
On Exploiting Resource Diversity in the Public Cloud for Modeling Application Performance

Mark Meredith
Dept. of Comp. Sci. and Engg.

The Penn State University
Email: mwm126@cse.psu.edu

Bhuvan Urgaonkar
Dept. of Comp. Sci. and Engg.

The Penn State University
Email: bhuvan@cse.psu.edu

Abstract—Cloud computing platforms, such as Amazon EC2,
Google Computing Engine, and Microsoft Azure, offer dozens
of virtual machine (VM) types with a wide range of resource
capacity vs. price trade-offs, requiring a customer to consider
numerous resource configurations when evaluating service needs.
We investigate the possibility of exploiting this diversity of VM
types to predict the performance of workloads on new VM types
using black box modeling. The performance model used is a
multiple linear regression of the average application response
time as a function of VM load (throughput in requests per
second), the number of CPU cores, and main memory capacity.
For three different types of data storage applications - Redis
(key-value stores), Apache Cassandra (a NoSQL database) and
MySQL (an ACID database) - the model accuracy improves when
the training data spans more diverse VMs. E.g., for Redis, the
R2

predicted measure of model efficacy improves from 0.4-0.5 with
2 VM types for training and 0.7 for 3 VM types to 0.8 for
4 VM types. These results suggest further interesting research
challenges, such as the possibility of automating the process of
calibrating performance models using diverse resource types on
a public cloud leading to “performance modeling as a service.”

Keywords—public cloud; tenant workload; performance
modeling

I. INTRODUCTION

Many enterprises are migrating their information technology
(IT) needs to public cloud computing platforms, a trend that is
projected to continue unabated in the foreseeable future [11].
Procuring resources cost-effectively from a public cloud poses
significant technical challenges. One such challenge concerns
the problem of determining the set of IT resources (including
their capacities) - virtual machines (VMs), the virtual network
connecting these VMs, storage, etc. - that would be needed
to cost-effectively meet the predicted workload of the tenant’s
software applications while offering satisfactory performance
and availability to its users. In order to solve this problem,
a tenant must first solve the problem of assessing the per-
formance the users of its application software are likely to
experience if the application were assigned a given set of
IT resources to meet its predicted workload. Our interest in
this paper is in this latter problem, often labeled application
performance modeling [13] [17] [18] [21] [25] [29] [31] [34].
Of course, application performance modeling has many other
uses besides cost optimal resource procurement, e.g., anomaly
detection [7] [15] and capacity planning [19].

Whereas application performance modeling has been an
area of extensive research for many decades across many com-

munities, solving it for the public cloud ecosystem presents
a tenant with non-trivial novel sources of complexity. In
particular, most modeling solutions have traditionally been
developed for settings involving privately owned and operated
data centers or clusters. These solutions may not be readily
adapted to a public cloud.

1 2 4 8 16 32 64

CPU cores

0

50

100

150

200

250

M
e
m

o
ry

 (
G

B
)

Google Compute Engine
Microsoft Azure
Amazon EC2

Fig. 1. An illustration of the diversity in VM capacities offered by popular
public cloud providers.

One of the most important differences between these two
settings (from the point of view of application performance
modeling) is the immense diversity of resources that a typical
public cloud offers. There are other important differences
complementary to our focus in this paper and part of our
future work. E.g., in a private setting, the user of a machine
(tenant application) coincides with its owner while in a public
setting the two are separated via virtualization techniques
with implications for how much information about physical
resource usage is available to the tenant’s models. We focus
on VMs in this work although our arguments likely apply
to other resource types as well. To appreciate this diversity,
let us consider some examples from the most prominent
public cloud providers that offer many VM types since they
need to cater to many different types of customers. Here,
VM instance types are organized into groups based on use
case. Instances within a group generally have the same CPU
generation and clock speed, and vary by the number of CPUs
and memory. Amazon EC2 offers over 40 VM types organized
into eight different groups, varying in CPU, memory, network
bandwidth, storage speed, and pricing [1]. Google Compute
Engine offers 15 instance types organized into four groups:

66Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

Standard, High CPU, High Memory, and Shared Core (for
lightweight applications) [12]. Finally, Microsoft Azure offers
30 instance types organized into 4 groups [33]. Fig. 1 shows
44 VM instance types from these three providers capturing
the large spectrum of CPU cores and memory that their VMs
pack. We show VMs with a wide range of CPU and memory
capacities offered by Amazon EC2 [1], Google Compute
Engine [12], and Microsoft Azure [33]. The number of cores
on these VMs ranges from 1 to 32 whereas their memory
capacity ranges from 0.75GB to 256GB.

A typical privately owned data center, on the other hand, is
likely to possess a much smaller number of machine types.
Keeping machines (and their software configurations) rela-
tively homogeneous brings about significant benefits related
to ease of system administration and cost savings (e.g., due to
bulk purchase offers from IT vendors). Although factors, such
as incremental procurement over time, meeting specialized
needs (e.g., machines with GPUs), etc., do result in some
differences among machine types even in a private data center,
the overall degree of heterogeneity is significantly smaller than
that seen in a public cloud.

This high diversity of resource types in a public cloud
introduces an additional source of complexity into a ten-
ant’s VM autoscaling decision-making. Since the number of
machine types in traditional IT environments is small and
relatively fixed, performance models have conventionally been
developed and calibrated using performance measurements
(“profiling”) on the same/similar type of machines on which
the application would eventually execute. On the other hand, a
tenant of a public cloud would be interested in predicting the
performance its workload might experience on a wide variety
of VM types that the provider offers. This is because the VM
types most cost-effective for a tenant’s workload might change
over time due to: (i) changes in the tenant’s own workload
(e.g., many applications show periodic time-of-day or seasonal
variations in their workload intensities) and (ii) dynamism and
variety in the cloud provider’s pricing schemes (e.g., Amazon
EC2 offers spot pricing for most of its instance types and such
spot instances are usually much cheaper than their on-demand
counterparts). Additionally, existing work also shows that even
during a period of stationary workload, procuring hetero-
geneous VMs (e.g., a combination of “small” and ”large”)
can often offer a better cost vs. performance trade-off than
procuring the same types of VMs (e.g., a larger number of only
“small” or a smaller number of only ”large”) [35] Approaches
based on calibrating a tenant’s performance models separately
on the dozens of resource types that public clouds offer are
likely to not scale well.

We wish to explore if a tenant might actually be able to
benefit from this diversity by deliberately and carefully ex-
ploiting it to ease the creation and calibration of its application
performance models. The intuition underlying our premise is
that choosing a small subset of the offered VMs may suffice
for calibrating a tenant’s performance models well if this
subset were chosen carefully. In particular, this subset should
capture well the overall diversity across the VMs offered by

the provider.
Our Approach and Contributions: In this paper, we take a
small first step towards exploring the above idea by evaluating
the following hypothesis: using a more diverse set of VMs for
calibrating/training a performance model helps improve its
accuracy. Specifically, we devise a multiple linear regression
modeling framework for predicting the performance of interac-
tive data serving applications. We calibrate this model for three
different types of real-world applications: (i) Redis [23], an
open-source in-memory NoSQL key-value store, (ii) Apache
Cassandra [5], a Table/key-value hybrid NoSQL database, and
(iii) MySQL, a popular open-source ACID database [22]. We
use “training sets” of varying sizes (i.e., numbers of VM types)
for our calibration and investigate the impact of the training
set size on model efficacy. Our results are promising. E.g., for
Redis, we find that the R2

predicted measure of model efficacy
improves from 0.4-0.5 with 2 VM types for training and 0.7
with 3 VM types to 0.8 for 4 VM types.

Whereas the benefits of exploiting heterogeneity have been
explored in other contexts (most notably for cost/performance
optimization in cloud settings [10] [16] [24] [35]), to the
best of our knowledge, our paper is the first to systematically
explore its role in aiding performance model calibration. Our
work is complementary to traditional performance modeling
research. At the same time, it opens up a promising new
area for further exploration. As part of our own future work,
we plan to investigate if/how public cloud providers could
offer “performance modeling as a service,” whereby all/many
aspects of the model calibration by exploiting diversity would
be offered as an automated facility to their tenants.

The rest of this paper is organized as follows. In Section II,
we provide an overview of a generic cost-conscious tenant’s
decision-making and where application performance modeling
fits within it. In Section III, we describe the performance
modeling techniques that we employ. In Section IV, we present
our empirical evaluation of our hypothesis using three real-
world applications as our case studies. Finally, we discuss
related work in Section V.

II. CONTEXT AND OVERVIEW

The tenant would employ observations of its workload
intensity in the past to predict its future workload. Consider the
example of a key-value store or a database application that we
employ in our evaluation in Section IV. Such an application
might keep track of request arrival rates (possibly for different
request classes) and then use a suitable prediction mechanism
for estimating future arrival rate. Whereas some tenant ap-
plications exhibit significant predictability (e.g., captured well
via Markovian or autoregressive models) [3] [6] [27] [28],
others are known to exhibit poor predictability and must resort
to short-term (“myopic”) estimates [9] [14] [32]. Regardless,
having made these predictions, the tenant must then ascertain
the number and type of VMs that it must procure from the
cloud to meet its performance needs (or deallocate from its
existing resource pool).

67Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

We show one way of thinking about this decision-making,
wherein the tenant determines (using its application perfor-
mance model) multiple VM allocation choices that would
allow it to meet its predicted workload with the requisite
performance goals. These choices are then compared in terms
of their costs (or expected profits, if the tenant wishes to
maximize expected profits rather than minimizing costs) via
an optimization problem that incorporates idiosyncrasies of
the prices offered by the public cloud. The actual realization
of this overall decision-making may be different from how
we describe it here. Our description is deliberately designed
to highlight the role of the application performance model.
Finally, the most cost-effective choice identified by the opti-
mizer is used as the basis for actually procuring the appropriate
number and type of VMs from the cloud provider.

Significant research exists both on predicting workloads and
on performance modeling (see Section V) for a wide variety
of application types. Recall that our interest in this paper is
not on devising new techniques for workload prediction or
application performance modeling. Rather, we are interested
in evaluating the role VM diversity might play in calibrating
a given performance model. Towards this, we adapt a popular
modeling approach as described next.

III. OUR MODELING METHODOLOGY

This section describes the general performance modeling
ideas used. In Section IV, this basic model is adapted to
three application case studies on the Amazon AWS cloud. The
primary interest in this paper is not in identifying the most ac-
curate performance model but rather in exploring if diversity in
the VMs used for calibrating the chosen model helps improve
its efficacy. Therefore, although numerous modeling choices
exist in the literature for such applications, we use a relatively
simple multiple linear regression approach because: (i) it
serves as a good starting point for evaluating the hypothesis,
(ii) it is easy to cast, train, and evaluate, and (ii)it works well
- especially under low/moderate throughputs for the normal
operating regions of well-provisioned, performance-sensitive
tenant workloads.
Multiple Linear Regression: Given a data set
{yi,xi1, . . . ,xip}n

i=1, a linear regression on multiple independent
variables xp and dependent variable y is a set of parameters
βi that model a linear relationship between y and xi as yi =
β1xi1 + . . .+βpxip + εi [26].

The parameters εi are the error terms, an unobserved random
variable. The parameters βi are chosen to minimize the values
of εi for the entire data set. Specifically, the βi are chosen to
minimize the sum of squares ∑

n
i=1 ε2

i .
We choose as our dependent variable the average latency

yL and as our independent variables: (i) workload/application
properties - throughput, degree of replication, and read/write
ratio and (ii) resource capacity of the VMs being used -
number of CPU cores, clock rate of each CPU, memory,
network bandwidth, and type of storage (SSD vs. magnetic).

We define a training set S= {V Mi}n
i=1 as a set of virtual ma-

chines, each characterized by xp. In each of our experiments,

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
throughput (requests/sec)

×10
4

0

5000

10000

15000

re
a

d
 a

v
g

 l
a

te
n

c
y

 (
µ

s
e

c
)

Region 1

Region 2

Fig. 2. Two regions of latency vs. throughput for Redis.

we run the application whose performance we wish to model
on V Mi for various xT and measure the latency xL. We then
find a multiple linear regression MS on {yiL,xiT , . . . ,xip}n

i=1.
(For a given instance V Mi, the values of xip are fixed for all
measurements for that instance.)
Measure of Model Efficacy: We use the predicted coefficient
of multiple determination (R2

predicted) as our measure of model
accuracy which is defined as follows. For a test instance
V Mtest with xtest,i, R2

predicted = 1− ∑
n
i=1(ytest,i−ŷ(xtest,i))

2

∑
n
i=1(ytest,i− ¯ytest)2 , where

ŷ(xtest,i) = ∑
n
i=1 βixtest,i, and ȳtest is the mean of ytest,i.

To see evidence supporting our hypothesis, we expect to see
the following behavior: for larger training sets S, the model
should fit better to V Mtest , corresponding to an increasing
R2

predicted , assuming sufficient variability in the values of xp
for V M j ∈ S to cover the values of xp for V Mtest .
Discussion: Our linear regression based model is known
to perform poorly when queueing delays become dominant
contributors to overall latency [29]. For example, if we were to
model the entire set of latency observations (for experiments
done using Redis, more details in Section IV-B) using our
model, we would obtain a poorer predictor than the two
separate linear regression models shown in Fig. 2, one each
for the “low/moderate” (Region 1) and “high” (Region 2)
throughput regions. This suggests two points: (i) using domain
knowledge (e.g., the distinction between low and high through-
put regions), a tenant may be able to use linear regression to
obtain better models, and (ii) more sophisticated models may
be warranted for the needs of certain tenants. Again, since our
interest is in the impact of diversity on modeling accuracy, we
focus only on modeling performance in Region 1 for the rest
of this paper.

It is important to keep in mind the basic assumption of linear
regression about the independent variables being independent
of each other (i.e., the xp for V M j ∈ S need to be independent).
Interestingly, among the independent variables in our model,
the number of cores and memory capacity are prone to be
problematic on this front - typically larger VMs come both
with more CPUs and more memory - see Fig. 1. To overcome
this problem, we attempt to choose VM types in our experi-

68Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

TABLE I
AWS INSTANCE TYPES EMPLOYED IN OUR EVALUATION.

Instance name Abbr. # cores Memory Network
m3.large V M1 2 7.5 GB Moderate

m3.xlarge V M2 4 15 GB Moderate
m3.2xlarge V M3 8 30 GB High

r3.large V M4 2 15 GB Moderate
r3.xlarge V M5 4 30.5 GB Moderate

r3.2xlarge V M6 8 61 GB High

ments where this correlation is weak. Furthermore, the results
we present in this paper are for a subset of our experimental
findings wherein the entire working set fits in VM memory,
rendering memory moot as a predictor of performance (we do
incorporate memory in our more general experiments). Finally,
the potential shortcomings of predicted R2 as a measure of
model accuracy should be kept in mind when interpreting our
results [26].

IV. EVALUATION

A. Methodology and Setup

We carry out our evaluation on the EC2 public cloud offered
by Amazon Web Services (AWS) [1]. We adapt our generic
performance model from Section III for three different types
of latency-sensitive data-serving applications: (i) Redis (an
in-memory open-source NoSQL key-value store) [23], (ii)
Apache Cassandra (a NoSQL key-value store that can be
configured for different consistency levels), and the popular
MySQL ACID database [22]. We use the open-source Yahoo!
Cloud Serving Benchmark (YCSB) as our workload genera-
tor [8]. We run the YCSB client on a m4.2xlarge EC2 instance
running Ubuntu Linux 14.04. We monitor the system load
average on the client machine to verify that the client is not
the bottleneck during our tests.

We describe a subset of our overall results wherein for each
experiment we load the concerned database with 1,000,000
records, each containing ten fields of 100 bytes each (the
default). This amounts to an overall working set of about
1GB. Each experiment consists of subjecting the database
to a particular thoughput and recording the average latency
(separately for reads and writes). YCSB defines several stan-
dard workloads that we experiment with. We experiment with
different workloads offered by YCSB and present a subset of
our overall results - workload “A” for MySQL and “B” for
Redis and Cassandra. Workload A has 50% read and 50%
write requests and employs a uniform popularity distribution.
Workload B has 95% reads and 5% writes, and the popularity
of requests is chosen based on a zipfian distribution. We
repeat each experiment several times to achieve significantly
tight confidence intervals. Amazon EC2 is hosted in multiple
geographic regions around the world, and multiple zones
within each region. We create our testing client and servers
within the same region (us-west) and availability zone (2b) to
minimize the effect of network latency. Finally, we pick all
VMs having individual CPUs offering the same clock rate.

We select the VM instances listed in Table I. There are
three instances from the M3 group (standard) and three from
the R3 group (memory optimized). The memory/CPU ratio is
the same within each group, with the R3 group having twice
the memory/cpu as the M3 group. A more extensive study
with more instances would allow the use of more independent
variables in the model, e.g., including testing of instances in
the C3 group (compute optimized), which have half as much
memory/CPU as M3.

With the above choices, the measurements and modeling
reported here effectively only employ a subset of all the
independent variables listed in Section III: number of CPU
cores, throughput, number of replicas, and read-write ratio. In
particular, our working set of 1GB fits fully within any of the
chosen VMs, effectively rendering memory capacity moot as a
predictive variable. In our more general experiments, however,
we explore a much larger set of workload choices.

B. Case Study 1: Redis

Redis is an open-source, key/value NoSQL database. Redis
is in-memory and, therefore, very fast. Redis also optionally
supports persistence, so unlike memcached it can be used
as a primary database or as a cache. We deploy Redis on
AWS using Amazon ElastiCache, a web service that abstracts
the deployment and administration of the OS and database
software. Elasticache supports up to five read replicas of the
primary database. We report results with a single replica here.

For a VM type on which we wish to predict Redis per-
formance, we choose training sets of different sizes among
the remaining VM types. We find that each time we add a
new instance type to the training set, R2

predicted does improve
for both read and write latency. Generally, we observe that a
training set of only 3 VM types appears to offer high accuracy
with further additions offering relatively low gains. This bodes
well for cost-efficacy of our model calibration approach -
instead of having to calibrate its performance model for dozens
of VM types (with associated costs), a tenant may be able to
achieve comparable model accuracy using a much smaller set.
We present representative findings in Figs. 3 and 4.

C. Case Study 2: Apache Cassandra

Apache Cassandra is a Table/Key-Value hybrid NoSQL
database. It is suitable for applications that require high
availability provided by replication. In terms of the CAP
theorem, Cassandra prioritizes availability and performance
over consistency, making it highly performant and scalable,
though consistency is eventual rather than strong, for typical
Cassandra applications. We do our testing on Cassandra clus-
ters with 5 nodes. We run our testing with a replication factor
of three, so every database record is stored on three of the five
nodes. We record report results both when using Cassandra’s
weak (or eventual) and strict consistency settings.

For a sample VM type that we want to predict the perfor-
mance of Cassandra, we select training sets of increasing size
from the remaining VM types. We select V M4 for prediction,

69Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

0 2 4 6
throughput (requests/sec)

×10
4

0

200

400

600

800

1000

re
a

d
 a

v
g

 l
a

te
n

c
y

 (
µ

s
e

c
) Observations on VM2

VM6
VM6 VM5
VM6 VM5 VM3
VM6 VM5 VM3 VM1
VM6 VM5 VM3 VM1 VM4

(a)

0 2 4 6
throughput (requests/sec)

×10
4

0

200

400

600

800

1000

re
a

d
 a

v
g

 l
a

te
n

c
y

 (
µ

s
e

c
) Observations on VM2

VM6
VM6 VM5
VM6 VM5 VM3
VM6 VM5 VM3 VM4
VM6 VM5 VM3 VM4 VM1

(b)

0 2 4 6
throughput (requests/sec)

×10
4

0

200

400

600

800

1000

re
a

d
 a

v
g

 l
a

te
n

c
y

 (
µ

s
e

c
) Observations on VM2

VM5
VM5 VM3
VM5 VM3 VM4
VM5 VM3 VM4 VM1
VM5 VM3 VM4 VM1 VM6

(c)

0 2 4 6
throughput (requests/sec)

×10
4

0

200

400

600

800

1000

re
a

d
 a

v
g

 l
a

te
n

c
y

 (
µ

s
e

c
) Observations on VM2

VM5
VM5 VM6
VM5 VM6 VM3
VM5 VM6 VM3 VM4
VM5 VM6 VM3 VM4 VM1

(d)

Fig. 3. Prediction of Redis read latency on V M2 compared for model calibration using a variety of training sets ranging in size from 1 to 5 VM types.

0 2 4 6
throughput (requests/sec)

×10
4

0

200

400

600

800

1000

w
ri

te
 a

v
g

 l
a

te
n

c
y

 (
µ

s
e

c
) Observations on VM2

VM6
VM6 VM3
VM6 VM3 VM5
VM6 VM3 VM5 VM4
VM6 VM3 VM5 VM4 VM1

(a)

0 2 4 6
throughput (requests/sec)

×10
4

0

200

400

600

800

1000

w
ri

te
 a

v
g

 l
a

te
n

c
y

 (
µ

s
e

c
) Observations on VM2

VM6
VM6 VM5
VM6 VM5 VM3
VM6 VM5 VM3 VM1
VM6 VM5 VM3 VM1 VM4

(b)

0 2 4 6
throughput (requests/sec)

×10
4

0

200

400

600

800

1000

w
ri

te
 a

v
g

 l
a

te
n

c
y

 (
µ

s
e

c
) Observations on VM2

VM5
VM5 VM3
VM5 VM3 VM6
VM5 VM3 VM6 VM4
VM5 VM3 VM6 VM4 VM1

(c)

0 2 4 6
throughput (requests/sec)

×10
4

0

200

400

600

800

1000

w
ri

te
 a

v
g

 l
a

te
n

c
y

 (
µ

s
e

c
) Observations on VM2

VM5
VM5 VM6
VM5 VM6 VM3
VM5 VM6 VM3 VM4
VM5 VM6 VM3 VM4 VM1

(d)

Fig. 4. Prediction of Redis write latency on V M2 compared for model calibration using a variety of training sets ranging in size from 1 to 5 VM types.

0 2000 4000 6000
throughput (requests/sec)

0

200

400

600

800

1000

1200

re
a
d

 a
v
g

 l
a
te

n
c
y
 (
µ

s
e
c
) Observations onVM4

VM6
VM6 VM2
VM6 VM2 VM3
VM6 VM2 VM3 VM5
VM6 VM2 VM3 VM5 VM1

Fig. 5. Read latency/throughput plot for MySQL.

and do multiple linear regressions on the training set for sizes
1 through 5 for read latency and write latency data. Again,
we observe that every time another VM type is added to the
training set, the associated R2

predicted improves for V M4 for
both read and write latency (results omitted for space). We
conclude that our evaluation offers supporting evidence for
our second case study.

D. Case Study 3: MySQL

MySQL is an extremely popular ACID SQL database
server, the backbone of numerous commercial applications.

For our testing we deployed MySQL using Amazon Relational
Database Service (Amazon RDS) [2], which abstracts away
the deployment and administration of OS and relationship
database software. We benchmark MySQL on the six VM
types listed in Table I.

The MySQL data shows a higher variation in latency than
our other case studies, and our linear regression model does
not fit it as well as it does the previous two applications. We
show a sample result for MySQL in Fig. 5. We do continue
to see that the model accuracy as captured by R2

predicted does
continue to improve with the addition of more VM types to
the training set, although the value of R2

predicted is lower than
observed for Redis and Cassandra.

This may be due to the higher write latency of SQL
databases, or possibly something with Amazon’s RDS ar-
chitecture that made our YCSB testing method unsuitable.
Another possibility is that the network availability for RDS
varies over time, making consistent results harder to reproduce.
This requires further investigation that forms part of our future
work. Despite these inadequacies in our modeling, however,
the basic expectation we have regarding the role of diversity
does appear to hold.

V. RELATED WORK

Performance modeling of software applications has a long
history in a variety of domains. Approaches range from ex-
plicit modeling leveraging knowledge the internal workings of
system (e.g., based on queueing theory or more general Marko-
vian models [17] [18] [25] [31]), “black box” approaches
(ranging from relatively simple regression [29] similar to this
paper to more sophisticated statistical learning-based [13] [20]

70Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

[21] [34]), and combinations (“gray-box” approaches) [4] [30].
As explained earlier, we choose to work with a very simple
modeling approach because our main interest was not in high
accuracy modeling but on evaluating the improvements that
can result from exploiting diversity. All existing work on
modeling is complementary to our ideas and we hope to
explore the efficacy of our hypothesis with more sophisticated
modeling techniques.

A substantial body of work exists on exploiting different
forms of heterogeneity (not just in cloud platforms but also
in other types of systems) for cost and/or performance opti-
mization [10] [16] [24] [35]. Our goal is different from these
works in that our interest is in using diversity for improving
modeling accuracy.

VI. CONCLUSIONS

The diversity of resource types offered by public clouds
is much higher than in conventional privately-owned data
centers. The complexity of options available makes decision
on resource acquisition more complex, with the larger range
of service available. Tenants may need to calibrate their
application performance models for a large number of resource
configurations. In a private cloud, the system on which such
calibration is done is the same as the machines on which
the application eventually runs. This paper investigates the
possibility of exploiting this diversity to ease the tenant’s
performance modeling.

To explore this idea we applied a linear regression model
to the relationship between latency and throughput for several
popular database servers. The model expressed the average
response time of a class of interactive server applications as a
linear combination of the offered throughput (requests/s), the
number of CPU cores and memory in the procured VM, and
degree of replication employed by the application. For three
different real-world applications - Redis, Apache Cassandra,
and MySQL - the model accuracy increased for more diverse
sets of VMs. For example, the R2

predicted measure of model
efficacy for Redis improved from 0.4-0.5 with 2 VM types for
training and 0.7 for 3 VM types to 0.8 for 4 VM types. Qualita-
tively similar results were observed for Apache Cassandra and
MySQL. Although this modeling approach is very specific,
the basic observation could be expanded to more accurately
model more VM types in more detail. This would lead to more
interesting research challenges, such as automating the process
of calibrating performance models using diverse resource types
on a public cloud allowing providers to offer “performance
modeling as a service” to their tenants.

REFERENCES

[1] Amazon EC2 Pricing. http://aws.amazon.com/ec2/pricing/, [last ac-
cessed October 2016].

[2] Amazon Relational Database Service. https://aws.amazon.com/rds/, [last
accessed October 2016].

[3] M. F. Arlitt and C. L. Williamson. Internet web servers: Workload
characterization and performance implications. IEEE/ACM Trans. Netw.,
5(5), Oct. 1997.

[4] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Information and
control in gray-box systems. In Proc. ACM SOSP, 2001.

[5] The Apache Cassandra Project. http://cassandra.apache.org/, [last ac-
cessed October 2016].

[6] A. Chandra, W. Gong, and P. J. Shenoy. Dynamic resource allocation
for shared data centers using online measurements. In Proc. IWQoS,
2003.

[7] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase.
Correlating instrumentation data to system states: A building block for
automated diagnosis and control. In Proc. USENIX OSDI, 2004.

[8] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with ycsb. In Proc. ACM SOCC,
2010.

[9] M. E. Crovella and A. Bestavros. Self-similarity in world wide web
traffic: Evidence and possible causes. IEEE/ACM Trans. Netw., 5(6),
Dec. 1997.

[10] Farley, B. et al. More for your money: Exploiting performance
heterogeneity in public clouds. In Proc. ACM SOCC, 2012.

[11] Forbes. http://www.forbes.com/sites/louiscolumbus/2015/04/05/
predicting-the-future-of-cloud-service-providers/, [last accessed
October 2016].

[12] Google Compute Engine: Machine Types. https://cloud.google.com/
compute/docs/machine-types, [last accessed October 2016].

[13] H. Herodotou and S. Babu. A what-if engine for cost-based mapreduce
optimization. IEEE Data Eng. Bull., 36(1):5–14, 2013.

[14] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash crowds and denial
of service attacks: Characterization and implications for cdns and web
sites. In Proc. WWW, 2002.

[15] T. Kelly. Detecting performance anomalies in global applications. In
Proc. 2nd Conference on Real, Large Distributed Systems, 2005.

[16] G. Lee and R. H. Katz. Heterogeneity-aware resource allocation and
scheduling in the cloud. In Proc. USENIX HotCloud, 2011.

[17] D. A. Menascé. Response-time analysis of composite web services.
IEEE Internet Computing, 8(1):90–92, 2004.

[18] D. A. Menascé and S. Bardhan. Queuing network models to predict
the completion time of the map phase of mapreduce jobs. In 38.
International Computer Measurement Group Conference, Las Vegas, NV,
USA, December 3-7, 2012, 2012.

[19] D. A. Menasce and P. Ngo. Understanding cloud computing: Exper-
imentation and capacity planning. In Proc. International Computer
Measurement Group Conference, 2009.

[20] M. Mesnier, M. Wachs, B. Salmon, and G. R. Ganger. Relative fitness
models for storage. SIGMETRICS Perform. Eval. Rev., 33(4), Mar. 2006.

[21] N. Mi, G. Casale, L. Cherkasova, and E. Smirni. Sizing multi-tier
systems with temporal dependence: benchmarks and analytic models.
J. Internet Services and Applications, 1(2):117–134, 2010.

[22] MySQL. https://www.mysql.com/, [last accessed October 2016].
[23] Redis IO. http://redis.io/, [last accessed October 2016].
[24] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch.

Heterogeneity and dynamicity of clouds at scale: Google trace analysis.
In Proc. ACM SOCC, 2012.

[25] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open versus closed:
A cautionary tale. In Proc. USENIX NSDI, 2006.

[26] C. R. Shaliz. Advanced Data Analysis from an Elementary Point of View.
2015. http://www.stat.cmu.edu/∼cshalizi/ADAfaEPoV/ADAfaEPoV.pdf,
[last accessed October 2016].

[27] D. Shen and J. L. Hellerstein. Predictive models for proactive network
management: Application to a production web server. In Proc. NOMS,
2000.

[28] M. S. Squillante, D. D. Yao, and L. Zhang. Web traffic modeling and
web server performance analysis. SIGMETRICS Perform. Eval. Rev.,
27(3), Dec. 1999.

[29] C. Stewart, T. Kelly, and A. Zhang. Exploiting nonstationarity for
performance prediction. In Proc. ACM SIGOPS EuroSys, 2007.

[30] E. Thereska and G. R. Ganger. Ironmodel: Robust performance models
in the wild. In Proc. ACM SIGMETRICS, 2008.

[31] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi. An
analytical model for multi-tier internet services and its applications. In
Proc. ACM SIGMETRICS, 2005.

[32] Wang, C. et al. Recouping energy costs from cloud tenants: Tenant
demand response aware pricing design. In Proc. ACM e-Energy, 2015.

[33] Microsoft Azure: Virtual Machines Pricing. https://azure.microsoft.com/
en-us/pricing/details/virtual-machines/, [last accessed October 2016].

[34] Z. Zhang, L. Cherkasova, and B. T. Loo. Parameterizable benchmarking
framework for designing a mapreduce performance model. Concurrency
and Computation: Practice and Experience, 26(12), 2014.

71Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

[35] Z. Zhang, L. Cherkasova, and B. T. Loo. Exploiting cloud heterogeneity
to optimize performance and cost of mapreduce processing. SIGMET-
RICS Perform. Eval. Rev., 42(4), June 2015.

72Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

