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Abstract—Big data analysis is getting more and more attention 

these days. In social network applications, a large amount of data 

is in a graph structure form. As a result, more computation time 

is required for graph data analysis. In 2014, a framework of in-

memory computing, Spark, was proposed for big data analysis. 

Through reusing the data in memory to solve the long 

computation time issue, Spark finishes a task in a shorter time 

compared to Hadoop. In addition, GraphX, a Spark API 

(Application Interface), provides a graphical interface and 

makes graph data analysis simple and efficient. This study 

presents an improved k-mean clustering method by integrating 

k-core decomposition, which is an important algorithm in 

community detection to find the center of each cluster. We 

implement the clustering algorithm with GraphX to get better 

performance and results compared to the original k-mean 

clustering method. 

Keywords—cloud computing; GraphX; Spark; k-core 

decomposition; graph-based k-means 

I. INTRODUCTION 

With the massive growth of computational data, cloud 
computing has become one of most popular disciplines in 
recent years. A typical example of cloud computing system 
like Hadoop [15], is based on MapReduce model [16] and 
Google file systems [16] to collect and analyze huge data.  

For big data, analysis is the most important work. 
Techniques, such as machine learning, are used to train data 
and retrieve the most important parts form the data. Data reuse 
is also common in many iterative machine learning and graph 
algorithms, including PageRank [15], k-Core decomposition 
[3], and k-Means clustering [17]. However, for the framework 
of MapReduce, iterations of data computation become the 
critical bottleneck of the performance. Therefore, AMP 
(Algorithms Machines People) Lab at the University of 
California, Berkeley, proposes a new architecture, Spark [1], 
that not only improves the data processing over a parallel in-
memory system, but also reuses inter-mediate results across 
multiple computations. Empirically, a program on Spark 
could run up to 100 times faster than that on Hadoop 
MapReduce.  

Graph is a useful form to represent a massive amount of 
data in analysis, such as social network, biological 
information, business model, road and map, and collaboration 
network. However, traditional MapReduce framework makes 
it difficult to describe the graph-parallel computation in 
distributed system. Fortunately, Spark provides useful APIs 
(Application Interfaces) for GraphX [2] and MLib (Machine 
Learning Library). When users run applications on Spark, the 
APIs make the code development easy to use and build some 
algorithm efficiently. MLib provides machine learning 

algorithms. GraphX is a new large-scale distributed graph-
parallel framework, such as Pregel [2],  Graphlab [2], and 
PowerGraph [2], to provide useful graph algorithms. It also 
allows users to develop applications faster. In this paper, we 
consider the graph data analysis by using GraphX on Spark. 

Graph clustering is one of the crucial problems in graph 
data analysis. It is used to group the vertices of a graph into 
clusters with as few edges as possible between them. It is 
related to unsupervised learning to divide a data set into some 
small classes without a priori information on how the 
classification should be done. K-Means clustering [17], which 
is an algorithm for graph clustering, uses vectors of 
characteristics to transform data into some clusters to find the 
nearest center. It usually gives k virtually random points as the 
initial centers of clusters. For each point, it finds the minimum 
Euler distance to a center. Then, each point is assigned to the 
cluster containing the nearest center. Before the next iteration, 
each cluster can re-compute a new center. The iteration 
repeats until there is no change for centers. In this work, we 
consider the k-Means algorithm for the graph clustering in 
GraphX. 

The k-Core decomposition has been proposed to find the 
strongest communicators in a graph. Recently, k-Core 
decomposition for analysis of large networks has been 
reported [3]. We observe that the performance and results can 
be improved further if we combine the k-Core decomposition 
with the graph-based k-Means, in which the k-Core is used to 
find centers and the k-Means is used to find clusters. The 
contribution of this paper is to engineer the integration of k-
Means clustering with k-Core decomposition for graph data 
analysis in GraphX on Spark. The rest of the paper is 
organized as follows. Background is given in Section II. The 
problem description and the system design are stated in 
Section III. Implementation details and experiment results are 
illustrated in Section IV, and conclusion remarks are drawn in 
Section V. 

II. BACKGROUND  

A. Spark 

Spark is an open-source cluster computing system. It is the 
highest-level project in Apache Software Foundation. In 
November 2014, the world record of data sorting in the Sort 
Benchmark Competition was broken by Spark, while the 
previous record was made by Hadoop. As Hadoop took 
seventy-two minutes to finish the job, Spark only took less 
than thirty minutes to complete the sorting. Furthermore, it 
only used 207 sets of amazon E2 i2.8*large virtual machines, 
significantly less than 2100 sets used by Hadoop.  
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In the original data flow of Hadoop MapReduce, the 
reduce function has to be performed after each map function. 
Spark critically improves the performance by changing the 
original inflexible data flow (of Hadoop MapReduce) to a 
new flexible framework in which several map functions could 
be done in memory before the reduce function is invoked. In 
this way, it can avoid many times of operations in the reduce 
stage and data is not required to write back to disk.  

B. GraphX 

Spark API provides a Pregel-like framework [4] to deal 
specifically with graphs. To compute graphs with strong 
correlation between the nodes, it needs to adjust Graph 
construction for running on a classic data-processing platform. 
GraphX combines two graph processings, Pregel and 
Graphlab [4], to make a new graph-parallel framework. 
GraphX is developed directly on Spark to obtain better 
performance than Graphlab.  

1) VertexRDDs, EdgeRDDs, and Route Table: These 
three data structures are the most important components to 
compose a graph in GraphX. When a dataset of graph is stored 
into GraphX, the graph will be initialized to an edge table, 
which describes the information about a node linking to 
another node with a value. After that, it generates a vertex 
table by using the class named Graph. 

A vertex table is always the place for storing and 
computing the result, such as collecting all data, generating 
sub-graphs, joining vertices to give new data, and filtering 
some vertices, etc. Two kinds of operators for user 
programing are possible. One operator is to view a loose 
graph as a table and allow users to modify data without strong 
relation.  The other operator is to view a graph as a tight graph 
in which vertex relations are required to re-compute when a 
update is propagated. New subgraphs may be generated then. 

2) Graph Parallelism: Google developed a super-step 
algorithm framework [4] for graph-parallelism in 2010. It is 
widely used to build graphs in distributed computing systems, 
because of convenience and efficiency just like using 
MapReduce. Users only need to complete three functions for 
super-steps. 

This model follows the bulk synchronization to finish the 
computation. There are four steps for one process and the final 
step can only stop when every node is inactive. It is also the 
condition to start running the application for the next round.  

Four steps are described as follows. 
a) A node receives some messages and transforms the 

status from inactive to active. 
b) Active nodes aggregate all messages to get a result 

for itself. 
c) If the result does not need to update to nodes, then 

change the status from active to inactive; otherwise, 
send message to other nodes. 

d) Repeat steps a to c until there is no message 
sending to nodes. 

In GraphX, the algorithm starts to send an initial message 
to all of vertices. If vertices need to update their data, the 
vertices will turn the status to active just like step (1). Second, 
they filter all active vertices and compare with neighbors to 
decide whether messages shall be sent or not. They use triplet 

to compare the data in two vertices. In step (2), all messages 
in a vertex will be stored as a list that performs sequential 
processing to get a result. This result will be compared to the 
original data to control the status and data. In the end, GraphX 
will generate a new graph with some new RDDs (Resilient 
Distributed Datasets)for this result. 

C. k-Means Clustering 

This is a well-known data-clustering algorithm. Upon 
given every node vector of characteristics and the value of k, 
the algorithm can separate the set of data into k clusters [5]. 
In the basic mode, operations define the original data with 
characteristics, grouping those values, and vectorization. The 
dataset will be divided into k clusters, given k random centers 
with the same dimension. Secondly, each node finds a nearest 
center by Euler distance so that primitive clusters are formed. 
Thirdly, new centers are identified by averaging the sum of 
nodes in each cluster. Repeat these three steps.  In traditional 
algorithm follows the math model: S is the center set, and D(x, 
y) is the distance between x and y for y Є S 

 

m(S) = argmin
𝑆
∑ ∑ 𝐷(𝑥, 𝑦)𝑦∈𝑆𝑘,𝑥≠𝑦
𝑘
𝑖=1 , 𝑘 = 1,… . , 𝑁  (1) 

D. k-Core Decomposition 

In graph theory, k-Core decomposition [6] is usually used. 
It is a O(m) algorithm where m represents the number of edges 
in non-parallel computing. Its main goal is to find a strong 
subgroup, whose members play the role of communicators in 
the graph. Every node in the sub-graph needs to be at least 
degree of k. In this paper, we extend the k-Core decomposition 
to the graph computation in parallel. 

E. Modularity 

In recent years, the concept of “quality for graph 
clustering,” proposed by Newman, has been widely used as a 
measure of performance [7]. Researchers usually use it to 
optimize the community that splits the network. If each 
community has dense relationship within the group and sparse 
relationship outside of the group, the value of modularity will 
be higher.  

The modularity defined by Q = 
(edges within communities –  expectation of these edges)

sum of all degrees.
. 

Q lies in the range [−1/2, 1). Without loss of generality, we 
assume that a graph has n nodes and m edges. Let the 
adjacency matrix for the graph be represented by A, where the 
element 𝐴𝑣𝑤 of matrix equals to zero meaning there is no edge 
between vertices v and w; otherwise, the element equals to one 
that means there is an edge between two vertices. The degree 
of vertex v is represented by d(v). 

Consider a graph is split into k communities{𝐶𝑖}𝑖=1
𝑘 , , and 

Q can be written as  

Q =  
1

2m
 ∑ ∑ 𝐴𝑣𝑤 −  𝑝(𝑣, 𝑤)𝑣𝑤∈𝐶𝑖

k
i=1    (2) 

where, 𝑝(𝑣, 𝑤) =
𝑑(𝑣)𝑑(𝑤)

2m
. 

We can rewrite (2) to  
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Q =∑( ∑
𝐴𝑣𝑤
2m

𝑣𝑤∈𝐶𝑖

−
1

2m
∑

𝑑(𝑣)𝑑(𝑤)

2m
𝑣𝑤∈𝐶𝑖

)

k

i=1

 

    =∑( ∑
𝐴𝑣𝑤
2m

𝑣𝑤∈𝐶𝑖

− (∑
𝑑(𝑣)

2m
 

𝑣∈𝐶𝑖

)

2

)                      

k

i=1

  (3) 

Modularity indicates how good the result is. The value of 
modularity often drops in the range from 0.3 to 0.7, which 
means the result is moderate. For the experiment in section 
IV.B.3 about the social circle in Facebook, we can see that a 
graph can get a high value of modularity when the number of 
clusters equals 9. In this paper, we use modularity as the 
performance index to conduct experiments. 

III. SYSTEM DESIGN 

In this section, we give the problem description and focus 
on the details of our system design. First, we clarify our 
problem. Then, we discuss the steps of system flow chart. 
Finally, the algorithm is given in details. 

A. Problem Description 

When people use graph to represent the real-world data, 
graph representation and graph clustering become crucial 
issues. Graph clustering focuses on finding the sub-graph with 
high relatives. It relies on the edges to reflect the relation and 
connection of vertices. Normally, the matrix is considered as 
the data structure for graph clustering. However, as a graph 
becomes larger, the matrix computation makes the 
performance worse. 

Similarly, an adjacency matrix is not suitable for the 
classic k-Means algorithm. In fact, the number of edges in 
real-world graph is far less than the square of the number of 
vertices. Using the row of a huge sparse matrix to be feature 
vector makes k-Means algorithm heavy. It will compute many 
huge vectors, but they have many useless values leading to 
resource waste. Therefore, in this paper, we only use the idea 
of “finding the minimum distance sum to k center of clusters” 
and rebuild the k-Means algorithm with the single source 
shortest path algorithm and k-Core decomposition. 

B. Scheme Overview 

Fig. 1 shows the system flow chart to express our graph-
based k-means algorithm. We run the code in Spark, which 
provides strong and flexible framework to deal with 
distributed parallel computing. It hides complex details of 
application development so that programmers can write 
functions with operations such as Map and Reduce. The 
GraphX adopts the graph-parallel processing model into 
Spark and transforms the big graph into some RDD table. The 
Pregel-like super-step module is a simplified coding for the 
iterative graph algorithms. Now, we explain the system 
systematically and introduce properties with Spark and 
GraphX in steps. 

1) Spark connects to HDFS (Hadoop Distributed File 
System). If programmers want to run the project in parallel-
computing mode, they should put the data into HDFS, which 
is a Hadoop database. Spark uses HDFS for not-local data to 
get better performance. 

2) GraphX needs to generate edge RDD first for graph 
generation.  

3) We separate graph generation from initializing the 
values. The values are initialized in the beginning of loops 
every time. 

4) K-means algorithm is to select the nearest center for 
clustering the data set. In this paper, we choose the single 
source shortest path module for finding nearest center for each 
vertex. Given k centers, run single source shortest path for 
each vertex to find which center is the nearest center for this 
vertex.  

5) K clusters are obtained from the result of step 4. Then, 
run the k-Core decomposition for each cluster. In the end, this 
step will find k new centers. The reason why we use k-Core 
decomposition to find the center of clusters is originating 
from the property: a core with the value of k is a group in 
which every member is connecting to at least k members. The 
vertex in-group with the biggest original degree value will be 
picked as the center. 

6) Repeat steps 3 to 5 until the group of centers remains 
unchanged. 
 

Figure 1.  System flow chart. 

C. k-Core Decomposition 

In this section, we describe the details of implementing k-
Core decomposition on GraphX. The k-Core decomposition 
has the following property: 

∀𝑢 ∈ 𝑉 ∶  𝑘 − 𝑐𝑜𝑟𝑒(𝑢) = 𝑘 ↔                

{
 

 
There exist a maximum subgraph 𝑉𝑘  

 such that ∀𝑣 ∈ 𝑉𝑘 ∶  𝑑𝑒𝑔(𝑣) ≥ 𝑘, and
There is no  subgraph 𝑉𝑘+1                    

such that ∀𝑣 ∈ 𝑉𝑘+1 ∶  𝑑𝑒𝑔(𝑣) ≥ 𝑘 + 1

    (4) 

This algorithm is mainly to find a sub-graph with the 
strongest relationship of k. It means every member in this sub-
graph has at least k neighborhoods. Furthermore, there is no 
greater sub-graph where every member has more than k 
neighborhoods. Therefore, if we find a vertex that has the 
highest degree in this sub-graph, it will be a good candidate 
for the center in a cluster.  
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We tried to implement two versions with two different 
methods. The time complexity of both methods is O(|V|2). We 
can use a pair likes (a, b) to be data in a vertex table and the 
data will be changed to an integer value, K, representing the 
number of cores as the output. 
Fig. 2 presents the pseudo code of k-core decomposition.  

Figure 2. Pseudo code for k-Core decomposition. 

GraphX uses triplets to compare two nodes that need 
updates. The time complexity of the methods is O(|V|2). 

IV. IMPLEMENTATION AND EXPERIMENT 

In this section, we describe the experimental environment 
and illustrate the results obtained for modularity and run time. 
We use the same terminology for the original k-means 
algorithm to compare the performance of the original 
algorithm with that of our revised method. 

A. Experiment environment and setting 

In the experiment, we consider a peer-servicing cloud-
computing platform, which contains six homogeneous virtual 
machines. The hardware and software specifications are 
detailed in Tables I and II, respectively. In Table III, the 
setting of our configuration of Spark is given. Because some 
RDDs are only used once, we do not need the original setting 
of memory fraction (0.75), which means the memory splits 
most of the space for storing RDD. When the system executes 
several iterations, the driver’s java garbage collection is 
always too late to recycle the resource. We observe that the 
driver’s memory stores a lot of DAG (Directed Acyclic Graph) 

and RDD in memory and therefore, only little space is left for 
allocating work. It may block the operation of iterative loop, 
so that we reduce the fraction from 0.75 to 0.4 and increase 
the memory for drivers. 

TABLE I.  RECEIVER ENVIRONMENT  

Item Content 

OS Ubuntu 15.10 Desktop 64bit 

Spark 2.0.0 

Java 1.7.0_101 

Scala 2.11.8 

Maven 3.3.9 

TABLE II.  HARDWARE SPECIFICATION OF RECEIVER  

Item Content 

CPU Intel(R) Xeon(R) E5620 @2.40GHz x 2 

RAM 8 GB 

Hard Drive 80GB 

Network Bandwidth 1Gbps 

TABLE III.  CONFIGURATIONS OF SPARK  

Item Content 

Number of executor 6 

Memory size of the driver 6GB 

Memory size of each executor 6GB 

Memory fraction 0.4 

Running mode Standalone 

B. Experiment Results 

We conduct experiments on three real-world datasets from 
SNAP [8] and UCI Network Data Repository [9]-[13]. Each 
dataset is represented as a graph with vertices and edges. To 
revise the original k-means algorithm, we transfer the data to 
an adjacency matrix, because the algorithm requires the 
vertices’ features for clustering. Each column can be 
considered as features of a vertex in the adjacency matrix. The 
vertices connecting to same vertex should be assigned to the 
same cluster. After finishing clustering, we calculate the 
modularity to evaluate the performance of both our revised 
method and the original k-means with adjacency matrix. 
Spark has a software version of the common k-means 
algorithm in Mlib, which is an API for machine learning.  

 The runtime of an experiment does not include the time 
of transferring original data to a matrix nor the time of 
calculating the modularity. From the experimental results, we 
see that even though the runtime of our proposed method is 
longer than the common k-means in Mlib, the value of 
modularity is much higher than the original k-means. All of 
the experiments started with centers randomly picked.  

Procedure k-core decomposition 

1: Input 
2:  Graph: data in vertex is (degree, bool) 

3: Output 
4:  Graph: data in vertex is K 

5: Pseudo Code 

6:  While 
7:   Initial the Pregel send initial MSGs to all node 

8:   Graph.Vertex update (intitial MSGs) 

9:   MSGs = message merge (all message sent) 
10:   While messages.count > 0 

11:    Graph.Vertex update (messages) 

12:    MSGs = message merge (all message sent)  

13:   End while 

14:   K += 1 

15:  End while 
16:  Vertex update stage(messages)  

17:   If (message.bool ) messages.degree = 

max(origin, new  degree) 
18:   Message.bool = origin && new bool 

19:  Message send stage 

20:   If ( ! v1.bool || ! v2.bool) 
21:    empty 

22:   Else if(v1.degree == k && v2.degree > k) 

23:    Send to v2 (1,true) 
24:    Send to v1 (0,false) 

25:   Else  
26:    Iterator.empty 

27:  Message merge stage 

28: (Sum, a.bool && b.bool) 
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1) The dolphin social network  

This is a famous social network dataset for graph 
clustering. There is a network of frequent associations 
between 62 dolphins in a community living off Doubtful 
Sound, New Zealand [9]. In Fig. 3 (a), we can see that the 
modularity gets higher when the number of clusters increases. 
For example, our method gets an averaged value of 
modularity up to 0.3924 upon splitting to five clusters. 
Comparing the results reported in [14], they get the highest 
scores on four clusters. Although the case of four clusters is 
not the best result for our method, our proposed method still 
gets an averaged Q to 0.387703. This is helpful for observing 
a big group in real world. 

In Fig. 3 (b), the runtime of our proposed method gets 
significantly high from 5 to 6 (for the number of clusters). 
Taking into account the modularity, the optimum case for the 
number of clusters is five. 

2) The social cycle in Facebook  

In this section, the dataset is much bigger than the datasets 
in the formal two experiments. The dataset is provided by J. 
McAuley and J. Leskovec [11]. They collected data from 
using an APP (Application) named social circle. There are 
4039 vertices and 88234 edges. One edge between two 
vertices means two vertices are friends. In Fig. 4 (b), we can 
see that the runtime does not grow up when the data size 
increases if the memory is still enough to handle the 
experiments. This result also proves that Spark is fit for large-
size data rather than small-size data. 

The Stanford website [8] not only provides the dataset for 
researchers but also provides some basic analytic results. The 
average clustering coefficient they provided is 0.6055. In our 
method, we can find when the k = 4, 7, 8, 9, 10, the average 
modularity is higher than 0.6055 and the highest modularity 
is appearing when k = 9, which is the same number of clusters 
for the data on website. We think this data has a clear 
relationship between groups, because both methods obtain 
good result. In our method, when k is 5 or 6, the performance 
is worse than the case when k is 4. It is because that the four-
cluster structure is similar to the nine-cluster graph. We can 
see from Fig. 4 (a) that the modularity reaches a local peak 
when k is 4 . 

3) Gnutella Network 

This is the experiment with Gnutella peer-to-peer file 
sharing network from August 2002. Nodes represent hosts in 
the Gnutella network topology and edges represent 
connections between the hosts [12][13]. There are 8717 
vertices and 31525 edges in the graph. Compared to the 
second experiment, this graph has double the number of 
vertices but the number of edges is much less. On Stanford 
website [8], we can see that for this kind of graphs with 
strongly-connected components, only a small group can reach 
each other. It also has bad coefficient in clustering. In k-means 
with adjacency matrix, the modularity is almost approaching 
zero, however, as shown in Fig. 5 (a), our proposed method 
still gets the modularity average higher than 0.2. Although 

this result is slightly less, our method still performs well for 
k-means with loose grouping dataset. 

For runtime shown in Fig. 5 (b), our proposed method is 
faster than k-means with adjacency matrix for the cases when 
k is from two to six. Actually, the edges are less dense so that 
the k-mean algorithm spent time in computing many bad 
features. We observe that when the data size grows, k-means 
algorithm not only needs a large space and time to transfer 
data for adjacency matrix but also needs more time to divide 
the graph into small clusters. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed a graph-based k-means 
algorithm on Spark. Given a dataset, a graph could be 
structured and fed into this algorithm for solving the 
clustering problem. We also implemented the k-core 
decomposition with GraphX API to find the centers of 
clusters.  

By spending more runtime, our proposed method would 
be able to find clusters with higher modularity. If we take the 
time for data processing into account, the total elapsed time 
of our method will be approaching to that of k-means. It is 
because the matrix structure used by k-means needs more 
processing time especially for the sparse matrix of many 
vertices with few edges. We find that k-core decomposition 
still is a good method for finding centers of clusters. 

The initial random centers have a large effect on the 
performance of the k-means algorithm and our proposed 
method. Runtime can be greatly reduced if the two methods 
start with good initial points. Furthermore, even if the two 
methods start with the same initial centers, they probably have 
big difference in the clustering and the result value of 
modularity. We also find that vertices with many neighbors 
have great dominating effects. If we can select initial centers 
nearby these vertices, we can gain a better result. 

Future work is to improve the performance of our 
proposed method further. The distributed k-core 
decomposition could be improved by integrating with Pregel 
algorithm. The original Pregel algorithm wastes a lot of time 
in sending initial iterators that have impact on the 
performance of GraphX. We plan to use the internal code of 
GraphX Pregel API to reconstruct the k-core decomposition. 
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Figure 3. Modularity and runtime of dolphin social network. 

 
Figure 4. Modularity and runtime of Facebook social network. 

 

Figure 5. Modularity and runtime of Gnutella network.
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