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Abstract—Cloud security and privacy is a very challenging
problem to solve. We started a project to explore a new approach
to addressing this problem by utilising a unikernel based solution.
In this paper, we outline the technical details of such an approach,
identifying how this new approach can better address the issues
involved. We have demonstrated how this new approach can
improve the status quo.

Index Terms—Cloud security and privacy; management control;
compliance; complexity

I. INTRODUCTION

In [1], we provided a high level account of ten security
issues, which management (Mgt) need to take account of when
using cloud computing systems, and suggested how unikernel-
based systems might address many of those issues, as we see
in TABLE I below.

TABLE I. ITEMS ADDRESSED BY UNIKERNELS c©2016 [1]

Issue Description Helped by:
1 Definition of security goals Mgt and Unikernels
2 Compliance with standards Mgt and Unikernels
3 Audit issues Mgt and Unikernels
4 Management approach Mgt and Unikernels
5 Technical complexity of cloud Unikernels
6 Lack of responsibility and Mgt/Cloud Service

accountability Providers
7 Measurement and monitoring Unikernels
8 Management attitude to security Mgt
9 Security culture in the company Mgt

10 Threat environment Unikernels can help to en-
force good design/architect-
ural decisions

While these security issues can be successfully addressed
by other means, the reality, as evidenced by the recurring
success of attackers, is that many companies are failing to
apply the necessary rigour needed to resolve these issues in
their existing approaches. Year after year, many attacks, which
are both simple and relatively inexpensive to defend against,
continue to be exploited.

In this paper, we introduce a framework of definitions
and metrics for classifying unikernel systems, which we later
make use of in the design, testing and assessment of new
unikernel based system architectures. We compare a number
of other unikernel and microkernel systems in this paper,
but because of space constraints, do not address every single

system available. In Section II, we discuss the background,
motivation for this work, work already carried out and future
work proposed. In Section III, we outline some necessary
definitions and preliminary observations on unikernels, and
in Section IV we consider 6 security observations relating to
unikernels. The remainder of the paper is organized as follows:
in Section V, we review the relationship between unikernels
and microkernels; in Section VI, we discuss the implications
of implementation language choice; in Section VII, we present
well defined properties of unikernel systems; in Section VIII,
we outline our proposed solution. In Section IX, we show
how our proposed approach will address those key issues
identified in TABLE: I. In Section X, we consider some initial
thoughts on attack vectors; and in Section XI, we discuss our
conclusions.

II. BACKGROUND, MOTIVATION, WORK ALREADY
CARRIED OUT AND PROPOSED FUTURE WORK

The authors share a common interest in finding a solution to
the challenging problem of cloud cyber security. The minimal
resource efficiency of IncludeOS motivated the authors to
consider whether there might be a possibility to develop a
framework, based on unikernels, to deliver a far more secure
system that could be run on cloud, and would offer high
levels of security, privacy, audit and forensic trails, good
scalability, high resource efficiency, and have the ability to
take away the prospect of mis-configuration by users through
lack of understanding of how to configure much more complex
systems.

In [1], we outlined how the concept might be developed,
and in [2], we considered how the proposed framework might
be adapted to incorporate the Internet of Things (IoT). This
paper outlines in a more formal way, definitions and metrics
for classifying unikernel systems, which will be referred to in
future work involving design, testing and assessment of new
unikernel based system architectures. We next extend the work
carried out in [1][2], providing much more detail on how the
IoT system might be developed, and further examine how the
single responsibility inherent in the unikernel design could
be harnessed to provide a far more robust defence against
common security problems.
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As we develop each part of the framework, we carry out
in-house penetration testing to ensure the robustness of the
approach. Each part developed is intended to work seamlessly
with all of the previous parts, so that the system as a whole will
work properly as it is developed and grown. Once it reaches
the point where it will interest at enterprise level, we will carry
out large scale empirical testing to assess what will happen in
the real world. We are developing fuzzing based penetration
approaches, adapting tools and sanitizers, hardening tools and
whatever else we can use to strengthen the user environment.
We have still to develop communication channels, proper and
secure audit and forensic trails, specialised storage, and plan to
ensure the framework is capable of working under both object
oriented styles and the model view controller paradigm.

III. A PRECURSOR TO FORMAL WORK ON UNIKERNELS

Modern unikernel research, particularly concerning deploy-
ment in cloud, is still in its infancy and the literature currently
available does not include much in the way of theoretical work
or precise definitions, but rather takes a pragmatic approach
[3]–[5]. One popular definition states that “Unikernels are spe-
cialised, single-address-space machine images constructed by
using library operating systems; and that Unikernels provide
many benefits compared to a traditional Operating System
(OS), including improved security, smaller footprints, more
optimisation and faster boot times” [6]. Without further qual-
ification, directly associating unikernels with security benefits
can be hazardous. It is not at all clear what “machine images”
or “operating system libraries” are, nor what it means to con-
struct them, and hence it is unclear precisely how unikernels
can be said to be more secure. It is our view that stricter
definitions are both necessary and achievable. We propose
a set of working definitions intended to make the following
exposition more precise, and to serve as a theoretical basis of
a framework for unikernel based cloud computing.

To this end we can go back over four decades to early work
on virtualization of mainframes. Early single address space
operating systems, such as Mungi or Opal and many others
do not seem to have much traction today. In 1995 [7], there
was some early work on the Exokernel system, with some
updating over the years, but little widespread use. Microsoft
work on library operating systems, Drawbridge [8], saw little
use at the time other than for research. It later evolved into the
Haven system [9], which was intended for use in the Azure
cloud, and also was integrated into Windows 10 as part of the
pico-process security architecture.

Definition III.1. Popek-Goldberg virtual machine. An envi-
ronment created by the virtual machine monitor, which is
functionally equivalent to the physical machine on a given
hardware (HW) platform, as defined in [10].

Popek and Goldberg provide formal definitions of both
Virtual Machine Monitor and Virtual Machine, which form
the most well known, if not the only, formally defined
virtualization platform, which also directly corresponds to
modern HW and nomenclature. An x86 Popek-Goldberg vir-

tual machine is a virtual machine running under x86 Popek-
Goldberg compliant HW virtualization, e.g., x86 HW with
vt-x extensions. To give a precise definition of unikernels,
we need to define their constituent parts. Our intention is
not to provide definitions that encompass all the complexities
or functionalities of unikernels, but rather the opposite; just
enough to get a precise idea of what unikernels are and what
they are not.

Definition III.2. Compiled program object, symbol. An n-
tuple of machine instructions from a Turing complete instruc-
tion set, e.g., Intel x86, or an arbitrary sequence of bytes b,
i.e., 0 >= b < 28.

Definition III.3. Software library, symbol. A Software li-
brary is taken to be a collection of compiled program ob-
jects, {O1, ..., Om} and arbitrary byte-sequences (e.g., data)
{Dm+1, ..., Dn} providing symbol resolutions, i.e., link-
able objects, each corresponding to a symbol in the set
{S1, ..., Sm, Sm+1, ..., Sn}

The intuition here is to capture the idea of a library of
compiled code, where functions and data are represented as
binary objects in, e.g., libos.so, libos.a, libos.dll
etc., where functions and static data can be accessed via
symbols available to a linker. For the purposes of this paper,
we assume the process of linking and symbol resolution are
given and well defined.

Definition III.4. Software service. Objects, and optionally
symbols, from a software library, with the addition of an entry
point object O0 corresponding to a symbol S0 (e.g.,_start)
that may or may not be present in the service, providing the
compiled code necessary for a program to be executable on a
given HW architecture.

Compiling an executable binary typically includes defining
the entry point, e.g., main in ISO C, from where to start
executing functions provided from a library. Compilers such
as gcc will typically pre-pend some additional functionality
through, e.g., the _start-symbol, mapped to code for ini-
tializing the C-runtime, including calling global constructors,
zero-initializing the .bss-segment etc. The symbols are re-
quired during link-time but can later be stripped out when they
are mapped to memory addresses relative to the binary.

We can now give an operational definition of a library op-
erating system. The term has held different meanings [11][3],
and we do not intend the following to be canonical, but merely
one that will suffice to precisely define a unikernel for the
purposes of our framework.

Definition III.5. Library operating system. For a software
service SW , where the objects {O0, ..., On} form the set of
objects necessary and sufficient for SW to run on a given HW
platform, a library operating system is a software library that
can provide {O0, ..., On}

This definition implies that a library operating system
provides all the objects necessary to form a fully functional
program, independent of any other software present on a sys-
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tem, except that which may or may not be presented through
an instruction level interface, e.g., software that responds to a
trap on the Virtual Machine Monitor in the Popek-Goldberg
model.

1) Definition of a unikernel: In the context of virtual
machines and cloud computing, it makes sense to describe the
whole virtual machine as a unikernel [3], as there is in fact
no classic boundary between kernel- and user space, and also
because any combination of objects that can be pulled from the
library operating system individually can be combined with
a piece of software to form a unique whole. This piece of
completely linked software will have full access to HW on
the same level as a classic kernel.

In the context of classic operating system kernels, however,
the library operating system designed to produce unikernels
may also be called a unikernel [12] in reference to “micro-
kernel”, “nanokernel”, “monolithic kernel” etc. It could be
argued that if all the contents of a virtual machine were to
be considered a unikernel, there wouldn’t really be any point
in using the word “kernel”.

The following definiton is intended to be sufficiently flexible
to allow both interpretations.

Definition III.6. Unikernel. Given a library operating system
OS, a unikernel U is defined as U ⊆ OS such that U is
sufficient and necessary to provide complete linkage to some
service S for a given HW platform.

Using an inclusive subset allows both the whole library
operating system and any subset to be called a unikernel.

Definition III.7. Unikernel machine image A software service
SW,∪U where U is the unikernel for SW , they both share
the same address space, and with the addition of any facilities
necessary to start SW on a given well-defined virtualization
platform, e.g., a bootloader in the case of an x86 Popek-
Goldberg virtual machine.

Definition III.8. Popek-Goldberg unikernel. A Popek-
Goldberg virtual machine initialized with a unikernel machine
image.

IV. SIX SECURITY OBSERVATIONS IN UNIKERNEL-BASED
SYSTEMS

We have identified 6 security observations, which are ex-
hibited by unikernel systems:

• Choice of service isolation mechanism;
• The concept of reduced software attack surface;
• The use of a single address space, shared between service

and kernel;
• No shell by default, and the impact on debugging and

forensics;
• Micro services architecture and immutable infrastructure;
• Single thread by default.

A. Choice of service isolation mechanism
In the previous paper in this series, the argument was

made for why classic virtualization is the preferred platform
for secure cloud computing. While many alternatives exist,

which are both practical and widely trusted, one cannot reason
precisely about their security properties unless they are well
defined. In this paper, we make no judgements about their
usefulness, but merely note that classic virtualization has had
a precise foundation since 1974. We believe that the lack of
similar models for other modes of virtualization is due to the
fact that Popek-Goldberg virtualization exists at the instruction
level, which is necessarily simple in nature as it must be
implemented in physical circuitry. Other approaches typically
rely on higher level software interfaces, and are thus harder to
define precisely. Despite the simplicity of C, it still proves a
hard nut to crack for the purposes of formal verification [13].

B. Reduced software attack surface
Using the above definitions we can now define the software

attack surface of a system as the sum of all objects, in bytes.

Definition IV.1. Software Attack surface. The number of
bytes in a system, physically available for reading, writing
or executing as instructions for a given HW architecture.

Physical protection can be seen as a grey area when it
comes to microcode, firmware and otherwise mutable HW
such as, e.g., field-programmable gate arrays (FPGAs). This
definition is intentionally kept general in order to allow further
specifications to refine the meaning of “physically available”
for a given context. The following example can serve to
illustrate how the definition can be used for one of many
purposes. Building a classic virtual machine (VM) using
Linux implies simply installing Linux, and then installing the
software on top. Any reduction in software attack surface must
be done by removing unneeded software and kernel modules
(e.g drivers). Take TinyCore Linux as an example of a minimal
Linux distribution and assume that it can produce a machine
image of 24 MegaBytes (MB) in size.

Given this intuition, let L be a collection of compiled
program objects for x86, such that L = {O1, ..., O2400}, i.e.,
all the objects provided by TinyCore Linux, totalling 24MB in
size, and for simplicity assume the objects are uniformly sized,
1Kb each. Adding a 1MB software service SW , which require
{O0, ..., O1000} to be executable, we get a software attack
surface of 25MB, regardless of how many objects of L were
actually needed by SW . Assuming a library operating system
existed that could provide {O0, ..., O1000}, a unikernel would
by definition III.6, provide exactly those objects, forming a
2MB sized unikernel machine image. (2MB + 512 bytes of
bootloader code in an x86 HW-VM). Hence the software attack
surface of the unikernel VM is reduced by 92%. Conversely,
the Linux VM could be said to add 23/1 * 100 = 2300% of
unnecessary code, which we will refer to as bloat or increased
software attack surface depending on context.

C. The use of a single address space
The main objective for postulating a single address space

is to imply single process or singular purpose. In a classic
kernel, the need for multiple address spaces is prompted by the
need to run multiple processes, which must be kept separate
to ensure consistency and integrity among them. A classic
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kernel will typically rely on virtual memory implemented
in HW to ensure process isolation and to provide a con-
trolled virtual to physical address translation. Popek-Goldberg
virtualization relies directly on this general concept without
further extension. Aside from the performance degradation
often seen in nested address translation, we take the view
that introducing virtual memory and multiple processes inside
a Popek-Goldberg virtual machine needlessly complicates an
already complex system. In particular, it lays upon the virtual
machine the added responsibility of creating and maintaining
a process-kernel boundary.

Definition IV.2. Single address space. For a computer system,
a single address space is defined as an interval of positive
integers [a0, .., an] where n is a power of two, representing the
total addressable memory of a system in a given state, such
that dereferencing any address ∗ax from anywhere inside the
system would access the same physical memory cell.

The intuition is that virtual memory is not employed inside
the system, effectively eliminating the possibility of running
several disjoint processes. We are not making any assumptions
or requirements as to whether or not all addresses are in fact
accessible, e.g., physically present or readable / writeable /
executable, merely that they point to the same location if any.
Note that virtual memory can and will be employed on the
virtual machine monitor, to protect one VM from another, but
further nesting of virtual memory would violate the single
address space principle.

D. No shell by default and the impact on debugging and
forensics

One feature of unikernels that immediately makes it seem
very different from classic operating systems is the lack of a
command line interface. This is however a direct consequence
of the fact that classic POSIX-like command line interpreters
(CLI)s are run as a separate process (e.g., bash) with the main
purpose of starting other processes. Critics might argue that
this makes unikernels harder to manage and “debug”, as one
cannot “log in and see what’s happened” after an incident, as is
the norm for system administrators. We take the position that
this line of argument is vacuous; running a unikernel rather
corresponds to running a single process with better isolation,
and in principle there is no more need to log in to a unikernel
than there is to log in to, e.g., a web server process running
in a classic operating system.

While unikernels by definition are a single address space
virtual machine, with no concept of classic processes, a text
based CLI could be provided (e.g., IncludeOS does provide
an example) — the commands wouldn’t start processes, but
call functions inside the program. From a security perspective
we take the view that this kind of ad-hoc access to program
objects should be avoided. While symbols are very useful
for providing a stack trace after a crash or for performance
profiling, stripping out symbols pointing to program objects
inside a unikernel would make it much harder for an attacker
to find and execute functions for malicious and unintended

purposes. Our recommendation is that this should be the
default mode for unikernels in production mode. We take the
view that logging is of critical importance for all systems,
in order to provide a proper audit trail. Unikernels however
simply need to provide the logs through other means, such as
over a virtual serial port, or ideally over a secure networking
connection to a trusted audit trail store.

Lastly it is worth mentioning that unikernels in princi-
ple have full control over a contiguous range of memory.
Combined with the fact that a crashed VM by default will
“stay alive” as a process from the virtual machine manager
(VMM) perspective, and not be terminated, this means that
in principle the memory contents of a unikernel could be
accessed and inspected from the VMM after the fact, if
desired. Placing the audit trail logs in a contiguous range of
memory could then make it possible to extract those logs also
after a failure in the network connection or other I/O device
normally used for transmitting the data. Note that this kind of
inspection requires complete trust between the owner of the
VM and the VMM (e.g., the cloud tenant and cloud provider).
Our recommendation would be not to rely on this kind of
functionality in public clouds, unless all sensitive data inside
the VM is encrypted and can be extracted and sent to the
tenant without decrypting it.

E. Micro services architecture and immutable infrastructure.

Micro services is a relatively new term founded on the
idea of separating a system into several individual and fully
disjoint services, rather than continuously adding features and
capabilities to an ever growing monolithic program. Being
single threaded by default unikernels naturally imply this kind
of architecture; any need for scaling up beyond the capabilities
of a single CPU should be done by spawning new instances.
While classic VM’s require a lot of resources and impose a lot
of overhead, minimal virtual machines are very lightweight.
As demonstrated in [14] more than 100,000 instances could be
booted on a single physical server and [12] showed that each
virtual machine, including the surrounding process require
much less memory than a single “Hello World” Java program
running directly on the host.

An important feature of unikernels in the context of micro
services is that each unikernel VM is fully self contained.
This also make them immune to breaches in other parts of the
service composition, increasing the resilience of the system as
a whole. Add to this the idea of optimal mutability (defined
below), and each unikernel-based micro service can in turn be
as immutable as is physically possible on a given platform.
In the next paper in this series we expand upon these ideas
and take the position that composing a service out of several
micro services, each as immutable as possible, enables overall
system architects and decision makers to focus on a high level
view of service composition, not having to worry too much
about the security of their constituent parts. We take the view
that this kind of separation of concerns is necessary in order
to achieve scalable yet secure cloud services.
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F. Single threaded by default
While the above definitions do not impose any restrictions

on whether or not a unikernel can run several concurrent
threads or multiple CPU cores, it is well known that concur-
rency is a major source of errors accounting for a significant
number of vulnerabilities. IncludeOS and MirageOS are both
examples of unikernels that are single threaded by default. Effi-
ciency is achieved by event based asynchronous interfaces with
no blocking calls. While pre-emptive interrupt handling and
concurrency using shared memory are necessary for certain
workloads, we take the view that single threaded concurrency
free services are by nature less complex and thus less error
prone. It is also well known that threaded applications perform
worse inside virtual machines than single threaded applications
due to the extra layer of context switches necessary to schedule
threads inside the VM as well as outside.

Our recommendation is to keep unikernels single threaded
by default and rather achieve concurrency by adding more
instances, to the extent possible. In a modular library OS
one can add threading and re-entrant versions of libraries
as optional components without causing bloat or increased
complexity to unikernels not requiring concurrency.

V. RELATIONSHIP TO MICROKERNELS

While there exists a rich fauna of operating system kernel
types, the most well known distinction is between monolithic
kernels and micro kernels. For this reason we’ll briefly explain
how unikernels fit in this spectrum. Microkernel operating
systems are absolutely minimal in the sense that nothing
that doesn’t have to be in the kernel is. However, most
implementations such as the L4 are still A) multi-process; B)
not library operating systems; and C) will typically have a
classic style command line, etc., which would make it almost
orthogonal to our purpose as it addresses other issues (L4
is focussed mainly on fast Industrial PCs). That being said,
they have an advantage over classic kernels when it comes to:
A) software attack surface (it can run many programs, but it
does not have to); and B) complexity. The simplicity of the
microkernel is what made it possible to do formal verification
of the Haskell implementation of L4 - and that is a major
security benefit.

Our position is that unikernels have the potential to in-
corporate the “small and simple” from microkernels, while
still adding new security features — in particular: 1) The
library operating system approach, which guarantees a min-
imal amount of unnecessary code is introduced; 2) the single-
purpose approach; and 3) it is single-threaded by default. This
provides a further means of simplification (parallel program-
ming is notoriously error-prone), while also strongly encour-
aging micro service architecture, which increase resilience of
the system as a whole.

VI. CHOICE OF IMPLEMENTATION LANGUAGE

Definition VI.1. Independent systems language. A Turing
complete programming language with facilities to utilize the
whole instruction set for a given HW architecture, including
writing arbitrary data to arbitrary addresses.

C and C++ are examples of independent systems languages
for most modern HW architectures, e.g., x86: the asm key-
word (i.e., ”inline assembly”) makes the full instruction set
available to the programmer, including privileged instructions
such as hlt,in and out, and the pointer data type and
(unsafe) type conversion allows arbitrary data to be written
to arbitrary addresses. Type safe languages such as javascript,
OCaml, Haskell and Python are not independent systems lan-
guages by design; type safety can be immediately violated by,
e.g., type coercion. The requirement for being an independent
systems language is thus incompatible with type safety. To
bridge this incompatibility, unikernels written in type safe
languages must necessarily contain a portion of code written
in an independent systems language. In most cases, such as
with MirageOS, this is done in C.

VII. WELL DEFINED PROPERTIES OF UNIKERNEL SYSTEMS

Based on the previous definitions we can now provide
a framework of well-defined properties of unikernel-based
systems:

• Service isolation:. A well-defined and absolute isolation
mechinanism such as Popek-Goldberg virtualization is
preferable as 0 bytes of code needs to be shared between
services during runtime. Enforcement is performed by
HW at the instruction level. Following closely is Xen
PVH, which is mostly HW virtualization, but some shared
code. Paravirtualization shares a thin yet fairly complex
set of software bindings and HW is only used for classic
process isolation. One way to quantify this property is the
amount of software, in bytes, shared by each service on
the virtual machine monitor. Microcode / firmware would
be a grey area, but that would be common to all current
isolation mechanisms.

• VM Slimness, Bloat and software attack surface: For
a software service SW , requiring objects A,B and C to
form a machine image, a system (e.g., unikernel library)
that can produce a virtual machine containing exactly
{SW,A,B,C} without {D,E, F, ...} provides optimal
slimness. Conversely, the amount of code added to the
VM in addition to {SW,A,B,C} adds bloat. As an
example, if {SW,A,B,C} was 10MB in size and an
operating system added 5 MB that would be 50% of bloat.
Linux-based virtual machines would easily be 2000%
bloated for single-purpose virtual machines, e.g., using
a trimmed down Linux micro-core of 24MB used to run
a 1MB service, 96% of the machine image would be
operating system. IncludeOS instances are typically 1 MB
of OS, so if the service could run with IncludeOS that
would be 50/50 software and OS, plus a few percent over-
weight (one typically would not use all the code included,
even if one included only the objects needed, unless the
objects themselves are each absolutely minimal). Given
that 1MB was sufficient to add the required operating
system parts, wrapping it in a Linux VM would literally
make for 2300% of bloat.
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• System mutability: To what extent is it possible to
change the system once launched? This is hard to quan-
tify, but we propose the following set of properties as
“optimal immutability”, which a system should strive for:
1) All data that can be read-only is;
2) All executable code is write-protected;
3) Write-able areas of memory (i.e., the heap / working

memory) is not executable.
Enforcement of these rules should be implemented at
the lowest level. In IncludeOS, this kind of protection
cannot really be enforced on current platforms. Type-
safe language unikernels, such as Mirage, have a certain
degree of language-level protection, but only in the parts
of the unikernel not written in C. We propose a future
work on hypervisors where we provide an interface for
specifying which parts of the VM that should be read-
only, execute- and read/write (but not execute), when the
system boots. This way, the hypervisor at ring -1 can
set up memory segments inside the VM before it starts,
denying even the VM itself the ability to modify read-
only parts of memory. Having the CPU enforce these
rules will make it useless to inject code into a VM, if
one found a way to do it, as jumping to that code would
trigger a HW trap.

• Possibility of internal system misuse: To what extent
does the operating system allow parts of the code to be
used for unintended purposes? Having a terminal makes
several commands available for “general purpose” or “ad-
hoc use” of the code embedded into the system. Not
having a terminal, or other similar means of allowing ad-
hoc function calls, greatly reduces or entirely removes
this possibility.

VIII. OUR PROPOSED SOLUTION

By default, in the interests of usability, conventional systems
open many more ports than may be needed to run a system.
An open port, especially one that is not needed, is another
route in for the attacker. We also take the position that
the probability of vulnerabilities being present in a system
increases proportionally to the amount of executable code it
contains. Having less executable code inside a given system
will reduce the chances of a breach and also reduce the number
of tools available for an attacker once inside. As Meireles
[15] said in 2007 “... while you can sometimes attack what
you can’t see, you can’t attack what is not there!”. Given the
success with which the threat environment continually attacks
business globally [16]–[20], it is clear that many companies are
falling down on many of the key issues we have highlighted
in Section I. It is also clear that a sophisticated and complex
solution is unlikely to work. Thus we must approach the
problem from a more simple perspective.

A. Service isolation
A fundamental premise for cloud computing is the ability to

share HW. In private cloud systems, HW resources are shared
across a potentially large organization, while on public clouds,

HW is shared globally across multiple tenants. In both cases,
isolating one service from the other is an absolute requirement.

The simplest mechanism for service isolation is simply
process isolation in classic kernels, relying on HW supported
virtual memory, e.g., provided by the now pervasive x86
protected mode. While process isolation has been used suc-
cessfully in mainframe setups for decades, access to terminals
with limited user privileges has also been the context for
classic attack vectors such as stack smashing, root-kits etc.,
the main problem being that a single kernel is being shared
between several processes and that gaining root access from
one terminal would give access to everything inside the
system. As a result, much work was done in the sixties and
seventies to find ways to completely isolate a service without
sharing a kernel. This work culminated with the seminal 1974
paper by Popek and Goldberg [21] where they present a formal
model describing the requirements for complete instruction
level virtualization, i.e., HW virtualization.

While HW virtualization was in wide use on e.g., IBM
mainframes from that time, it wasn’t until 2005 that the leading
commodity CPU manufacturers, Intel and AMD, introduced
these facilities into their chips. In the meantime, paravir-
tualization had been re-introduced as a workaround to get
virtual machines on these architectures, notably in [22]. While
widely deployed and depended upon, the Xen project has
recently been evolving its paravirtualization interface towards
using HW virtualization in, e.g., PVH [23] stating that “PVH
means less code and fewer Interfaces in Linux/FreeBSD:
consequently it has a smaller TCB and software attack surface,
and thus fewer possible exploits” [24].

Another isolation mechanism is operating system-level vir-
tualization with containers, e.g., Linux Containter (LXC)
popularized in recent years by Docker, where each container
represents a userspace operating environment for services that
all share a kernel. The mechanism for isolating one container
from another is classic process isolation, augmented with
software controls such as cgroups and Linux namespaces.
While containers do offer less overhead than classic virtual
machines, a good example where containers make a lot of
sense would be trusted in-house clouds, i.e., Google is using
containers internally for most purposes [25]. We take the posi-
tion that HW virtualization is the simplest and most complete
mechanism for service isolation, with the best understood
foundations as formally described by Popek and Goldberg,
and that this should be the preferred isolation mechanism for
secure cloud computing.

B. Why Use Unikernels?

Using HW virtualization as the preferred isolation mecha-
nism requires an operating system to be embedded into the vir-
tual machine. IaaS cloud providers will typically offer virtual
machine images running a classic general purpose operating
system, such as Microsoft Windows and one or more flavours
of Linux, possibly optimized for cloud by, e.g., removing
device drivers that are not needed. While specialized Linux
distributions can greatly reduce the memory footprint and
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software attack surface of a virtual machine, general purpose
multi-process operating systems will, by design, contain a
large amount of functionality that is simply not needed by
one single service. We take the position that virtual machines
should be specialized to a high degree, each forming a single
purpose micro service, to facilitate a resilient and fault tolerant
system architecture, which is also highly scalable.

We argue that the unikernel approach offers potential to
meet all our needs, while delivering a much reduced software
attack surface, yet providing exactly the performance we re-
quire. An added bonus will be the reduced operating footprint,
meaning a more green approach is delivered at the same time.

C. How Does This Compare to a Conventional System?
Looking at what Frederick P. Brooks Jnr. suggests in [26]

“Because ease of use is the purpose, this ratio of function
to conceptual complexity is the ultimate test of system de-
sign. Neither function nor simplicity alone defines a good
design”, we can see where modern software systems are
missing the point. The more complex a system becomes, the
more overhead is introduced, leading to greater complexity
and unnecessary bloat, draining performance, and exposing
vulnerabilities. Conventional cloud systems tend to be over-
complicated, unnecessarily bloated, and thus expensive to
scale. Unikernels, in [6], “Unikernels are specialized, single-
address-space machine images constructed by using library
operating systems”, meaning they are exactly the right size to
carry out their given task — no larger, and no smaller.

Our approach, using unikernels, limits/enforces the software
architect to use a given pattern (event-based computing using
the single-responsibility-principle, service-oriented architec-
tures, separation of data and processing, and modularity) —
which is very good from a software design point of view. We
are trying to get people to use “best-of-breed” patterns, and
thus develop better software through this limitation.

IX. HOW DOES THIS ADDRESS OUR TEN KEY
CONCERNS?

As we saw in the introduction, we identified 10 key security
issues needing to be addressed. We believe our unikernel
solution can help us address seven of these issues, namely:
The definition of security goals; Compliance with standards;
Audit issues; Management approach; Technical complexity of
cloud; Measurement and monitoring; The threat environment.

A. The Definition of Security Goals
By design, we will build in a number of sensible security

goals to the system. We can also accommodate additional
goals, where the user identifies those as appropriate.

B. Compliance with Standards
Compliance is generally achieved through some form of

assurance [27], which generally can be achieved by a com-
pliance process or by audit. Audit is expensive if done well,
thus compliance through the use of checklists is the usual
method chosen, but brings weaknesses with it [28]. Tightening
information flows within the system, and providing rigorous

audit trails, maximises assurance, leading to compliance in a
much more accurate and cost effective way.

C. Audit Issues
Many audit issues needing to be addressed [29], especially

those surrounding the use of the humble audit trail [30]. In a
forthcoming paper, we outline in more detail how our system
will tackle this key issue with a much more rigorous approach.

D. Management Approach
Cloud ecosystems involve far more actors than conventional

systems, and many of these actors have differing agendas [31].
Our approach seeks to minimise the impact of third party
actors by reducing the opportunity for these actors to adversely
influence the effectiveness of the security approach.

E. Technical Complexity of Cloud
Distributed systems are highly complex. Cloud ecosystems

are, by their nature, far more complex [32]. We propose to
tackle this issue through simplification of the system architec-
ture, to minimise the software attack surface.

F. Measurement and monitoring
To achieve a provable level of security [33], it is necessary

to measure and monitor what is happening with a system.
Our system will, by default, provide a considerable armoury
of measurement and monitoring capabilities, which will allow
users to be satisfied of the level of security they have achieved,
and will continue to achieve through continuous monitoring.

G. The threat environment
This is a major and very worrying issue, which continues

to evolve day by day. Our approach seeks to tackle this
through minimising software attack surface, minimising access
routes to attackers, and generally making life difficult for the
attackers. This area will need ongoing scrutiny by the research
community in order to try to keep ahead of the attackers.

X. INITIAL THOUGHTS ON PENETRATION TESTING

Penetration testers often refer to the OWASP foundation
Top 10 report, see Table II below for details of the most
used attack techniques. In its current 2013 installation, two
vulnerabilities—A5-Security Misconfiguration and A9-Using
Known Vulnerable Components—are directly related to the
rich landscape of available server-side functions, which com-
monly are neither minimized nor properly configured. Re-
cent years have given rise to opinionated frameworks, i.e.,
frameworks that guide developers with sensible security de-
faults. Their security measures efficiently reduce threats from
common attack vectors, e.g., A1-Injection or A2-Cross-Site
Scripting, but those frameworks themselves can introduce
vulnerabilities, as OWASP noted with its introduction of A9
as “the growth and depth of component based development
has significantly increased the risk of using known vulnerable
components”. The Unikernel approach implicitly minimizes
infrastructure — runtime environment, and libraries as well
as operating system shells — and thus reduces exposure to
attack vectors A5 and A9. Plus, their single-process paradigm
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enforces beneficial architecture design decisions, yielding sys-
tems with clearer separation-of-concerns. Given the rise of
opinionated frameworks, we envision a web-

TABLE II. OWASP TOP TEN WEB VULNERABILITIES — 2013 [34]

2013 Code Threat
A1 Injection Attacks
A2 Broken Authentication and Session Management
A3 Cross Site Scripting (XSS)
A4 Insecure Direct Object References
A5 Security Misconfiguration
A6 Sensitive Data Exposure
A7 Missing Function Level Access Control
A8 Cross Site Request Forgery (CSRF)
A9 Using Components with Known Vulnerabilities
A10 Unvalidated Redirects and Forwards

development framework that de-constructs high-level work-
flows into separate unikernels, structures communication be-
tween those, and provides sensible security defaults. We as-
sume that such a system of unikernels can solve complex web-
application workflows in a secure manner without negatively
impacting developer’s productivity during development and
debugging, which we next address in much more depth.

XI. CONCLUSIONS

We introduced a framework of definitions and metrics for
classifying unikernel systems, and began developing a formal
approach to describing our framework, and considered how
such a theoretical framework might provide a more secure
approach to the challenges of cloud security and privacy.

We have proposed a novel means of significantly reducing
the software attack surface for a cloud based system, removing
in the process many classic attack vectors. We consider the
architecture of the proposed system and its resilience to attack
in much more depth in our forthcoming publications.

We need to look at, and solve, the challenge presented by
audit trail issues, which will require secure internal commu-
nication, access logging and log storage, and provision of a
strong forensic trail. Once these security basics are in place,
we can turn our attention to a robust approach to privacy.
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