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Abstract – The widespread use of the virtualization paradigm 

in modern data centers has increased the necessity of 

improving the management efficiency of virtual machine 

allocation on physical machines (PM). Modern service 

providers offer a large number of virtual machine types and 

settings. The density of virtual machine placement per physical 

server also complicates the solution of this problem. Under 

these conditions, for solving such kind of problems, the 

adaptive genetic algorithm (AGA) is proposed. The proposed 

algorithm uses parametric and algorithmic adaptation 

simultaneously by selecting the values for a genetic operator’s 

parameters and by selecting the probabilities of applying these 

operators. The AGA is evaluated for the solution of virtual 

machine allocation problem and demonstrates efficiency 

compared to the classical and the controlled versions of genetic 
algorithm. 

Keywords – data center; genetic algorithm; virtual machine; 

resource management 

I.  INTRODUCTION 

Data center resource management is an important and 
urgent problem at the present time. The growth in the 
number and complexity of modern data centers leads to an 
increasing number of virtual machines (VMs) and opens new 
challenges for management process automation. The 
Infrastructure as a Service (IaaS) paradigm enables 
customers to dynamically request the needed number of 
virtual machines based on their business requirements. One 
of the main tasks of managing resources in IaaS is the VMs 
allocation on the physical servers of the infrastructure. The 
VMs allocation process must be performed in a way that 
results in a reduction in the number of physical servers and a 
decrease in the energy consumption. 

The use of genetic algorithms (GA) and their benefits 
compared with heuristic methods to solve data center 
resource management problems is shown in [1]. Classical 
genetic algorithms (CGA) have their own specifics as GA 
simultaneously use several types of genetic operators: unary, 
binary, and multiple. It is difficult to choose the strategy to 
generate values of probabilities for the use of certain 
operators so that their application gives positive results for 
the entire period of the GA. In addition, each operator has a 

set of parameters that influence the results of the algorithm, 
and to find the optimum values of these parameters is a 
rather difficult task.  

In [1], a managed genetic algorithm (MGA) is proposed. 
It allows the adjustment of the parameters of the algorithm at 
all stages of the problem solving. In addition, the MGA does 
not suffer from the problems of the classic GA, such as 
degeneration of the population, getting into local extremes, 
etc. The main disadvantages of MGA are the need for the 
participation of an administrator and its application to a 
narrow class of problems. The solution to these problems of 
GA in general is not possible, therefore it is necessary to 
develop an effective strategy for the selection of the 
operator’s parameters and for determining the probability of 
applying these operators for the entire period of the GA. 

The remainder of the paper is organized as follows: in 
Section II, the related work is discussed, in Section III the 
problem of genetic algorithm adaptation is analyzed and an 
AGA is presented, in Section IV a particular case of the VMs 
allocation in the data center with a homogeneous 
configuration of the PMs is considered. This problem is 
proposed to be solved using an AGA. In this section, the 
results obtained by classical genetic algorithm, modified 
genetic algorithm and adaptive genetic algorithm for solving 
the considered problem are compared. Section V concludes 
the paper discussing the results and future research 
directions. 

II. RELATED WORK 

As stated in [2][3][4], there is a significant effort of 
research in the data center resource management field 
including resource provisioning, resource allocation, 
resource brokering, resource scheduling, resource mapping, 
and resource capacity planning. There are a lot of cloud 
computing frameworks and systems proposed that have 
specific mechanisms to provide and monitor resources, 
including those using heuristics and new methods such as 
load prediction mechanisms, considering imbalance of 
workload and virtual machine interference. 

Genetic algorithms are widely used for solving 
computational problems of resource allocation in data 
centers, and produce sufficient productive solutions [5][6]. In 
these studies, one needs to determine the list of issues that 
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need to be figured out when using the GA to solve the 
problems of different dimensions and constraints. 

During the last decade, many approaches to various VM 
placement problems have been proposed. In [7], the authors 
propose to model the server consolidation problem as a 
vector packing problem with conflicts using techniques 
inspired by grouping genetic algorithm. The algorithm has 
been tested in various scenarios and it allows to minimize the 
number of servers used for hosting applications within 
datacenters. Besides, it maximizes the packing efficiency of 
the servers utilized. 

In [8], the authors consider the virtual machine packing 
problem as a multi-objective optimization problem and 
propose to solve it by using genetic algorithm as one of the 
meta-heuristics. The authors have implemented a virtual 
machine packing optimization mechanism based on genetic 
algorithm for a virtual cluster management system. 

A hybrid genetic algorithm, using best fit decreasing 
strategy, was proposed in [9] to deal with infeasible solution 
due to the bin representation. The authors have proposed a 
new approach based on correcting infeasible chromosomes 
to prevent overflow of the bin. Hence, the new proposed 
chromosomes were suitable for the application of the genetic 
operators. They contributed to the execution time reduction. 
The proposed algorithm was evaluated on the VM placement 
problem and it lead to the usage of a minimum number of 
physical machines. 

Energy consumption in the communication network is 
another subject of research related to the virtual machine 
placement problem. The approach based on genetic 
algorithm, that considers the energy consumption in both the 
servers and the communication network in the data center, 
was proposed in [10]. But the authors’ assumption about 
network topology does not strictly correspond to the real data 
center networks. 

To solve the VM placement problem in a cloud data 
center, the authors in [11] proposed to adopt a genetic 
algorithm using the future workloads prediction with 
Brown’s quadratic exponential smoothing. But their online 
self-reconfiguration approach for reallocating VMs is 
focused on serving three types of Web transactions, namely 
browsing, shopping and ordering transactions. 

To address fine-grained virtual machine resource 
allocation and reallocation problem, a two-level control 
system has been proposed in [12] to manage the mappings of 
workloads to VMs and the mappings of VMs to physical 
resources. An improved genetic algorithm with fuzzy multi-
objective evaluation has been proposed to efficiently solve 
the VM placement problem, which is formulated as a multi-
objective optimization problem of simultaneously 
minimizing total resource wastage, power consumption and 
thermal dissipation costs. 

In [13] [14], the idea of genetic operator adaptation and 
adjustment of the probabilities of their use was proposed. 
The disadvantage of these approaches is that the adaptation 
of only one crossover operator was proposed. Another 
disadvantage is that the possible approaches to adaptation are 
used independently of each other. 

As a rule, for the adaptation of the GA for specific tasks, 
a certain control parameter is used [15][16]. The 
effectiveness of the deterministic control has been proven for 
some tasks [13], but its generalization is problematic. 
Adaptive control [17] uses feedback to determine how the 
parameters should be changed. With adaptive control [14], it 
is necessary to introduce additional information that allows 
to adjust the behavior of the operators. 

Today, the main efforts of GA researchers are focused on 
the adaptation of only one parameter. The most complete 
combination of management forms [16] was presented in 
[18], where the adaptation was performed simultaneously on 
three parameters: probability of mutation, crossover, and 
population size. Other forms of adaptive algorithms are 
presented in [19][20][21]. 

III. THE ADAPTIVE GENETIC ALGORITHM 

The main feature of the proposed algorithm is the use of 
two adaptation strategies, so the process of obtaining the 
solution is a cyclical repetition of two stages. In the first 
stage, using the parametric adaptation, the algorithm selects 
the most productive settings for each of the operators. In the 
second stage, the parameter of performance is estimated and 
the algorithm selects the most efficient type of operator 
taking into account the results of algorithmic adaptation. If 
the resulting solution does not satisfy the specified criteria, 
the process is repeated from the first step. 

The general formulation of the problem of genetic 
algorithm adaptation can be reduced to minimizing a 
function F  that serves as a criterion for GA adaptation and 
depends on parameters such as: types of operators to be used 
in the evolutionary process, the frequency of use of these 
operators and the values of the parameters with which the 
operators are applied. Let us define the adaptation function 

as ( , , , , , ),M C M CF M C     where M, С are the parameters 

that govern the use of mutation and crossover operators, and 
take values from the set {0, 1}, and the equality of the 
parameter to 0 means that the operator does not take part in 
the evolutionary process, and the equality of the parameter to 
1 means that the operator takes part in the evolution process; 

,M C   are frequencies of the use of operators M and C 

respectively which take values from the interval [0; 1]; 

,M C   are the sets of possible values of mutation and 

crossover operators. 
Finding an explicit form of the function F, even for 

simple cases, requires a huge amount of computation that 
would negate all the benefits of GA. The use of structural 
adaptation within the solution of IT infrastructure 
management tasks is impossible, so when carrying out 
adaptation it is proposed to use some information regarding 
the properties of the function F. In the evolutionary process, 
such information will be the types of operators and 
parameters of these operators. 

Genetic algorithms use several types of operators such as 
unary (mutation), binary (crossover), and multiple (multi-
point crossover). Each type of operator has a set of 
parameters that affect its behavior, and GA begins with 
specific parameter values. 

109Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization



Suppose the set of types of operators is given as 
1{ , ..., ,..., }z ZD d d d , where 1,z Z  is the number of 

types of operators used in the GA. One such example is the 
modified crossover operator or the modified mutation 

operator. Each type of operator , 1,zd z Z  has a set of 

parameters 
,1 , ,X( ) ( ,..., ,..., ),z

z z k z Yd x x x  1, .k Y  For 

example, the modified mutation operator has two parameters, 

which correspond to probabilities 
10p  and 

01p , and 

crossover has only one parameter that is the number of 
crossover points. 

To generate new generations, the GA uses genetic 
operators with parameters that correspond to its type. The 
parameters take their values from some set or interval. For 
modified mutation operator, the parameter’s values will be 
selected from the interval [0, 1], whereas the parameter of 
crossover operator can take any positive integer value, less 

than ( 1)n . 

The parametric adaptation applied to increase the chances 
of survival and reproduction of the operators with the 
parameter values, showed the best results. Consider the 
AGA, which uses the types of operators from the set D. For 

each type of operator zd D , 1,z Z  the population of 

parameter values is constructed. For example, if modified 
mutation operator and modified crossover operator are 
defined for AGA, then 

10 01( _ , , ) {(0.1; 0.1; 0.9),alter rate p p   (0.7;0.8;0),  

(0.4;0.1;0.1)}  is a fixed set of operator instances for 

mutations and ( ) {(1),(2),( 1)}c n   is fixed set of operator 

instances for crossover. 
Let us denote a set of operators used by AGA as 

1{ ,..., ,..., }h HO op op op , 1,h H , where Н is a number of 

operators in AGA. 
The behavior of each operator is adjusted by changing its 

parameters using an evolutionary procedure for each 
operator. The evolutionary procedure operates in the space of 
possible values of the operator. After starting the AGA, 
changes in parameter values are made for each operator. 
Since relatively small search space is optimized, a GA is also 
used for the search of a set of the operator’s values, leading 
to an improvement of the AGA results. GA is used for each 
individual operator. Let us denote as operator’s stage of GA 
(OGA) the GA that implements searching of the best 
operator’s values. 

The population for each operator will consist of 
chromosomes, which are a set of possible values of the 
operator’s parameters. A single-point crossover is used to 
generate new populations. The OGA that is used to search 
the best values in the space of a single type of the operator is 
running as the GA procedure and is referred to as the main 
stage of GA (MSGA). The MSGA is working on the direct 
solution search. The resulting solution obtained by the use of 
OGA is the initial data for MSGA. In this case, AGA is 
viewed as a set of the OGA and the MSGA cycles. 

The algorithmic adaptation task is solved at the MSGA 
stage. This task is to increase the probability of use of 

operators that provide the best solutions. To evaluate the 
work of the operators, we introduce the following concepts. 

The event – the use of a specific genetic operator. 
Absolute improvement – an event when the value of the 
objective function of the new generation is greater than the 
value of the objective function of previous generations. 
Improvement – the new generation has a better objective 
function value than the parent’s one. Stabilization of 
decision – the value of the objective function of the new 
generation is slightly different from the parent’s one for a 
number of epoch. Degeneration – the next generation has a 
worse value of the objective function than the parent’s one, 
and none of the generations are better than the parental. 

Let us introduce the parameters of performance, showing 
the efficiency of the operator in the current generation, and 
being used as a feedback for the evolutionary process. Based 
on the values of the performance indicators, the AGA 
corrects the values of probabilities of using the operators. 

The parameter of performance for the operator 
hop , 

1,h H  is defined as a function of four variables 

( , , , )
hop ae e pw w , where ae is the number of absolute 

improvements, e is the number of improvements, pw is the 
amount of stabilized solutions, w is the amount of 
degeneration. The total number of events on the step of the 

AGA is defined as N ae e pw w    . 

The performance parameter is introduced in order to 
determine which of the operators provides the best solution 
in the current step of AGA. The frequency of using operators 
is taken into account with the relative frequencies of 
occurrence of a certain type of events. When 0N   the 
relative frequency is calculated as follows: for an absolute 

improvement – / ;ae ae N   improvement – / ;e e N   

stabilization of decision – / ;pw pw N   degeneration – 

/ .w w N   

In this paper, we adopted the following procedure for 
comparing the performance parameters, which will be 
formulated as follows based on the example of the two 
operators. An operator will be more productive if it has a 
performance setting characterized by a large number of 
absolute improvements. If the number of absolute 
improvements is the same, the comparison is made on the 
number of improvements. If the number of improvements is 
also the same, the comparison is made on flat events. If this 
comparison does not allow to select the best operator, then 
the more productive will be the operator with less amount of 
degeneration. If there is an equal number of degenerations, 
then the mutation is used. 

To determine the order of use of the operators we 
introduced the concept of reward. For each operator 

,hop O  1,h H  the award ( )hop  is assigned, which 

increases as a result of the accumulation of positive 
experience. Primarily the operator with the greatest reward is 

used. The value ( )hop , 1,h H  is constantly updated, and 

the experience gained during recent tests is seen as more 
urgent. 
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Let ( ),hop  1,h H  be the rank of operator 
hop  

assigned depending on the performance such that the most 
productive type of operator gets the highest rank. Moreover, 
the assignment of the rank is made after completion of the 
OGA. The awards are updated at the end of each AGA epoch 
in accordance with formula (1) 

 ( ) ( ) ( ), 1,h h hop op op h H        

where   is the attenuation factor that is constant in the set 

{0, 1}. And 0   for the operator, that just came into the 

work, and 1   means that all previous experience of the 
operator is fully taken into account. The amplification factor 

  is to recognize the best operators. The coefficient   

having a value less than  , is commonly used to ensure that 

the operator is required to be used in AGA step. 
An example for the two operators: crossover and 

mutation, as well as limitations on the duration of the periods 
as the amount of epoch is shown below. 

Step 1: The setting of the stop condition of the algorithm, 
which may be the number of epochs of genetic algorithm or 
the algorithm duration. 

Step 2. The initialization of the initial population 
randomly within the constraints (3)–(5) and the following 
rule: when accessing the population, each time its individuals 
are sorted in descending order of objective function value. 
The best representative of the population is saved as a stored 
solution. The best population is remembered as a stored 
population. Initially, the primary population is the stored 
population. 

Step 3: The initialization of the population of the 
operator’s values randomly subject to the restrictions 
imposed for each type of operator. For example, for the 
mutation parameters and the crossover the following values 

may be used 
10 01( _ , , ) {(0.1; 0.1; 0.1),alter rate p p   

(0.2;0.2;0.2),  (0.3;0.3;0.3)}  and ( ) {(1),(2),(3)}c   

respectively. 
Step 4. The use of each value of the respective types of 

operators to generate intermediate populations, with the help 
of the objective function to select values which allow to 
achieve the greatest performance indicators for each of the 
type of operators. For example, for mutation it may be 

10 01( _ , , ) (0.1; 0.1; 0.1)alter rate p p  , for crossover it may 

be ( ) (1)c  . 

In the case of improvement of the obtained results, the 
stored population is changed using the results obtained by 
means of the most productive of the two operators, and the 
stored solution is overwritten. If the performance of two 
operators is identical, the mutation operator has to be chosen. 
If this does not improve the initial solution, proceed to Step 3 
and use OGA to adjust the values of the parameters using the 
crossover operator. 

If it was not possible to improve the parameters of the 
operators by using crossover, then apply mutation to avoid 
possible falling into local extremes. The use of mutation 
parameter to adjust the values of parameters of the operators 

is made on a cycle by using the following rules. The rule for 
crossover is to increment the number of crossover points, and 

if the number of points is equal to ( 1)n , to take the next 

number of crossover points equal to 1. The rule for mutation 
is to increase each of the values of mutation parameters by 
0.1, and if the value of any of the parameters is 0.9, the next 
value is set to 0.1. If the decision is not improving, the 
algorithm finishes and the resulting solution is taken as the 
most productive. 

Step 5: The ranks assigning to operators, calculation of 
awards, the use of the operators M times (the total number of 
MSGA steps is equal to 2×M in the first epoch, and 3×M in 
all subsequent) in descending order of reward value. If the 
use of the operator has improved the decision, the solution 
must be used as a new stored solution to the problem, and 
then continue with the improved population. 

Step 6. After a predetermined number of AGA steps, the 
value of performance options is updated and the most 
productive operator is chosen. For example, if the operator 

10 01( _ , , ) (0.1; 0.1; 0.1)alter rate p p   has been proven to be 

the most productive, it needs to be saved and used in the next 
epochs. Overwrite the stored solution. 

Step 7. If the conditions of the AGA stop are not met, 
then go to step 3 and start a new epoch. On the stage of the 
OGA work, the most productive values for all types of 
operators must be chosen. For example, if 

10 01( _ , , ) (0.2; 0.2; 0.2)alter rate p p   and ( ) (1)c   for 

mutation and crossover respectively, then in MSGA step the 
work on population will be carried out for the three operators 

(the mutation operator 
10 01( _ , , ) (0.1; 0.1; 0.1)alter rate p p   

passes from the previous epoch). At the end of MSGA, count 
and compare the performance parameters, and choose the 
best of the three operators and go to the next epoch (Step 3). 

Step 8. If the conditions of the AGA stop are fulfilled, 
then finish the job, use the current stored solution as a 
solution to the problem, otherwise go to step 3 and continue 
to work to complete the stop conditions.  

In this paper, we used the combined stopping condition 
of the algorithm, which includes a predetermined time and 
the number of evolution periods in which the optimization 
result is not improving, and the growth of the objective 
function stops. GA aims to improve the outcome during the 
allotted time. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Formulation of the problem 

The authors consider a particular case (policy) of the 
VMs allocation in the data center with a homogeneous 
configuration of the PMs and propose to solve this problem 
using the adaptive genetic algorithm presented above. The 
VM allocation on the physical servers of the IT infrastructure 
relates to the problem of consolidation of computing 
resources. The case of using homogeneous PM 
configurations is chosen because it can be implemented 
within a single cluster, which may be considered as a unit of 
control in a data center. The mathematical model of the VMs 
allocation on the PMs is represented as follows. 
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The data center contains a set of PMs  1    ,  , ,  nN N N   

where n is the number of PMs.  1    ,  ,  mK K K   is a set of 

VMs that should be allocated to the PMs, where m is the 

number of VMs. Each PM Nі, 1, ,i n  is characterized by 

two parameters that determine its computing capacity: Ωі is 

the CPU capacity of the PM Nі, and i is the RAM capacity 

of the PM Nі. Each VM Kj, 1, ,j m  has the computational 

resource requirements: j is the CPU time, and j is the RAM 
size. It is necessary also to determine the VM allocation 

matrix, jiR r , with the size of m×n, where  


1,if VM is allocated on PM ,

0, otherwise.

j i

ji

K N
r


 


 

The matrix R is a solution to the problem and determines 
the allocation of K VMs on the set N of PMs. The authors 
consider that all PMs in set N have identical specifications 
and, consequently, the same computing resources, so they 

assume that Ωі = 1 and і = 1 for all 1, ,i n  that is 

 , {1,1},  for all   1  , { .} |
iі і NG і n    

This assumption allows the authors to make a transition 
from the measurement of PM computing resources in 
absolute values when the memory is measured in gigabytes 
and CPU frequency in GHz to a relative value. Then, the VM 
needs are defined as part of the PM's resources, recalculated 
in relation to the maximum possible value of 1. The number 
of resources allocated to a virtual machine is determined by 
the application requirements. The necessary resources for the 
VM are recalculated with respect to the physical server and 
they are part of it. 

The authors consider also that resource needs of each 
VM do not exceed the capabilities of the PM 

 and for each 1 1,   1  , .
j j

j m     

When solving the problem of VMs allocation for all PMs 
from N, the following resource constraint must be satisfied 


1 1

and  for   1  ,1 .1  ,
m m

ji j ji j

j j

nr r і 
 

     

Further, the authors introduce the vector ,iy y  

1, ,i n  where 


1, if at least one VM is allocated on ,

0, otherwise.

i

i

N
y


 


 

Then the optimum criterion for solving the problem of 
VM placement on PMs will be 


1

min ,
n

i

i

y


  

that is the PMs should be filled with VMs so that the 
minimum number of PMs are involved. 

When the criterion (7) is satisfied the total cost S of the 
data center and PMs maintenance and energy supply will be 
minimized. 

The objective function can be represented as follows: 


1

n

i i

i

S s y


  

where si is the maintenance and energy supply costs for the i-
th PM. 

In the case when the PMs in the data center have 
identical specifications (i.e., homogeneous), the expression 
(8) becomes 


1

n

i

i

S s y


   

where s is the maintenance and energy costs per PM. 
Taking into account the previous description, the 

problem of K VMs allocation can be summarized as follows: 
it is necessary to place the VMs on data center PMs so that 
either the expression (8) or (9) reaches a minimum value. 

The authors consider two cases, namely, the initial 
placement of the VMs and also their change in placement 
during the execution. The algorithm restarts when unused 
resources are detected in PM. If the number of unused 
resources on a PM is greater than the threshold, then that 
server is added to a consolidation list. The algorithm restarts 
if the total number of unused resources on the physical 
servers, included in the consolidation list, exceeds the 
resources of one PM. As a result, it is proposed to run the 
AGA not for all PMs, but for PMs in the consolidation list. 
All migrations initiated by the AGA at the previous stage 
must be completed. The selection of the threshold value is 
not considered in this work. 

B. Evaluation 

Experimental studies were performed on the data center 
resource allocation problem solution using three algorithms: 
the classical genetic algorithm, the managed genetic 
algorithm [1] and the adaptive genetic algorithm presented in 
this paper. 

At the same time, studies were conducted for different 
ratios of the number of VMs and PMs resources. For this 
study, we considered three options for resource ratios that are 
close to reality: 

 the case of disproportionate resource requirements 
when in relative units the requested amount of CPU 
time is much higher than the requested amount of 

112Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization



RAM, i.e., j>>j, for all   1  ,  .j m  This type of 

problem occurs when a large number of applications 
require complex calculations; 

 the case of disproportionate resource requirements 
when requested units of CPU is much less than the 

requested amount of RAM, i.e., j<<j, for all 

  1  , .j m  This problem occurs when the VMs with 

applications that require large amounts of data 
processing are located on the servers; 

 the most common practical case is when the amount 
of the requested CPU and RAM for all VMs are 
distributed randomly in the range [0.05; 0.6]. 

The ranges of computer resources requested by VM for 
the different experiments are presented in Table 1. 

TABLE I.  THE RANGES OF COMPUTER RESOURCES REQUESTED BY VM 

Experiment number RAM limitation CPU limitatiom 

1 0.3—0.45 0.05—0.15 

2 0.45—0.6 0.05—0.15 

3 0.05—0.15 0.3—0.45 

4 0.05—0.15 0.45—0.6 

5 0.05—0.6 0.05—0.6 
 

In [1], it has been proved that when the number of VMs 
is less than fifty the heuristic and genetic algorithms give 
approximately the same results, but with the increased 
number of VMs the genetic algorithm provides a better 
quality performance. 

The evaluation of the quality of CGA, MGA and AGA 
algorithms is performed in terms of the number of the PMs 
released (turned off). As it is assumed that the physical 
servers are homogeneous, they consume the same amount of 
energy. It is assumed that to allocate each VM initially, a 
separate PM is deployed. Next, using the proposed 
algorithms placement of VMs on PMs are optimized with the 
assessment of the maximum number of released PMs for 
each of the algorithms. To compare the success of each 
algorithm according to the criterion (7), the authors assessed 
the number of unused physical servers, which were turned 
off. It is obvious that, as a result of each algorithm work for 
VM consolidation, the more PMs are turned off, the better. 

Fig. 1 illustrates the dependence of the number of the 
PMs released on the problem dimension (number of VMs) in 
the case when the requested number of CPU and RAM for 
all VMs is randomly distributed in the range [0.05; 0.6]. The 
x-axis denotes the number of VMs, the y-axis denotes the 
number of PMs released. 

For comparing the MGA and the AGA results, the 

concept of additional released PMs ВN  is introduced. The 

value ВN  is defined as the difference between the number of 

PMs 
CGAN , released as a result of CGA, and the number of 

PMs 
MGAN  and 

AGAN  released using the MGA and the AGA 

respectively. 
Thus, Fig. 2 shows a winning of the MGA and the AGA 

regarding the CGA as a function of a number of additional 

PMs released ВN  from the dimension of the problem for 

different ratios of the resources requested. 

 
Figure 1.  Dependence of the number of PMs released, from the problem 

dimension. 

The x-axis represents the number of VMs that need to be 
placed on the PMs, y-axis represents the number of 
additional PMs released for each of the algorithms. 

The data for the experiments were generated randomly 
with a uniform distribution law. The experimental results are 
shown in Fig. 2. 

The analysis of the results shown in Fig. 2 leads to the 
following conclusions: (1) the use of the MGA and AGA is 
more effective than the use of the CGA; (2) the AGA always 
allows to get the best results on the VMs allocation, 
regardless of the experimental conditions; (3) in the case of 
dispersion over a wide range of requirements [0.05; 0.6] 
(Fig. 2 b), the use of the AGA is the most effective. 

V. CONCLUSION AND FUTURE WORK 

One of the most important problems in the modern 
virtualized environment is an allocation of virtual machines 
on physical servers. Taking into account the large number of 
types and virtual machine settings that modern service 
providers offer, as well as the high density of virtual 
machines per physical server the solution for this problem is 
complicated.  

In this work, the virtual machine allocation problem is 
solved by using the adaptive genetic algorithm. The 
proposed adaptive genetic algorithm uses parametric and 
algorithmic adaptation simultaneously by selecting the 
values for genetic operator’s parameters and by selecting the 
probabilities of applying these operators. The authors' added 
contribution regarding existing genetic algorithms is to apply 
the adaptation, which consists in the change of probability of 
using GA operators and in the change in the parameter 
values of these operators depending on the nature of the 
problems and on the results obtained during the problem 
solving. 

The adaptive genetic algorithm is evaluated for virtual 
machine allocation problem solution and demonstrated 
efficiency compared to classical and controlled versions of 
the genetic algorithm. It is shown that the proposed 
algorithm allows for an equal number of epochs to get better 
results. 
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Figure 2.  The dependence of the number of additionally released PMs on the dimension of the problem, when the requirements for the requ ested resources 

are in the ranges: (a) to the CPU – [0.05; 0.15], to the RAM – [0.3; 0.45]; (b) to the CPU – [0.05; 0.6], to the RAM – [0.05; 0.6] 

For future work, the authors plan to develop the 
provisions of the adaptive genetic algorithm, to make 
recommendations on configuring the algorithm’s parameters 
for specific kind of tasks, and apply an adaptive genetic 
algorithm for solving other tasks of the data center 
management. 
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