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Abstract—In an IoT environment, the geographically dispersed 

sensors that are eligible for participating in a spatial query, 

can scale to the orders of millions or even billions. Therefore, 

judiciously selecting among the candidates is of paramount 

importance to reduce query complexity. Such selection must 

minimize the total resources used while maintaining the 

highest possible accuracy in results. In this paper, we turn our 

attention to the problem of assigning query filters over a subset 

of the available sensor nodes, assuming that queries are 

resident in the system, e.g., performing monitoring activities. 

We present a rigorous problem formulation that captures the 

dependencies between query accuracy, and resource 

consumption, focusing in particular on energy consumption. 

The relevant decision problem is shown to be NP-complete, 

thus, we propose a heuristic based on the greedy method to 

solve it. Simulation experiments show that compared to an 

algorithm that performs random assignments, significant 

improvement by more than 100% (resource wise) is expected.  

Keywords-sensor networks; IoT; sensor selection; query 

plan; energy efficiency; resource consumption. 

I.  INTRODUCTION 

As the number of smart devices has exceeded the 
population of earth and is still growing at a fast pace, the 
premise of IoT [5] is to enable (among others) the 
interoperability of the various devices that could act as 
potential sensors and/or actuators. At the same time, the 
advent of cyber physical systems (CPS) [8] that combine the 
physical sensors and actuators with the cyber world provide 
a novel ground for smart applications where the needs for 
interoperability and efficient resource allocation are of 
paramount importance.  

Of particular interest in such huge scale systems is the 
problem of efficient spatial query execution. Consider for 
instance a system that gathers temperature information at the 
various city districts and sends warnings to health authorities 
in the case of extreme conditions. A simple strategy whereby 
all the available sensors are involved in the query (assuming 
a large number of them), will likely lead to waste of 
resources at the sensors and increased network load. In 
contrast, using only a subset of the available sensors per 
involved district location, might lead to results of almost 
equal quality, while saving resources.     

In this paper, we consider a generic sensor system 
running monitoring spatial queries that involve (among 
others) sensor locations. We tackle the problem of sensor 

selection, with the goal of achieving sufficient query 
accuracy, while minimizing the total energy consumed, thus, 
improving the lifetime of the sensing nodes (assuming they 
operate on battery). Specifically, we illustrate a rigorous 
formulation for the problem and propose a greedy algorithm 
to solve query–sensor assignment. 

The remaining of the paper is organized as follows. 
Section II discusses the related work. The problem 
formulation is illustrated in Section III, while a greedy 
heuristic approach is presented in Section IV. Experimental 
results are included in Section V. Finally, Section VI 
concludes the paper.  

II. RELATED WORK 

Our work is also closely related to in-network query 
processing where the problem is to assign the operators 
comprising a query in the network nodes. In [4] and [14], 
operator placement was discussed in the context of WSNs 
with the aim of optimizing routing cost in the query tree, 
while in [25] a more generic approach that aims at placing 
general purpose application trees is proposed.  

The effects of query operator placement are largely 
dictated by data availability in the processing node. 
Techniques, such as caching [10] and data replication [13] 
were studied in the past in order to move data closer to where 
they will be required. In [26], operator placement is 
considered together with data caching. Query caching is also 
the aim of [12] where the potential of caching OLAP queries 
at the level of Internet proxies was examined, while in [18] 
caching is considered at the level of a single cell in a cellular 
network.  

Much research has been devoted in the past on 
developing suitable middleware and programming 
frameworks in the context of wireless sensor networks. 
Example works include the systems described in 
[11][19][24] to name a few. [19] provides an adaptive 
mechanism for efficient data fusion and filtering. Optimal 
resource allocation for filtering in a distributed system is 
discussed in [2]. The systems of [11] and [24] are broader in 
scope in the sense that they model an application as a set of 
communicating mobile agents, that can carry any type of 
functionality, e.g., sensing, actuating, aggregating or 
controlling etc. Both systems attempt to reduce network 
overhead using different algorithmic techniques. Another 
system of similar scope, i.e., mobile agent framework for 
WSN is [1]. Compared to [11] and [24], it tackles equivalent 
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application scope, nevertheless, it lacks similar mechanisms 
for network communication reduction. In the context of IoT, 
agent based systems include [3] and [7]. The major challenge 
tackled by these systems is the interoperability of 
heterogeneous sensing and computing nodes. As 
demonstrated by the systems the agent framework provides a 
suitable abstraction layer for integrated applications.  

Adaptive resource management in sensor networks is 
discussed in [6], [15] and [23]. In [23], the grouping of 
sensors into predefined number of clusters is discussed. [6] 
proposes an adaptive scheme that dynamically adjusts 
sampling rate in the sensor network, while [15] discusses 
resource/sensor allocation to cope with peaks in sampling 
rates. A survey on the issue of adaptive sensor network 
organization can be found in [21]. Of particular interest is the 
case where the sensor network is comprised of cameras 
meaning that the data to be transmitted is of high volume 
compared to for example monitoring temperature. In [22], 
methods to efficiently perform monitoring over a camera 
network are discussed, while [9] is rather orthogonal, 
studying the reduction in network consumption that is 
achievable in social media networks by using new video 
coding standards. It is worth noting that social media 
comprise key components of cyber physical systems and 
therefore any resource savings are cumulative to the ones 
achieved at the sensor network level.  

In a previous work of ours [17], we implemented a 
framework that enabled for communication and coordination 
of various smart devices through the remote invocation of 
applications on them.  In this paper, we envision that a 
voluntary participation scheme is in effect and that all the 
required functionality by each participant is coded as a native 
application. This is for instance the case with smart city 
environments such as [16]. A central administration entity 
tracks the geographic locations of participants, for instance 
by using some of the efficient spatial indexing schemes 
proposed in the literature, e.g., [20] and is responsible for 
selecting the nodes to participate in a system query. In the 
sequel, we describe the criteria and the optimization problem 
induced by the aforementioned selection.          

III. PROBLEM FORMULATION 

Let Q be the total number of queries to be executed in the 
system. Each query Qi has Si selection predicates. Let S be 
the total number of predicates from all queries in the system. 
Clearly: 

     

 

   

 (1) 

Assuming a total ordering of the S predicates, we denote 
with Fk the kth such predicate. Let A be a binary Q×S matrix 
encoding whether the predicate Fk is used by Qi as follows: 
Aik=1 iff Qi contains Fk, otherwise, Aik=0. Each Fk can be 
assigned over a number of sensing nodes (if compatible), 
resulting into multiple streams of data (equaling the assigned 
sensors) being transmitted to a base station for filtering and 
joining. This model reflects the scenario where sensing 
nodes have direct Internet connections, e.g., smart devices 
under cellular networks.  

Let the total number of participating sensing nodes be N, 
and Nj denote the jth such, assuming a total ordering of them. 
Let a binary N×S matrix C encode whether a node Nj is 
compatible with Fk predicate as follows: Cjk=1 iff  Nj is 
compatible with Fk and  Cjk=0, otherwise. We should note 
that a node might be compatible with more than one 
predicates. To explain it, consider a query that returns the 
average temperature and humidity from two different 
location areas. The query can be viewed as containing four 
predicates, i.e., the combinations of the two locations and the 
two measured parameters. Depending on the measurement 
power of a sensing node it can participate in one or more 
predicates (max two if location areas are disjoint).  

Each Nj has a resource level r(Nj) representing a generic 
metric of the node’s processing power or energy levels in 
case nodes run on battery and energy preservation is deemed 
the most important factor. Similarly, each predicate Fk 
requires a resource consumption of r(Fk).  We would like to 
mention that assuming constant resource consumption by 
query predicates is not far from reality. For instance, in 
camera networks, video feeds are usually transmitted and 
processed at bitrates that remain almost constant.  

In order for a query Qi to execute properly, a predicate Fk 
must be assigned to at least Rik nodes. Clearly Rik=0 iff Aik=0. 
Let B be a Q×S×N matrix encoding the potential query 
benefit, whereby Biku is the benefit of assigning u sensors at 
the Fk predicate for Qi. We assume that: Biku=0 for all u<Rik 
and Biku>0 for u≥Rik. 

Finally, let a Boolean matrix X of size N×S encode the 
predicate to node assignment as follows: Xjk=1 iff Fk is 
assigned to Nj and 0 otherwise. We are now in position to 
formulate the selection problem as a two function 
optimization one, whereby the first function aims at 
maximizing query benefit and the second function aims at 
minimizing the maximum proportional resource reduction at 
a node. The following equations depict the target functions: 

        
         
 
   

     
        (2) 

        

 

   

 

   

          
     

 

   

 (3) 

Therefore, the problem can be posed as follows: Find X 
such that (2) is minimized and (3) is maximized, subject to 
the following constraints:  

    

 

   

                      (4) 

                        (5) 

         

 

   

              (6) 

 
Constraint (4) effectively dictates that a sufficient 

number of sensors must be allocated to each predicate. 
Constraint (5) captures compatibility restrictions between 
predicates and sensors. Notice that an incompatible node 
(Cjk=0) leads to Xjk=0, i.e., the predicate will not be assigned 
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to the node. Constraint (6) captures node capacity, i.e., it 
forbids the assignments to a node that would require resource 
consumption greater than the available one.  

Before closing the section we would like to mention that 
the two objectives D1 and D2 are conflicting with each 
other. It is easy to observe that D1 is minimized when 
equality holds in (4), while D2 is maximized when all 
eligible sensors participate in a predicate (assuming that Biku 
entries grow monotonically to u).  

When optimizing two target functions one can resort to 
designing algorithms that produce a set of Pareto optimal 
solutions to choose from. Instead, we decided to convert the 
two function optimization problem into a single function 
optimization one by introducing a weighting constant α. In 
particular, let min{Bik} denote the (minimum) benefit when 
u=Rik and max{Bik} the maximum such value when:    

  

      

 

   

 (7) 

 
Then, bik denotes the average max to min benefit ratio for 

a predicate Fk at Qi as follows:  

                       (8) 

For each predicate we calculate the benefit to resource ratio 
(let rik) as follows: 

         

 

   

      (9) 

            (10) 

Clearly, (8) and (9) hold if Fk is used by Qi, i.e., Rik≠0. 
Then we can get an estimation of the total benefit to resource 
consumption ratio as follows: 
 

  
          

     

  
 
   

      
 
   

 (11) 

 
When comparing the maximum and minimum 

assignment policies r represents the ratio of benefit gains to 
resource consumption increase.  Thus, we can identify the 
constant α as a proportion of r (depicting how much query 
benefits are favored over resource consumption).The 
following two equations summarize the problem formulation 
which now targets at maximizing the composite function D:  

     (12) 

  
 

  
    (13) 

Solving the problem as formulated using (13) (but also in 
the formulation that uses (2) and (3)) can be shown to be NP-
hard. In particular, it can be shown that it contains a 2-
processor scheduling component as far as (2) is concerned. 

For this reason we resort to heuristics in order to compute 
solutions. In the sequel, we describe one such heuristic. 

IV. GREEDY ALGORITHM 

The algorithm presented in this section is based on the 
greedy paradigm. It works in two steps. In the first step, it 
covers the constraint expressed in (4), i.e., assign just enough 
sensors to meet the demand for each predicate. This is done 
with respect to constraints (5) and (6) as follows. First, all 
predicates are sorted according to r(Fk). Then, starting with 
the one with the highest resource requirement, it assigns it to 
Rik different sensors in an iterative manner. At each iteration, 
all eligible sensors are considered and the assignment that 
incurs the minimum cost as per (2) is selected. 

Having satisfied constraint (4) the algorithm then 
proceeds by optimizing (13) in an iterative manner. At each 
iteration all possible predicate to sensor assignments are 
considered and the one that maximizes most (13) is selected 
and implemented. The process continues until no eligible 
sensor-predicate assignments exist or (13) can’t be further 
improved. 

V. EXPERIMENTS 

We conducted simulation experiments using the 
following setup. We fixed the number of queries (unless 
otherwise stated) to 100, each with a predicate number 
varying uniformly between 3 and 10.  Predicates required 
between 20 and 100 sensing nodes (randomly chosen) to 
execute properly and incurred resource consumption 
between 1 and 10 units. We assumed a total number of 
sensing nodes equaling 10,000, with each of them being 
compatible to 1/10th of the total predicates (randomly 
selected). Sensing nodes had resource capacity of 100 load 
units.  

We compared the performance of greedy algorithm as 
opposed to random selection for the case where each 
predicate Fk must be assigned to Rik nodes exactly. Results 
depict the average of 10 runs.  
 

 
Figure 1.  Maximum resource consumption for increasing number of 

queries (sensor nodes=10,000). 
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Figure 1 shows the results for the baseline scenario of 
100 queries over 10,000 sensors as well as the performance 
when the number of queries are doubled or halved keeping 
the rest of the setup the same. It is evident that the 
performance difference between Greedy and Random is 
significant. In most cases, Greedy incurs a maximum 
resource consumption of less than half compared to 
Random. As expected peak resource consumption rises to 
the number of queries introduced in the system.    

To further confirm the viability of the proposed heuristic 
in Figure 2 we plot the performance of Greedy and Random 
as the number of available sensors increases. Notice, that the 
maximum resource consumption with Greedy exhibits a 
steeper decline compared to Random when moving from the 
baseline scenario to the one having double the sensors.  

 

 
Figure 2.  Maximum resource consumption for increasing number of 

sensor nodes (queries=100). 

 
 

 
Figure 3.  Maximum resource consumption for increasing placement 

requirement of predicates (queries=100, sensor nodes=10,000). 

Last, in Figure 3 we evaluated the performance of the 
algorithms when each predicate exhibits half (0.5 in x-axis) 
and double (2 in x-axis) the requirements for sensors to be 
placed at, compared to the baseline scenario (1 in x-axis). 
Results are comparable to the ones exhibited in the Figures 
1 and 2, with Random incurring between 2 and 3 times more 
overhead compared to Greedy.  

VI. CONCLUSIONS 

In this paper, we tackled the problem of assigning query 
operators to sensing nodes in IoT environments, whereby a 
huge number of potential participants exist. We provided a 
rigorous problem formulation that captures typically the 
trade-off between increasing quality of query results and 
resource consumption. We proposed a heuristic based on the 
Greedy paradigm to tackle the problem and compared its 
performance against Random assignment. Preliminary 
experimental results indicate that Greedy incurs between half 
and one third of the overhead of Random.  

ACKNOWLEDGMENT 

This work was partially supported by travel grant of the 
postgraduate program: “Informatics and Computational 
Biomedicine”, School of Science, Univ. of Thessaly. 
 

REFERENCES 

 
[1] F. Aielo, G. Fortino, R. Gravina, and A. Guerrieri, “A Java-

based Agent Platform for Programming Wireless Sensor 

Networks,” The  Computer J., vol 54(3), pp. 439-454, 2010.  

[2] N. Assimakis, M. Adam, M. Koziri, S. Voliotis, and K. 

Asimakis, “Optimal decentralized Kalman filter and Lainiotis 

filter,” Digital Signal Processing, vol. 23(1), pp. 442-452, 

2013. 

[3] I. Ayala, M. Amor, and L. Fuentes, “The Sol agent platform: 

Enabling group communication and interoperability of self-

configuring agents in the Internet of Things,” JAISE, 

vol. 7(2), pp. 243-269, 2015. 

[4] G. Chatzimilioudis, A. Cuzzocrea, D. Gunopoulos, and N. 

Mamoulis, “A Novel Distributed Framework for Optimizing 

Query Routing Trees in Wireless Sensor Networks via 

Optimal Operator Placement,” J. of Computer and System 

Sciences, vol. 79(3), pp. 349-368, 2013. 

[5] J. Gubbi, R Buyya, S. Marusic, and M. Palaniswami, “Internet 

of Things (IoT): A vision, architectural elements, and future 

directions,” Future Generation Computer Systems, vol. 29(7), 

pp. 1645-1660, 2014. 

[6] N. Hu, T. F. La Porta, and N. Bartolini, “Self-Adaptive 

Resource Allocation for Event Monitoring with Uncertainty 

in Sensor Networks,” MASS 2015, pp. 370-378. 

[7] E. Jung, I. Cho, and S. M. Kang, “iotSilo: The Agent Service 

Platform Supporting Dynamic Behaviour Assembly for 

Resolving the Heterogeneity of IoT,” Int. J. of Distributed 

Sensor Networks, vol. 10, 2014.  

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

5000 10000 20000 

M
ax

im
u

m
 R

es
o

u
rc

e 
C

o
n

su
m

p
ti

o
n

 

Sensor Nodes 

Random 

Greedy 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0.5 1 2 

M
ax

im
u

m
 R

es
o

u
rc

e 
C

o
n

su
m

p
ti

o
n

 

Placement requirements 

Random 

Greedy 

42Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization



[8] S. K. Khaitan and J. D. McCalley, “Design Techniques and 

Applications of Cyber Physical Systems: A Survey,” IEEE 

Systems Journal, vol. 9(2), pp. 350-365, June 2015. 

[9] M. G. Koziri, et al., “A framework for scheduling the 

encoding of multiple smart user videos,” SMAP 2016, pp. 29-

34. 

[10] N. Laoutaris, G. Smaragdakis, A. Bestavros, I. Matta, and I. 

Stavrakakis, “Distributed Selfish Caching,” IEEE TPDS, 

vol. 18(10), pp. 1361-1376, 2007. 

[11] H. Liu, T. Roeder, K. Walsh, R. Barr, and E. G. Sirer, 

“Design and implementation of a single system image 

operating system for ad hoc networks,” in 

Proc. MobiSys 2005, pp. 149-162. 

[12] T. Loukopoulos and I. Ahmad, “Policies for Caching OLAP 

Queries in Internet Proxies,” IEEE TPDS, vol. 17(10), 

pp. 1124-1135, 2006. 

[13] T. Loukopoulos, N. Tziritas, P. Lampsas, and S. Lalis, 

“Implementing Replica Placements: Feasibility and Cost 

Minimization,” IPDPS 2007, pp. 1-10. 

[14] Z. Lu, Y. Wen, R. Fan, S. - L. Tan, and J. Biswas, “Toward 

Efficient Distributed Algorithms for In-Network Binary 

Operator Tree Placement in Wireless Sensor Networks,” 

IEEE JSAC, vol 31(4), pp. 743-755, 2013.  

[15] N. Nguyen and M. M. H. Khan, “A closed-loop context aware 

data acquisition and resource allocation framework for 

dynamic data driven applications systems (DDDAS) on the 

cloud,” Journal of Systems and Software, vol. 109, pp. 88-

105, 2015. 

[16] F. Paganelli, S. Turchi, and D. Giuli, “A Web of Things 

Framework for RESTful Applications and Its 

Experimentation in a Smart City,” IEEE Systems Journal vol. 

10(4), pp. 1412-1423, 2016. 

[17] P. Papadopoulos, T. Loukopoulos, I. Anagnostopoulos, N. 

Tziritas, and M. Vassilakopoulos, “RAC: a remote application 

calling framework for coordination of mobile 

apps,” PCI 2015, pp. 394-399. 

[18] K. Poularakis, G. Iosifidis, and L. Tassiulas, “Approximation 

algorithms for mobile data caching in small cell networks,” 

IEEE Trans. on Communications, vol. 62(10), pp. 3665-3677, 

2014. 

[19] U. Ramachandran, et al., “Dynamic data fusion for future 

sensor networks,” ACM TOSN, vol.  2(3), pp. 404-443, 2006. 

[20] G. Roumelis, M. Vassilakopoulos, T. Loukopoulos, A. 

Corral, and Y. Manolopoulos, “The xBR^+ -tree: An Efficient 

Access Method for Points,” DEXA (1) 2015, pp. 43-58. 

[21] C. Sengul, A. C. Viana, and A. Ziviani, “A survey of adaptive 

services to cope with dynamics in wireless self-organizing 

networks,” ACM Comput. Surv. 44(4), pp. 23:1-23:35, 2012. 

[22] P. J. Shin, J. Park, and A. C. Kak, “A predictive duty cycle 

adaptation framework using augmented sensing for wireless 

camera networks,” ACM TOSN, vol. 10(2), pp. 22:1-22:31, 

2014. 

[23] M. N. Tahan, M. Dehghan, and H. Pedram, “Upper and lower 

bounds for dynamic cluster assignment for multi-target 

tracking in heterogeneous WSNs,” JPDC vol. 73(10), pp. 

1389-1399, 2013. 

[24] N. Tziritas, et al., “Middleware Mechanisms for Agent 

Mobility in Wireless Sensor and Actuator Networks,” S-

CUBE 2012, pp. 30-44. 

[25] N. Tziritas, T. Loukopoulos, S. U. Khan, and C. - Z. Xu, 

“Distributed Algorithms for the Operator Placement 

Problem,” IEEE TCSS, vol. 2(4), pp. 182–196, Feb. 2015. 

[26] L. Ying, Z. Liu, D. Towsley, and C. H. Xia, “Distributed 

Operator Placement and Data Caching in Large-scale Sensor 

Networks,” INFOCOM 2008, pp. 977-985.  

 

 

43Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization


