wards

A. Overview

The proposed scheme, namely MAD CROW is a
modified and improved version of another proposed solution
[22]. Its goal is to facilitate detection of malicious privileged

158Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

users in the cloud, regardless of if they use the non-
privileged VM, or the privileged VM Domain0 or Dom0 or
VM0. It also provides functionality of traditional IDS
implementations by individually monitoring the health of
each employed VM. Its unique feature is the use of both
hypercalls for the non-privileged VMs and system calls for
Dom0. To the best of our knowledge, it is the first of this
kind. It’s high level architecture is depicted in Figure 3.

Figure 3. The MAD CROW Architecture.

As highjacking techniques exist and can fool the system

call tracing inside a VM, the proposed scheme makes use of
a filtering system for hypercalls. Each time a hypercall is
initiated, it is recorded in the hypercall sequence of the
specific VM that made the call into the audit VM. So, we
propose a unified mechanism, which has signatures in terms
of hypercall sequences relevant to the operations of each
VM. This mechanism constantly detects the hyper calls
through the hypervisor, using GPU acceleration instead of
CPU usage. Whenever an attack signature is detected by the
audit VM, a security alert is generated for the security
officers to act. In the case of Dom0 as it is the privileged VM
and the highest in the hierarchy, being able to damage the
entire cloud infrastructure, the system calls detection is
mandatory. To be specific, a mechanism is installed inside
the privileged VM and detects its system calls through the
kernel. Whenever something abnormal is detected, an alert
reaches the audit VM. In both cases, the detection is
achieved using GPU acceleration and passthrough
technology, in both the Audit VM and privileged VM
tracking mechanism.

The sub-system, which implements the audit mechanism,
is responsible to monitor the health of each of the VMs either
through hypercalls (non-privileged) or through system calls
(privileged). Additionally, it generates new attack signatures,
based on the hypercall and system call patterns of the
attacks. The proposed scheme makes also use of a detection
module, which monitors each VM and utilizes the attack
signatures for computing their similarity with the sequences
of hypercalls generated by the non-privileged VMs. In the
case of the privileged VM, the same monitoring is achieved
using system calls attack signatures. Calculating the
similarity score is a very intense procedure, in computational
terms, especially in terms of CPU and RAM.

With respect to GPU passthrough technology, our
approach focuses on transferring the majority of the
introduced overhead to the GPUs. Consequently, the rest of
the computational resources of the infrastructure remain
almost idle in terms of usage so as to serve the needs of the
other users. This procedure has become possible through the
architectures of NVIDIA’s Compute Unified Device
Architecture (CUDA) and AMD’s High Performance
Computing, which uses OpenCL™ cross-platform
programming language [45]. Both are parallel computing
platforms that provide access to the virtual instruction set
and memory of GPUs.

B. Attack Signature Generation

The attack signature generation process is very similar to
the CROW methodology [22], but with one major difference.
This time we track system calls, for the privileged VM, and
hyper calls for all other VMs. The methodology is very
simple and intuitive. A significant number of hypercalls and
system call patterns is collected, following multiple
executions of the same attack. Then, we make use of the
Smith Waterman algorithm [30], to process our data. Each
hypercall and system call consists of symbols, drawn from a
finite discrete alphabet. So, our goal is to find the longest
common subsequence to all sequences in a set of sequences,
making the Smith Waterman algorithm an excellent choice
for our purpose.

The signature extraction is very similar to malware
analysis, since the attack is known a priory. Thus, the
malware is executed several times in order to get the
corresponding signatures. More specifically, the algorithm
runs in pairs of sequences of the hypercalls or system calls
for the same attack. Then, the number of sequences is
reduced to half, using the best similarity match either for
hyper calls or for system calls. After all results have been
processed, the attack signature is generated. It must be
stressed that the privileged VM is able to execute a
significant number of attacks on its own, while all the others
can both act alone or even cooperate in order to achieve a
successful attack. Consequently, according to Figure 4. the
proposed methodology can retrieve the appropriate
information and when all the segments of an attack are
collected to signal an alarm, even though other benign
executions interfere and create noise in the sequences of
either hypercalls or system calls. We should not forget that
simple commands, such as “nslookup” are harmless on their
own, but when combined with others may result in mapping
an entire network ecosystem [26].

Segment 1

R
a

w
 h

y
p

e
rc

a
ll

Segment 2

Segment 3 P
a

tt
e

rn

Noise

Segment 1

Noise

Noise

Segment 2

Noise

Segment 3

A
n

alysis A
lgo

rith
m

Figure 4. The segments of the attack pattern are found through the

hypercall sequence using as analysis the Smith-Waterman algorithm

159Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

C. Detection

The attack signatures created from the former procedure,
either as sequences of hypercalls or as sequences of system
calls, are used for the detection of potential malicious acts.
Specifically, the audit VM, keeps signatures in a database.
To achieve the detection of an attack against the VM or the
cloud infrastructure itself, the hypercalls of the VMs and the
system calls of the privileged VM are monitored and
forwarded to the detection module.

Its task is to identify the attack segments into the entire
sequence of hypercalls or system calls, avoiding the possible
noise that has been created by various other irrelevant system
procedures and thus making the same steps as the attack
signature generation. In the case where all the segments of an
attack are identified, then an alert in the audit VM is
triggered. This alert motivates the operators of the audit
station to take immediate action and enforce the employed
policy.

It must be noted that even in cases where the attack
segments are executed in different VMs, which is a typical
choice of attackers in order to avoid detection, the proposed
scheme will again detect the attack. Additionally, a
handshake, between the audit station and each of the VMs, is
initiated every two seconds in order to update the audit
station about VM communication and thus protect the
system from potential actions that aim to hide an attack.

V. CONCLUSIONS AND FUTURE WORK

Considering modern IDS systems do not focus on cloud
insider attacks, the MAD CROW detection method has been
proposed. It utilizes both hypercalls and system calls to
detect privileged user attacks. The detection mechanism is
based on Smith Waterman algorithm, adapted in a parallel
implementation, usable by any GPU architecture and
passthrough technology.

Currently, we are experimenting with different
implementations and GPU setups, willing to achieve
maximum stability, efficiency and productivity. Our
experimentation includes different machine learning
techniques and feature extraction that would allow us to
improve the signature generation mechanism and
consequently the accuracy of our detector.

ACKNOWLEDGMENT

This work has been partially supported by the Research
Center of the University of Piraeus.

REFERENCES

[1] A. Haddad, Zayed, M. Hanoune, and A. Mamouni, “A
Collaborative Network Intrusion Detection System (C-NIDS)
in Cloud Computing.” International Journal of
Communication Networks and Information Security 8, no. 3,
p. 130, December 2016.

[2] A. Suaad S., and S. D. Wolthusen, “Detecting anomalies in
IaaS environments through virtual machine host system call
analysis.” Internet Technology And Secured Transactions,
2012 International Conferece For. IEEE, pp. 211-218,
December 2012.

[3] M. A. AlZain, E. Pardede, B. Soh, and J. A. Thom, ”Cloud
computing security: from single to multi-clouds.” System

Science (HICSS), 2012 45th Hawaii International Conference
on. IEEE, pp. 5490-5499, January 2012.

[4] AMD High Performance Computing. [Online]. Available
from: http://www.amd.com/en-
us/products/graphics/workstation/firepro-remote-
graphics/gpu-compute# .12 January 2017

[5] A. Bakshi, and B. Yogesh, “Securing cloud from ddos attacks
using intrusion detection system in virtual machine.” Second
International Conference on Communication Software and
Networks, (ICCSN'10), IEEE, pp. 260-264, 2010

[6] S. Coull, J. Branch, B. Szymanski, and E. Breimer, “Intrusion
detection: A bioinformatics approach.” Computer Security
Applications Conference, 2003. Proceedings. 19th Annual,
IEEE, pp. 24-33, December 2003

[7] Enisa, “Cloud Computing – Benefits, Risks and
Recommendations for Information Security” , 2009

[8] E. Eskin, W. Lee, and S. J. Stolfo, “Modeling system calls for
intrusion detection with dynamic window sizes.” DARPA
Information Survivability Conference & Exposition II
(DISCEX'01), Proceedings. Vol. 1. IEEE, PP/ 165-175, 2001.

[9] Geekwire. [Online]. Available from:
http://www.geekwire.com/2017/cloud-computing-revenues-
jumped-25-2016-strong-growth-ahead-researcher-says/. 12
January 2017

[10] Helpnetsecurity. . [Online]. Available from:
https://www.helpnetsecurity.com/2016/09/30/insider-attack/.
12 January 2017

[11] C. H. H. Le, “Protecting Xen hypercalls”, Doctoral
dissertation, University of British Columbia, July 2009

[12] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion
detection using sequences of system calls.” Journal of
computer security 6, no. 3, pp. 151-180, 1998.

[13] R. L. Krutz, R. D. Vines, “Cloud Security: A Comprehensive
Guide to Secure Cloud Computing.” Wiley Publishing,
Indianapolis, August 2010.

[14] KVM Hypervisor. [Online]. Available from:
http://www.linux-kvm.org/. 12 January 2017

[15] G. Magklaras, S. Furnell, and M. Papadaki, “LUARM-An
audit engine for insider misuse detection.” WDFIA, pp. 133-
148, 2011.

[16] M. Maybury, P. Chase, B. Cheikes, D. Brackney, S. Matzner,
T. Hetherington, B. Wood, C. Sibley, J. Marin, and T.
Longstaff, “Analysis and detection of malicious insiders.”
MITRE CORP BEDFORD MA, 2005.

[17] C. Mazzariello, R. Bifulco, and R. Canonico, “Integrating a
network IDS into an open source cloud computing
environment.” Sixth International Conference on Information
Assurance and Security, IEEE, pp. 265-270, 2010

[18] A. Milenkoski, B. D. Payne, N. Antunes, M. Vieira, and S.
Kounev, “HInjector: injecting hypercall attacks for evaluating
VMI-based intrusion detection systems.” Poster Reception at
the 2013 Annual Computer Security Applications Conference
(ACSAC 2013), 2013.

[19] NVIDIA CUDA. [Online]. Available from:
http://www.nvidia.com/object/cuda_home_new.html. 12
January 2017

[20] Perf KVM. . [Online]. Available from: http://www.linux-
kvm.org/page/Perf_events. 12 January 2017

[21] N. Pitropakis, A. Pikrakis, and C. Lambrinoudakis.
“Behaviour reflects personality: detecting co-residence
attacks on Xen-based cloud environments.” International
Journal of Information Security 14, no. 4, pp.299-305, 2015.

[22] N. Pitropakis, D. Geneiatakis, and C. Lambrinoudakis, “Till
All Are One: Towards a Unified Cloud IDS.” International
Conference on Trust and Privacy in Digital Business.
Springer International Publishing, pp. 136-149, 2015.

160Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

[23] N. Pitropakis, D. Anastasopoulou, A. Pikrakis, and C.
Lambrinoudakis, “If you want to know about a hunter, study
his prey: detection of network based attacks on KVM based
cloud environments.” Journal of Cloud Computing 3, no. 1 p
20, 2014.

[24] N. Pitropakis, E. Darra, N. Vrakas, and C. Lambrinoudakis,
“It's All in the Cloud: Reviewing Cloud Security.” Ubiquitous
Intelligence and Computing, 2013 IEEE 10th International
Conference on and 10th International Conference on
Autonomic and Trusted Computing (UIC/ATC). IEEE, pp.
355-362, 2013.

[25] S. Rawat, V. P. Gulati, A. K. Pujari, and V. R. Vemuri,
“Intrusion detection using text processing techniques with a
binary-weighted cosine metric”, Journal of Information
Assurance and Security 1, no. 1, pp. 43-50, 2006.

[26] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey,
you, get off of my cloud: exploring information leakage in
third-party compute clouds.” Proceedings of the 16th ACM
conference on Computer and communications security (CCS),
ACM, pp. 199-212, 2009.

[27] F. Rocha, and M. Correia, “Lucy in the sky without
diamonds: Stealing confidential data in the cloud.”
Dependable Systems and Networks Workshops (DSN-W),
2011 IEEE/IFIP 41st International Conference. IEEE, pp.
129-134, 2011.

[28] R. Sandhu, R. Boppana, R. Krishnan, J. Reich, T. Wolff, and
J. Zachry, “Towards a discipline of mission-aware cloud
computing.” Proceedings of the 2010 ACM workshop on
Cloud computing security workshop, ACM, pp. 13-18, 2010.

[29] A. Sharma, A. K. Pujari, and K. K. Paliwal, “Intrusion
detection using text processing techniques with a kernel based
similarity measure.” computers & security 26, no. 7, pp. 488–
495, 2007.

[30] T. F. Smith, and M. S. Waterman, “Identification of common
molecular subsequences.” Journal of molecular biology 147,
no. 1,pp. 195–197, 1981.

[31] Snort IDS. [Online]. Available from: https://www.snort.org/ .
12 January 2017

[32] J. Spring, “Monitoring cloud computing by layer, part 1.”,
IEEE Security & Privacy 9,no. 2, IEEE, pp. 66-68, 2011.

[33] S. J. Stolfo, M. B. Salem, and A. D. Keromytis, “Fog
computing: Mitigating insider data theft attacks in the cloud.”
Security and Privacy Workshops (SPW), 2012 IEEE
Symposium. IEEE, pp. 125-128, 2012.

[34] Strace command. [Online]. Available from:
https://linux.die.net/man/1/strace. 12 January 2017

[35] S. Sundararajan, H. Narayanan, V. Pavithran, K. Vorungati,
and K. Achuthan, “Preventing Insider attacks in the Cloud.”
Advances in Computing and Communications, Springer
Berlin Heidelberg, pp. 488-500, 2011.

[36] A. Tripathi, and A. Mishra, “Cloud computing security
considerations.” Signal Processing, Communications and
Computing (ICSPCC), 2011 IEEE International Conference,
IEEE, pp. 1-5, 2011.

[37] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P.
Markatos, and S. Ioannidis, “Gnort: High performance
network intrusion detection using graphics processors
International Workshop on Recent Advances in Intrusion
Detection 2008, Springer Berlin Heidelberg , pp. 116-134,
2008.

[38] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, “GPU-
assisted malware.” International Journal of Information
Security 14, no. 3, pp. 289-297 , 2015.

[39] J. P. Walters, A. J. Younge, D. I. Kang, K. T. Yao, M. Kang,
S. P. Crago, and G. C. Fox, “GPU passthrough performance:
A comparison of KVM, Xen, VMWare ESXi, and LXC for
CUDA and OpenCL applications.”, IEEE 7th International
Conference on Cloud Computing, IEEE, pp. 636-643, 2014.

[40] F. Wang, P. Chen, B. Mao, and L. Xie, “Randhyp: preventing
attacks via xen hypercall interface.” IFIP International
Information Security Conference, Springer Berlin Heidelberg,
pp. 138-149, 2012.

[41] XEN Hypervisor. . [Online]. Available from:
http://www.xenproject.org/developers/teams/hypervisor.html.
12 January 2017

[42] Xentrace. [Online]. Available from:
https://blog.xenproject.org/2012/09/27/tracing-with-xentrace-
and-xenalyze/ 12 January 2017

[43] Y. Zhang, M. Li, K. Bai, M. Yu, and W. Zang, “Incentive
compatible moving target defense against vm-colocation
attacks in clouds.”, IFIP International Information Security
Conference, Springer Berlin Heidelberg, pp. 388-399, 2012.

[44] Z. Wang, X. Jiang, W. Cui, and P. Ning, “Countering Kernel
Rootkits with Lightweight Hook Protection.”, 16th ACM
Conference on Computer and Communications Security,
ACM, pp. 545–554, 2009.

[45] OpenCL™. [Online]. Available from:
https://www.khronos.org/opencl/ 12 January 2017

161Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

