
Dynamic Virtual Machine Allocation Based on

Adaptive Genetic Algorithm

Oleksandr Rolik, Eduard Zharikov

Department of Automation and Control in Technical

Systems, National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”

Kyiv, Ukraine

email:o.rolik@kpi.ua, email:zharikov.eduard@acts.kpi.ua

Sergii Telenyk, Volodymyr Samotyy

Department of Automatic Control and Information

Technology, Faculty of Electrical and Computer

Engineering, Cracow University of Technology

Cracow, Poland

email:stelenyk@pk.edu.pl, email:vsamotyy@pk.edu.pl

Abstract – The widespread use of the virtualization paradigm

in modern data centers has increased the necessity of

improving the management efficiency of virtual machine

allocation on physical machines (PM). Modern service

providers offer a large number of virtual machine types and

settings. The density of virtual machine placement per physical

server also complicates the solution of this problem. Under

these conditions, for solving such kind of problems, the

adaptive genetic algorithm (AGA) is proposed. The proposed

algorithm uses parametric and algorithmic adaptation

simultaneously by selecting the values for a genetic operator’s

parameters and by selecting the probabilities of applying these

operators. The AGA is evaluated for the solution of virtual

machine allocation problem and demonstrates efficiency

compared to the classical and the controlled versions of genetic
algorithm.

Keywords – data center; genetic algorithm; virtual machine;

resource management

I. INTRODUCTION

Data center resource management is an important and
urgent problem at the present time. The growth in the
number and complexity of modern data centers leads to an
increasing number of virtual machines (VMs) and opens new
challenges for management process automation. The
Infrastructure as a Service (IaaS) paradigm enables
customers to dynamically request the needed number of
virtual machines based on their business requirements. One
of the main tasks of managing resources in IaaS is the VMs
allocation on the physical servers of the infrastructure. The
VMs allocation process must be performed in a way that
results in a reduction in the number of physical servers and a
decrease in the energy consumption.

The use of genetic algorithms (GA) and their benefits
compared with heuristic methods to solve data center
resource management problems is shown in [1]. Classical
genetic algorithms (CGA) have their own specifics as GA
simultaneously use several types of genetic operators: unary,
binary, and multiple. It is difficult to choose the strategy to
generate values of probabilities for the use of certain
operators so that their application gives positive results for
the entire period of the GA. In addition, each operator has a

set of parameters that influence the results of the algorithm,
and to find the optimum values of these parameters is a
rather difficult task.

In [1], a managed genetic algorithm (MGA) is proposed.
It allows the adjustment of the parameters of the algorithm at
all stages of the problem solving. In addition, the MGA does
not suffer from the problems of the classic GA, such as
degeneration of the population, getting into local extremes,
etc. The main disadvantages of MGA are the need for the
participation of an administrator and its application to a
narrow class of problems. The solution to these problems of
GA in general is not possible, therefore it is necessary to
develop an effective strategy for the selection of the
operator’s parameters and for determining the probability of
applying these operators for the entire period of the GA.

The remainder of the paper is organized as follows: in
Section II, the related work is discussed, in Section III the
problem of genetic algorithm adaptation is analyzed and an
AGA is presented, in Section IV a particular case of the VMs
allocation in the data center with a homogeneous
configuration of the PMs is considered. This problem is
proposed to be solved using an AGA. In this section, the
results obtained by classical genetic algorithm, modified
genetic algorithm and adaptive genetic algorithm for solving
the considered problem are compared. Section V concludes
the paper discussing the results and future research
directions.

II. RELATED WORK

As stated in [2][3][4], there is a significant effort of
research in the data center resource management field
including resource provisioning, resource allocation,
resource brokering, resource scheduling, resource mapping,
and resource capacity planning. There are a lot of cloud
computing frameworks and systems proposed that have
specific mechanisms to provide and monitor resources,
including those using heuristics and new methods such as
load prediction mechanisms, considering imbalance of
workload and virtual machine interference.

Genetic algorithms are widely used for solving
computational problems of resource allocation in data
centers, and produce sufficient productive solutions [5][6]. In
these studies, one needs to determine the list of issues that

108Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

need to be figured out when using the GA to solve the
problems of different dimensions and constraints.

During the last decade, many approaches to various VM
placement problems have been proposed. In [7], the authors
propose to model the server consolidation problem as a
vector packing problem with conflicts using techniques
inspired by grouping genetic algorithm. The algorithm has
been tested in various scenarios and it allows to minimize the
number of servers used for hosting applications within
datacenters. Besides, it maximizes the packing efficiency of
the servers utilized.

In [8], the authors consider the virtual machine packing
problem as a multi-objective optimization problem and
propose to solve it by using genetic algorithm as one of the
meta-heuristics. The authors have implemented a virtual
machine packing optimization mechanism based on genetic
algorithm for a virtual cluster management system.

A hybrid genetic algorithm, using best fit decreasing
strategy, was proposed in [9] to deal with infeasible solution
due to the bin representation. The authors have proposed a
new approach based on correcting infeasible chromosomes
to prevent overflow of the bin. Hence, the new proposed
chromosomes were suitable for the application of the genetic
operators. They contributed to the execution time reduction.
The proposed algorithm was evaluated on the VM placement
problem and it lead to the usage of a minimum number of
physical machines.

Energy consumption in the communication network is
another subject of research related to the virtual machine
placement problem. The approach based on genetic
algorithm, that considers the energy consumption in both the
servers and the communication network in the data center,
was proposed in [10]. But the authors’ assumption about
network topology does not strictly correspond to the real data
center networks.

To solve the VM placement problem in a cloud data
center, the authors in [11] proposed to adopt a genetic
algorithm using the future workloads prediction with
Brown’s quadratic exponential smoothing. But their online
self-reconfiguration approach for reallocating VMs is
focused on serving three types of Web transactions, namely
browsing, shopping and ordering transactions.

To address fine-grained virtual machine resource
allocation and reallocation problem, a two-level control
system has been proposed in [12] to manage the mappings of
workloads to VMs and the mappings of VMs to physical
resources. An improved genetic algorithm with fuzzy multi-
objective evaluation has been proposed to efficiently solve
the VM placement problem, which is formulated as a multi-
objective optimization problem of simultaneously
minimizing total resource wastage, power consumption and
thermal dissipation costs.

In [13] [14], the idea of genetic operator adaptation and
adjustment of the probabilities of their use was proposed.
The disadvantage of these approaches is that the adaptation
of only one crossover operator was proposed. Another
disadvantage is that the possible approaches to adaptation are
used independently of each other.

As a rule, for the adaptation of the GA for specific tasks,
a certain control parameter is used [15][16]. The
effectiveness of the deterministic control has been proven for
some tasks [13], but its generalization is problematic.
Adaptive control [17] uses feedback to determine how the
parameters should be changed. With adaptive control [14], it
is necessary to introduce additional information that allows
to adjust the behavior of the operators.

Today, the main efforts of GA researchers are focused on
the adaptation of only one parameter. The most complete
combination of management forms [16] was presented in
[18], where the adaptation was performed simultaneously on
three parameters: probability of mutation, crossover, and
population size. Other forms of adaptive algorithms are
presented in [19][20][21].

III. THE ADAPTIVE GENETIC ALGORITHM

The main feature of the proposed algorithm is the use of
two adaptation strategies, so the process of obtaining the
solution is a cyclical repetition of two stages. In the first
stage, using the parametric adaptation, the algorithm selects
the most productive settings for each of the operators. In the
second stage, the parameter of performance is estimated and
the algorithm selects the most efficient type of operator
taking into account the results of algorithmic adaptation. If
the resulting solution does not satisfy the specified criteria,
the process is repeated from the first step.

The general formulation of the problem of genetic
algorithm adaptation can be reduced to minimizing a
function F that serves as a criterion for GA adaptation and
depends on parameters such as: types of operators to be used
in the evolutionary process, the frequency of use of these
operators and the values of the parameters with which the
operators are applied. Let us define the adaptation function

as (, , , , ,),M C M CF M C where M, С are the parameters

that govern the use of mutation and crossover operators, and
take values from the set {0, 1}, and the equality of the
parameter to 0 means that the operator does not take part in
the evolutionary process, and the equality of the parameter to
1 means that the operator takes part in the evolution process;

,M C are frequencies of the use of operators M and C

respectively which take values from the interval [0; 1];

,M C are the sets of possible values of mutation and

crossover operators.
Finding an explicit form of the function F, even for

simple cases, requires a huge amount of computation that
would negate all the benefits of GA. The use of structural
adaptation within the solution of IT infrastructure
management tasks is impossible, so when carrying out
adaptation it is proposed to use some information regarding
the properties of the function F. In the evolutionary process,
such information will be the types of operators and
parameters of these operators.

Genetic algorithms use several types of operators such as
unary (mutation), binary (crossover), and multiple (multi-
point crossover). Each type of operator has a set of
parameters that affect its behavior, and GA begins with
specific parameter values.

109Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

Suppose the set of types of operators is given as
1{ , ..., ,..., }z ZD d d d , where 1,z Z is the number of

types of operators used in the GA. One such example is the
modified crossover operator or the modified mutation

operator. Each type of operator , 1,zd z Z has a set of

parameters
,1 , ,X() (,..., ,...,),z

z z k z Yd x x x 1, .k Y For

example, the modified mutation operator has two parameters,

which correspond to probabilities
10p and

01p , and

crossover has only one parameter that is the number of
crossover points.

To generate new generations, the GA uses genetic
operators with parameters that correspond to its type. The
parameters take their values from some set or interval. For
modified mutation operator, the parameter’s values will be
selected from the interval [0, 1], whereas the parameter of
crossover operator can take any positive integer value, less

than (1)n .

The parametric adaptation applied to increase the chances
of survival and reproduction of the operators with the
parameter values, showed the best results. Consider the
AGA, which uses the types of operators from the set D. For

each type of operator zd D , 1,z Z the population of

parameter values is constructed. For example, if modified
mutation operator and modified crossover operator are
defined for AGA, then

10 01(_ , ,) {(0.1; 0.1; 0.9),alter rate p p (0.7;0.8;0),

(0.4;0.1;0.1)} is a fixed set of operator instances for

mutations and () {(1),(2),(1)}c n is fixed set of operator

instances for crossover.
Let us denote a set of operators used by AGA as

1{ ,..., ,..., }h HO op op op , 1,h H , where Н is a number of

operators in AGA.
The behavior of each operator is adjusted by changing its

parameters using an evolutionary procedure for each
operator. The evolutionary procedure operates in the space of
possible values of the operator. After starting the AGA,
changes in parameter values are made for each operator.
Since relatively small search space is optimized, a GA is also
used for the search of a set of the operator’s values, leading
to an improvement of the AGA results. GA is used for each
individual operator. Let us denote as operator’s stage of GA
(OGA) the GA that implements searching of the best
operator’s values.

The population for each operator will consist of
chromosomes, which are a set of possible values of the
operator’s parameters. A single-point crossover is used to
generate new populations. The OGA that is used to search
the best values in the space of a single type of the operator is
running as the GA procedure and is referred to as the main
stage of GA (MSGA). The MSGA is working on the direct
solution search. The resulting solution obtained by the use of
OGA is the initial data for MSGA. In this case, AGA is
viewed as a set of the OGA and the MSGA cycles.

The algorithmic adaptation task is solved at the MSGA
stage. This task is to increase the probability of use of

operators that provide the best solutions. To evaluate the
work of the operators, we introduce the following concepts.

The event – the use of a specific genetic operator.
Absolute improvement – an event when the value of the
objective function of the new generation is greater than the
value of the objective function of previous generations.
Improvement – the new generation has a better objective
function value than the parent’s one. Stabilization of
decision – the value of the objective function of the new
generation is slightly different from the parent’s one for a
number of epoch. Degeneration – the next generation has a
worse value of the objective function than the parent’s one,
and none of the generations are better than the parental.

Let us introduce the parameters of performance, showing
the efficiency of the operator in the current generation, and
being used as a feedback for the evolutionary process. Based
on the values of the performance indicators, the AGA
corrects the values of probabilities of using the operators.

The parameter of performance for the operator
hop ,

1,h H is defined as a function of four variables

(, , ,)
hop ae e pw w , where ae is the number of absolute

improvements, e is the number of improvements, pw is the
amount of stabilized solutions, w is the amount of
degeneration. The total number of events on the step of the

AGA is defined as N ae e pw w .

The performance parameter is introduced in order to
determine which of the operators provides the best solution
in the current step of AGA. The frequency of using operators
is taken into account with the relative frequencies of
occurrence of a certain type of events. When 0N the
relative frequency is calculated as follows: for an absolute

improvement – / ;ae ae N improvement – / ;e e N

stabilization of decision – / ;pw pw N degeneration –

/ .w w N

In this paper, we adopted the following procedure for
comparing the performance parameters, which will be
formulated as follows based on the example of the two
operators. An operator will be more productive if it has a
performance setting characterized by a large number of
absolute improvements. If the number of absolute
improvements is the same, the comparison is made on the
number of improvements. If the number of improvements is
also the same, the comparison is made on flat events. If this
comparison does not allow to select the best operator, then
the more productive will be the operator with less amount of
degeneration. If there is an equal number of degenerations,
then the mutation is used.

To determine the order of use of the operators we
introduced the concept of reward. For each operator

,hop O 1,h H the award ()hop is assigned, which

increases as a result of the accumulation of positive
experience. Primarily the operator with the greatest reward is

used. The value ()hop , 1,h H is constantly updated, and

the experience gained during recent tests is seen as more
urgent.

110Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

Let (),hop 1,h H be the rank of operator
hop

assigned depending on the performance such that the most
productive type of operator gets the highest rank. Moreover,
the assignment of the rank is made after completion of the
OGA. The awards are updated at the end of each AGA epoch
in accordance with formula (1)

 () () (), 1,h h hop op op h H

where is the attenuation factor that is constant in the set

{0, 1}. And 0 for the operator, that just came into the

work, and 1 means that all previous experience of the
operator is fully taken into account. The amplification factor

 is to recognize the best operators. The coefficient

having a value less than , is commonly used to ensure that

the operator is required to be used in AGA step.
An example for the two operators: crossover and

mutation, as well as limitations on the duration of the periods
as the amount of epoch is shown below.

Step 1: The setting of the stop condition of the algorithm,
which may be the number of epochs of genetic algorithm or
the algorithm duration.

Step 2. The initialization of the initial population
randomly within the constraints (3)–(5) and the following
rule: when accessing the population, each time its individuals
are sorted in descending order of objective function value.
The best representative of the population is saved as a stored
solution. The best population is remembered as a stored
population. Initially, the primary population is the stored
population.

Step 3: The initialization of the population of the
operator’s values randomly subject to the restrictions
imposed for each type of operator. For example, for the
mutation parameters and the crossover the following values

may be used
10 01(_ , ,) {(0.1; 0.1; 0.1),alter rate p p

(0.2;0.2;0.2), (0.3;0.3;0.3)} and () {(1),(2),(3)}c

respectively.
Step 4. The use of each value of the respective types of

operators to generate intermediate populations, with the help
of the objective function to select values which allow to
achieve the greatest performance indicators for each of the
type of operators. For example, for mutation it may be

10 01(_ , ,) (0.1; 0.1; 0.1)alter rate p p , for crossover it may

be () (1)c .

In the case of improvement of the obtained results, the
stored population is changed using the results obtained by
means of the most productive of the two operators, and the
stored solution is overwritten. If the performance of two
operators is identical, the mutation operator has to be chosen.
If this does not improve the initial solution, proceed to Step 3
and use OGA to adjust the values of the parameters using the
crossover operator.

If it was not possible to improve the parameters of the
operators by using crossover, then apply mutation to avoid
possible falling into local extremes. The use of mutation
parameter to adjust the values of parameters of the operators

is made on a cycle by using the following rules. The rule for
crossover is to increment the number of crossover points, and

if the number of points is equal to (1)n , to take the next

number of crossover points equal to 1. The rule for mutation
is to increase each of the values of mutation parameters by
0.1, and if the value of any of the parameters is 0.9, the next
value is set to 0.1. If the decision is not improving, the
algorithm finishes and the resulting solution is taken as the
most productive.

Step 5: The ranks assigning to operators, calculation of
awards, the use of the operators M times (the total number of
MSGA steps is equal to 2×M in the first epoch, and 3×M in
all subsequent) in descending order of reward value. If the
use of the operator has improved the decision, the solution
must be used as a new stored solution to the problem, and
then continue with the improved population.

Step 6. After a predetermined number of AGA steps, the
value of performance options is updated and the most
productive operator is chosen. For example, if the operator

10 01(_ , ,) (0.1; 0.1; 0.1)alter rate p p has been proven to be

the most productive, it needs to be saved and used in the next
epochs. Overwrite the stored solution.

Step 7. If the conditions of the AGA stop are not met,
then go to step 3 and start a new epoch. On the stage of the
OGA work, the most productive values for all types of
operators must be chosen. For example, if

10 01(_ , ,) (0.2; 0.2; 0.2)alter rate p p and () (1)c for

mutation and crossover respectively, then in MSGA step the
work on population will be carried out for the three operators

(the mutation operator
10 01(_ , ,) (0.1; 0.1; 0.1)alter rate p p

passes from the previous epoch). At the end of MSGA, count
and compare the performance parameters, and choose the
best of the three operators and go to the next epoch (Step 3).

Step 8. If the conditions of the AGA stop are fulfilled,
then finish the job, use the current stored solution as a
solution to the problem, otherwise go to step 3 and continue
to work to complete the stop conditions.

In this paper, we used the combined stopping condition
of the algorithm, which includes a predetermined time and
the number of evolution periods in which the optimization
result is not improving, and the growth of the objective
function stops. GA aims to improve the outcome during the
allotted time.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Formulation of the problem

The authors consider a particular case (policy) of the
VMs allocation in the data center with a homogeneous
configuration of the PMs and propose to solve this problem
using the adaptive genetic algorithm presented above. The
VM allocation on the physical servers of the IT infrastructure
relates to the problem of consolidation of computing
resources. The case of using homogeneous PM
configurations is chosen because it can be implemented
within a single cluster, which may be considered as a unit of
control in a data center. The mathematical model of the VMs
allocation on the PMs is represented as follows.

111Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

The data center contains a set of PMs 1 , , , nN N N

where n is the number of PMs. 1 , , mK K K is a set of

VMs that should be allocated to the PMs, where m is the

number of VMs. Each PM Nі, 1, ,i n is characterized by

two parameters that determine its computing capacity: Ωі is

the CPU capacity of the PM Nі, and i is the RAM capacity

of the PM Nі. Each VM Kj, 1, ,j m has the computational

resource requirements: j is the CPU time, and j is the RAM
size. It is necessary also to determine the VM allocation

matrix, jiR r , with the size of m×n, where

1,if VM is allocated on PM ,

0, otherwise.

j i

ji

K N
r

The matrix R is a solution to the problem and determines
the allocation of K VMs on the set N of PMs. The authors
consider that all PMs in set N have identical specifications
and, consequently, the same computing resources, so they

assume that Ωі = 1 and і = 1 for all 1, ,i n that is

 , {1,1}, for all 1 , { .} |
iі і NG і n

This assumption allows the authors to make a transition
from the measurement of PM computing resources in
absolute values when the memory is measured in gigabytes
and CPU frequency in GHz to a relative value. Then, the VM
needs are defined as part of the PM's resources, recalculated
in relation to the maximum possible value of 1. The number
of resources allocated to a virtual machine is determined by
the application requirements. The necessary resources for the
VM are recalculated with respect to the physical server and
they are part of it.

The authors consider also that resource needs of each
VM do not exceed the capabilities of the PM

 and for each 1 1, 1 , .
j j

j m

When solving the problem of VMs allocation for all PMs
from N, the following resource constraint must be satisfied

1 1

and for 1 ,1 .1 ,
m m

ji j ji j

j j

nr r і

Further, the authors introduce the vector ,iy y

1, ,i n where

1, if at least one VM is allocated on ,

0, otherwise.

i

i

N
y

Then the optimum criterion for solving the problem of
VM placement on PMs will be

1

min ,
n

i

i

y

that is the PMs should be filled with VMs so that the
minimum number of PMs are involved.

When the criterion (7) is satisfied the total cost S of the
data center and PMs maintenance and energy supply will be
minimized.

The objective function can be represented as follows:

1

n

i i

i

S s y

where si is the maintenance and energy supply costs for the i-
th PM.

In the case when the PMs in the data center have
identical specifications (i.e., homogeneous), the expression
(8) becomes

1

n

i

i

S s y

where s is the maintenance and energy costs per PM.
Taking into account the previous description, the

problem of K VMs allocation can be summarized as follows:
it is necessary to place the VMs on data center PMs so that
either the expression (8) or (9) reaches a minimum value.

The authors consider two cases, namely, the initial
placement of the VMs and also their change in placement
during the execution. The algorithm restarts when unused
resources are detected in PM. If the number of unused
resources on a PM is greater than the threshold, then that
server is added to a consolidation list. The algorithm restarts
if the total number of unused resources on the physical
servers, included in the consolidation list, exceeds the
resources of one PM. As a result, it is proposed to run the
AGA not for all PMs, but for PMs in the consolidation list.
All migrations initiated by the AGA at the previous stage
must be completed. The selection of the threshold value is
not considered in this work.

B. Evaluation

Experimental studies were performed on the data center
resource allocation problem solution using three algorithms:
the classical genetic algorithm, the managed genetic
algorithm [1] and the adaptive genetic algorithm presented in
this paper.

At the same time, studies were conducted for different
ratios of the number of VMs and PMs resources. For this
study, we considered three options for resource ratios that are
close to reality:

 the case of disproportionate resource requirements
when in relative units the requested amount of CPU
time is much higher than the requested amount of

112Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

RAM, i.e., j>>j, for all 1 , .j m This type of

problem occurs when a large number of applications
require complex calculations;

 the case of disproportionate resource requirements
when requested units of CPU is much less than the

requested amount of RAM, i.e., j<<j, for all

 1 , .j m This problem occurs when the VMs with

applications that require large amounts of data
processing are located on the servers;

 the most common practical case is when the amount
of the requested CPU and RAM for all VMs are
distributed randomly in the range [0.05; 0.6].

The ranges of computer resources requested by VM for
the different experiments are presented in Table 1.

TABLE I. THE RANGES OF COMPUTER RESOURCES REQUESTED BY VM

Experiment number RAM limitation CPU limitatiom

1 0.3—0.45 0.05—0.15

2 0.45—0.6 0.05—0.15

3 0.05—0.15 0.3—0.45

4 0.05—0.15 0.45—0.6

5 0.05—0.6 0.05—0.6

In [1], it has been proved that when the number of VMs
is less than fifty the heuristic and genetic algorithms give
approximately the same results, but with the increased
number of VMs the genetic algorithm provides a better
quality performance.

The evaluation of the quality of CGA, MGA and AGA
algorithms is performed in terms of the number of the PMs
released (turned off). As it is assumed that the physical
servers are homogeneous, they consume the same amount of
energy. It is assumed that to allocate each VM initially, a
separate PM is deployed. Next, using the proposed
algorithms placement of VMs on PMs are optimized with the
assessment of the maximum number of released PMs for
each of the algorithms. To compare the success of each
algorithm according to the criterion (7), the authors assessed
the number of unused physical servers, which were turned
off. It is obvious that, as a result of each algorithm work for
VM consolidation, the more PMs are turned off, the better.

Fig. 1 illustrates the dependence of the number of the
PMs released on the problem dimension (number of VMs) in
the case when the requested number of CPU and RAM for
all VMs is randomly distributed in the range [0.05; 0.6]. The
x-axis denotes the number of VMs, the y-axis denotes the
number of PMs released.

For comparing the MGA and the AGA results, the

concept of additional released PMs ВN is introduced. The

value ВN is defined as the difference between the number of

PMs
CGAN , released as a result of CGA, and the number of

PMs
MGAN and

AGAN released using the MGA and the AGA

respectively.
Thus, Fig. 2 shows a winning of the MGA and the AGA

regarding the CGA as a function of a number of additional

PMs released ВN from the dimension of the problem for

different ratios of the resources requested.

Figure 1. Dependence of the number of PMs released, from the problem

dimension.

The x-axis represents the number of VMs that need to be
placed on the PMs, y-axis represents the number of
additional PMs released for each of the algorithms.

The data for the experiments were generated randomly
with a uniform distribution law. The experimental results are
shown in Fig. 2.

The analysis of the results shown in Fig. 2 leads to the
following conclusions: (1) the use of the MGA and AGA is
more effective than the use of the CGA; (2) the AGA always
allows to get the best results on the VMs allocation,
regardless of the experimental conditions; (3) in the case of
dispersion over a wide range of requirements [0.05; 0.6]
(Fig. 2 b), the use of the AGA is the most effective.

V. CONCLUSION AND FUTURE WORK

One of the most important problems in the modern
virtualized environment is an allocation of virtual machines
on physical servers. Taking into account the large number of
types and virtual machine settings that modern service
providers offer, as well as the high density of virtual
machines per physical server the solution for this problem is
complicated.

In this work, the virtual machine allocation problem is
solved by using the adaptive genetic algorithm. The
proposed adaptive genetic algorithm uses parametric and
algorithmic adaptation simultaneously by selecting the
values for genetic operator’s parameters and by selecting the
probabilities of applying these operators. The authors' added
contribution regarding existing genetic algorithms is to apply
the adaptation, which consists in the change of probability of
using GA operators and in the change in the parameter
values of these operators depending on the nature of the
problems and on the results obtained during the problem
solving.

The adaptive genetic algorithm is evaluated for virtual
machine allocation problem solution and demonstrated
efficiency compared to classical and controlled versions of
the genetic algorithm. It is shown that the proposed
algorithm allows for an equal number of epochs to get better
results.

113Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 2. The dependence of the number of additionally released PMs on the dimension of the problem, when the requirements for the requ ested resources

are in the ranges: (a) to the CPU – [0.05; 0.15], to the RAM – [0.3; 0.45]; (b) to the CPU – [0.05; 0.6], to the RAM – [0.05; 0.6]

For future work, the authors plan to develop the
provisions of the adaptive genetic algorithm, to make
recommendations on configuring the algorithm’s parameters
for specific kind of tasks, and apply an adaptive genetic
algorithm for solving other tasks of the data center
management.

REFERENCES

[1] S. Telenyk, O. Rolik, P. Savchenko, and M. Bodaniuk, ”Managed
genetic algorithm in problems of virtual machines allocation in the

data center,” Scientific Journal of ChSTU, No 2, pp. 104-113, 2011

[2] A. Hameed et al., “A survey and taxonomy on energy efficient
resource allocation techniques for cloud computing systems,”

Computing, pp. 1–24, 2014.

[3] S. H. H. Madni, M. S. A. Latiff, Y. Coulibaly, and S. M. Abdulhamid,
“Resource scheduling for infrastructure as a service (IaaS) in cloud

computing: Challenges and opportunities,” Journal of Network and
Computer Applications, vol. 68, pp. 173–200, 2016.

[4] S. Singh and I. Chana, “A Survey on Resource Scheduling in Cloud
Computing: Issues and Challenges,” Journal of Grid Computing, pp.

1–48, 2016.

[5] S. Telenyk, O. Rolik, M. Bukasov, S. Androsov, and R. Rymar,
“Control of Data Centers’ Load and Resources Virtual Hosting,”

Scientific Journal of the Ternopil State Technical University, Vol 14,
No 4, pp. 198–210, 2009.

[6] S. F. Telenik, A. I. Rolik, M. M. Bukasov, and S. A. Androsov,

“Genetic algorithms of decision of tasks of management resources
and loading of centers of processing of data,” Automatic.

Automation. Electrical engineering complexes and systems, No 1
(25), pp. 106–120, 2010.

[7] S. Agrawal, S. K. Bose, and S. Sundarrajan, “Grouping genetic

algorithm for solving the server consolidation problem with
conflicts,” In GEC '09: Proceedings of the first ACM/SIGEVO

Summit on Genetic and Evolutionary Computation, New York, NY,
USA, pp. 1-8, 2009.

[8] H. Nakada, T. Hirofuchi, H. Ogawa, and S. Itoh, “Toward virtual

machine packing optimization based on genetic algorithm,” In
IWANN '09: Proceedings of the 10th International Work-Conference

on Artificial Neural Networks, Berlin, Heidelberg, pp. 651-654, 2009.

[9] M. A. Kaaouache and S. Bouamama, “Solving bin Packing Problem
with a Hybrid Genetic Algorithm for VM Placement in Cloud,”

Procedia Computer Science, Volume 60, pp. 1061-1069, 2015.

[10] G. Wu, M. Tang, Y. Tian, and W. Li, “Energy-Efficient Virtual
Machine Placement in Data Centers by Genetic Algorithm,” Neural

Information Processing, Volume 7665 of the series Lecture Notes in
Computer Science, Springer, pp. 315-323, 2012.

[11] H. Mi et al., “Online self-reconfiguration with performance guarantee

for energy-efficient large-scale cloud computing data centers,” Proc.
of the IEEE International Conference on Services Computing, pp.

514–521, 2010.

[12] J. Xu and J. Fortes, “Multi-objective virtual machine placement in
virtualized data center environments,” Proc. of the IEEE/ACM

International Conference on Green Computing and Communications
& 2010 IEEE/ACM International Conference on Cyber, Physical and

Social Computing, pp. 179–188, 2010.

[13] T. Back, “Optimal Mutation Rates in Genetic Search,” Fifth

International Conference on Genetic Algorithms: University of
Illinois at Urbana-Champaign, July 17–21, pp. 2–8, 1993.

[14] W. Spears, “Adapting Crossover in Evolutionary Algorithms,” Proc.

Of the 4th Annual Conference on Evolutionary Programming: San
Diego, California, March 1–3, pp. 367–384, 1995.

[15] Z. Michalewich, “Genetic Algorithms + Data Structures = Evolution

Programs,” Berlin: Springer, 1996.

[16] Z. Michalewich and D. Fogel “How to Solve It: Modern Heuristics,”
Berlin: Springer, 2002.

[17] B. Julstrom, “What Have You Done for me Lately? Adapting

Operator Probabilities in a Steady-State Genetic Algorithm,” Proc. of
the Sixth International Conference on Genetic Algorithms: University

of Pittsburgh, July 15–19, pp. 81–87, 1995.

[18] J. Lis and M. Lis, “Self-adapting Parallel Genetic Algorithms with the
Dynamic Mutation Probability, Crossover Rate and Population Size,”

Proc. of the 1st Polish National Conference on Evolutionary
Computation. Oficina Wydawnica Politechniki, Warszawskiej, pp.

324–329, 1996.

[19] A. Kosorukoff, “Using incremental evaluation and adaptive choice of

operators in a genetic algorithm,” Proc. of the Genetic and
Evolutionary Computation Conference: (GECCO-2002), New York,

USA, July 9–13, p. 688, 2002.

[20] M. Pelikan, D. Goldberg, and S. Tsutsui, “Combining the strengths of
Bayesian optimization algorithm and adaptive evolution strategies,”

Genetic and Evolutionary Computation Conference: (GECCO-2002),
New York, USA, July 9–13, pp. 512–519, 2002.

[21] D. Thierens, “Adaptive mutation rate control schemes in genetic

algorithms,” Congress on Evolutionary Computation: CEC’02,
Honolulu, Hawaii, May 12–17, pp. 980–985, 2002.

114Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

