
Closest-Pairs Query Processing in Apache Spark

George Mavrommatis, Panagiotis Moutafis, and Michael Vassilakopoulos

Data Structuring & Engineering Lab

Dept. of Electrical & Computer Eng.

University of Thessaly

Volos, Greece

e-mail: {gmav, pmoutafis, mvasilako}@uth.gr

Abstract— Processing of spatial queries when the datasets

involved are big can be accomplished efficiently in a parallel

and distributed environment. The (K) Closest-Pair(s) Query,

KCPQ, is a common query in many real-life applications

involving geographical, or, in general, spatial data. It consists

in finding the (K) closest pair(s) of objects between two spatial

datasets. Although, processing of this query has been studied

extensively for centralized environments, few solutions have

appeared for parallel and distributed frameworks. Apache

Spark is such a framework that has several advantages

compared to other popular ones, like Hadoop MapReduce. In

this work, we present an algorithm for processing the KCPQ in

Apache Spark and experimentally study its efficiency and

scalability, using big real-world datasets.

Keywords-Closest-Pairs Query; Spatial Query Processing;

Apache Spark.

I. INTRODUCTION

Geographic information systems (GIS) [1] have been
around for several decades. They provide the means for
storing, querying, analyzing and sharing geographic
information and have proven valuable in many modern
application domains (e.g., disaster management, mapping,
urban planning, transportation planning, environmental
impact analysis, etc.).

The term Big Data refers to unprecedented volumes of
data. Such data appear in numerous modern applications,
like applications based on sensor networks, commercial
transactions, social media, web searches, etc.

Spatial databases [2] are specialized databases that
support storage and querying of multidimensional data
(usually, points, line-segments, regions, polygons, volumes).
They are core elements of GIS. Processing of spatial queries
can become very demanding if the volume of data on which
such a query is applied is big, or if the volume of the
combinations of data objects that need to be examined for
answering such a query are big.

Some typical spatial queries are: the point query, range
query, spatial join, and nearest neighbor query [3]. Spatial
Join queries find all pairs of spatial objects from two spatial
data sets that satisfy a spatial predicate, like intersects,
contains, is enclosed by, etc. Nearest neighbor queries locate
the spatial object(s) that is (are) nearest to a query object.
The (K) Closest-Pair(s) Query, KCPQ, discovers the (K)

closest pair(s) of object(s) (usually ordered by distance),
between two spatial datasets. It combines join and nearest
neighbor queries: like a join query, all pairs (combinations)
of objects from the two datasets are candidates for the result,
and like a nearest neighbor query, the (K) smallest
distance(s) is (are) the basis for inclusion in the result (and
the final ordering) [4][5]. The KCPQ can be very demanding
if the datasets involved are big, since all the combinations of
pairs of objects from the two datasets are candidates for the
result.

For example, we can use two spatial datasets that
represent the archaeological sites and popular beaches of
Greece. A KCPQ (K=10) can discover the 10 closest pairs of
archaeological sites and beaches (in increasing order of their
distances). The result of this query can be used for planning
tourist trips in Greece that combine traveler’s interest for
history / civilization and leisure / enjoyment.

Parallel and distributed computing using shared-nothing
clusters on big data has been very popular during last years.
Hadoop MapReduce [6] is an open-source software
framework for storing data and running applications on such
clusters. MapReduce is file-intensive and computing nodes
intercommunicate only through sorts and shuffles. Therefore,
MapReduce is suitable mostly for non-iterative batch
processing jobs.

Apache Spark [7] is another, more recent, open-source
cluster-computing framework with an application
programming interface based on Resilient Distributed
Datasets (RDDs), read-only multisets of data items
distributed over the cluster of machines [8]. It was developed
to overcome limitations of the MapReduce paradigm.
Through RDDs a form of distributed shared memory is
provided and the implementation of iterative algorithms is
facilitated.

Recently, the utilization of main memory in processing
KCPQs on big datasets in centralized systems has been
explored [9][10]. In this paper, considering ideas and
methods presented in [9][10] we present a Spark based
algorithm for computing KCPQs. Moreover, we present an
experimental analysis of the performance of this algorithm,
based on big real-world datasets.

More specifically, in Section II, we review related
frameworks and work; in Section III, we present Spark
basics, we define the query that we study and present our
algorithm; in Section IV, we present experimentation

26Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

settings and the results of experiments we performed for
studying the efficiency of the proposed method. Finally in
the last section, we present our conclusions and our plans for
future work.

II. RELATED WORK

Extensions of Hadoop MapReduce supporting large-scale
spatial data processing include Parallel-Secondo [11],
Hadoop-GIS [12] and SpatialHadoop [13]. In [14], a general
plane-sweep approach for processing KCPQs in
SpatialHadoop and a more sophisticated version that first
computes an upper bound of the distance of the K-th closest
pair from sampled data points have been presented.

Extensions of Apache Spark supporting large-scale
spatial data processing include

 SpatialSpark [15], that has been used for spatial join
algorithms based on point-in-polygon test and on
point-to-polyline distance,

 GeoSpark [16], that supports spatial range, join
query and K nearest neighbors queries,

 LocationSpark [17], that offers several spatial query
operators, including range search, K nearest
neighbors, spatio-textual operations, spatial join and
K nearest- neighbors join, and

 Spatial In-Memory Big data Analytics (SIMBA)
[18] that supports box and circle range queries, K
nearest neighbors, distance joins and K nearest-
neighbors joins.

The KCPQ has been actively studied in centralized
environments, when both [19][20][21][22][23], one [24], or
none [9][10] of the two spatial datasets are indexed. Two
improvements of the classic plane-sweep algorithm and a
new plane-sweep algorithm, called Reverse Run Plane
Sweep, were proposed in [9] for processing KCPQs when
the two datasets are not indexed and reside in main-memory.
In [10], it is assumed that the (big) spatial datasets reside on
secondary storage and are progressively transferred in main
memory, by dividing them in strips, for processing utilizing
the methods of [9].

To the best of our knowledge, the only work about
KCPQs in a parallel and distributed framework is [14]. In
this paper, we utilize ideas presented in [9][10] to develop an
algorithm for processing KCPQs in Spark, by separating data
in strips and utilizing a plane-sweep approach within each
strip.

III. CLOSEST-PAIR QUERIES IN SPARK

Hadoop MapReduce processing is based on pairs of Map
and Reduce phases. It is an excellent solution for one-step
computations on massive datasets, but it not very efficient
for problems that require multi-step computations. The
output of each step is stored in the distributed file system, so
that it can be used as input for the next, or one of the
following steps. Replication and disk storage contribute to
slowing down the overall computation. Apache Spark (or
more simply, Spark) is an alternative to Hadoop MapReduce.
It’s not intended to replace Hadoop MapReduce, but to

extend it and allow the development of solutions for different
big data problems and requirements.

Spark was written in the Scala Programming Language.
Programmers usually write Spark applications in Java, Scala,
or Python, with Scala being the most popular choice. In
addition to Map and Reduce operations, it supports SQL
queries, streaming data, machine learning and graph data
processing. These capabilities can be combined in a data
pipeline. With Apache Spark, programmers can combine
data pipelines in a directed acyclic graph (DAG). The DAG
execution model can be seen as a generalization of the
MapReduce model. Moreover, Apache Spark supports in-
memory data sharing across DAGs. Spark can run on top of
an existing Hadoop Distributed File System (HDFS)
infrastructure. Spark also supports lazy evaluation and holds
intermediate results in memory. When data cannot fit in
memory, disk storage is utilized. In fact, part of a data set
can reside in memory and another part on secondary storage.
The RDD is the fundamental data structure of Spark. An
RDD can be resembled to a database table. It is a read-only
collection of objects, partitioned in the cluster of machines.

In the following, we present our algorithm for KCPQ
processing in Spark. Let two datasets P and Q of spatial
objects, a positive natural number K and a distance function
between pairs of data objects formed from P and Q
(members of the Cartesian Product of P and Q). The KCPQ
discovers K pairs of data objects formed from P and Q that
have the K smallest distances between them among all pairs
of data objects that can be formed from P and Q.

Since distances between objects may not be unique, note
that if multiple pairs of objects have the same K-th distance
value between them, more than one sets of K different pairs
of objects can form the result of this query. The presented
algorithm can be easily tailored to report all such sets of
pairs.

Our algorithm, for 2-dimensional space (for the ease of
exposition), consists of the following steps:

 Samples P' P and Q' Q are taken from both
datasets P and Q. Spark function sample() was used
for sampling the two datasets. sample() takes a
parameter, fraction, denoting the expected size of the
sample as a fraction of the dataset in question.

 Proper keys are set, a join between P' and Q' is
performed and the K closest pairs (CP) among all
joined pairs are computed. Function join() is also
provided by the Spark API.

 Let Bound be the K-th smaller distance as computed
previously. This is our pruning factor.

 Both datasets are divided into n strips [25]
corresponding to ascending intervals along one of
the dimensions (x axis dimension is assumed in the
following, w.l.o.g) (Fig. 1). Partitioning of each of
the two datasets into strips of unequal width was
done by sampling, calculating the border points from
samples and applying the partition to the whole
dataset.

27Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 1. Strips partitioning.

 Using the distance of the K-th CP (Bound),
combinations of strips are examined. If two strips
reside in a distance smaller than the distance of the
K-th CP, the pairs between data objects of these two
strips are examined as candidates for the result. To
achieve this, all (vertical) pairs of strips from P and
Q are being evaluated with respect to their x-axis
distance combined to the Bound.

 Pairs of strips are classified into two categories,
namely eligible and not eligible for further
processing. The first category consists of two major
subcategories: overlapping pairs, and pairs that do
not overlap but have their x-distance smaller than
Bound. For example, (Fig. 2) strip Ps1 from P
overlaps with strips Qs1 and Qs2 from Q.
Furthermore, the x-distance between Ps1 and Qs3 is
d1 < Bound, while the x-distance between Ps1 and
Qs4 is d2 > Bound (this holds for every consecutive
Q-strip). Therefore, the eligible pairs that we derive
for Ps1 are (Ps1,Qs1), (Ps1,Qs2) and (Ps1,Qs3).
These pairs, and all other pairs identified by this
procedure, are the pairs that will be subject to
computation by the cluster. Note, that in the case of
pairs like (Ps1, Qs3), not all points from both strips
need to be considered. For example, since we know
a bound for the K CPs, we can use it as a pruning
condition with the filter() function of Spark to reduce
Qs3 to these points that their x-axis distance from
Ps1 is smaller than Bound.

Figure 2. Eligible pairs of strips.

 Within each eligible pair of strips from P and Q
Plane-sweep is applied for calculating K CPs storing
the result in a maximum binary heap (maxHeap)
[9][10]. A separate maxHeap is utilized for each
partition. Bound is sent -we used Spark’s broadcast()
function- to all workers and they use it as stop
condition for the plane sweep algorithm.

 All binary heaps are used to form a RDD consisting
of tuples (distance, Ppoint, Qpoint). Since all
eligible pairs of strips contain all pairs of points from
P and Q that may contribute to the final solution and
there are no duplicate pairs, taking the first (sorted
on distance) K tuples with the smaller distances,
yields the final (and exact) solution.

IV. EXPERIMENTAL EVALUATION

To evaluate the performance of our algorithm, we used
the following three big real 2d datasets from OpenStreetMap
[13]: WATER resources consisting of 5,836,360 line
segments, PARKS (or green areas) consisting of 11,504,035
polygons and BUILDINGS of the world consisting of
114,736,611 polygons. To create sets of points, we used the
centers of the Minimum Bounding Rectangles (MBRs) of the
line-segments from WATER and the centroids of polygons
from PARK and BUILDINGS.

All experiments were conducted on a cluster of 5 nodes.
Each node has 4 vCPUs running at 2.1GHz, with a total of
16GB of main memory per node, running Ubuntu Linux
16.04 operating system. Spark 2.0.2 running on Hadoop
2.7.2 Distributed File System (HDFS) was used as our
parallel computing system. The block size of HDFS was 128
MB. Of the 5 computing nodes, one was running the
NameNodes for Hadoop and Master for Spark, while the
remaining four (4 nodes x 4 vCPUs = 16 vCPUs) were used
as HDFS DataNodes and Spark Worker nodes. Java openjdk
ver. 1.8.0 and Scala code runner ver. 2.11 were used.

All datasets are text files stored in HDFS. Each line
contains an index and a pair of coordinates. We used the
textFile() function of Spark to import the data, and set the
numPartitions parameter to 4. Typically, Spark creates one
partition for each block. We can increase the number of
partitions by passing a larger value but it is not possible to
have fewer partitions than the blocks of each file.

We measured total execution time (i.e., response time) in
seconds (sec) that expresses the overall CPU, I/O and
communication time needed for the execution of each query.

28Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

We varied sample fraction (values used: 0.01, 0.001,
0.0001), the number of closest pairs K (values used: 1, 10,
100, 1000, 10000) and the number of strips per dataset
(values used: 16, 32, 64, 80). We tested all possible
combinations between the three datasets (PARKSxWATER,
BUILDINGSxWATER, BUILDINGSxPARKS). In the
following, we present a representative portion of the results.

In Fig. 3, we present the results for the PARKSxWATER
combination, for K=10, using different combinations of n
(number of strips) and f (sample fraction). As one can see,
there is a tradeoff between total execution time and the time
taken in order to sample the datasets and compute the value
of Bound. If we take a small fraction of the datasets as
sample, the bound we compute is not tight enough, therefore
leading to increased KCPQ computation time. The larger the
fraction of dataset we sample, the better (lower) is the upper
bound we obtain. But if we surpass a certain fraction, then
the computation of Bound in the sample dominates the total
computation time.

Figure 3. Effect of sample fraction.

Studying the results of the above experiment leads us to
the observation that a fraction of 0.001 is a good selection for
the rest of our experiments.

In Fig. 4, we present the results for the PARKSxWATER
combination, for all K values, using 16, 32, 64 and 80 strips
per each dataset. Initially, we ran each experiment
independently from the others. We faced a problem, though.
Phase two (the KCPQ computation) relies on the value of
Bound that is computed in phase one. Since phase one uses a
randomly selected sample, Bound is likely to be different in
each experiment. In order to be able to extract better and
comparable results, we used the following procedure for our
second experiment: having taken into consideration that
phase one is independent from phase two, we conducted the
first phase of the experiment (K=1, n=16, fraction=0.001)
and saved the calculated value of Bound. In all consecutive
phases of the experiment, the bound was computed as usual,
but we used the value we found in the first phase of the
experiment instead.

Figure 4. KCPQ (PARKS x WATER).

As we observe, n = 32 strips seems to be the optimal
partitioning size for PARKS and WATER datasets, although
n = 16 gives similar results. As K increases from 1 to 10,000,
execution time is hardly affected, in some cases showing a
tendency to increase slightly, as expected.

We conducted our third experiment in order to see to
what extent the value of Bound affects the running time of
the algorithm. We used a value for Bound with an order of
magnitude 10 times greater than the one previously used.
Time for sampling and bound computation was taken into
account when counting total running time. Fig. 5 presents the
running times compared to the ones that were measured in
the previous experiment.

Figure 5. Effect of lower Bound

From the above comparison, we conclude that the value
of Bound is more significant than the number of strips and
the number of partitions provided to Spark as well.

In Fig. 6, we present the results for the
BUILDINGSxWATER combination, for several K values
using 8, 16, 32 and 64 strips per each dataset (once again
Bound was set to a constant value for all cases, to an order of
e-05). We observe than in the case of BULDINGS the
algorithm gives better results for a lower number of strips
than in the case of PARKS.

29Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 6. KCPQ (BUILDINGS x WATER).

We believe that this has to do with a combination of the
characteristics of the multi-parametric system we study
(hardware, HDFS, Spark, our algorithm). The combination
of available cores, starting partitions, Spark partitioning
procedures, number of strips that lead to a number of eligible
pairs, results to an increased number of partitions that in the
cases of larger n (strips) overwhelms the computing cluster.

In all previously described experiments, both datasets are
being sliced into strips along x-axis (y-axis can also be used).
Then, within each partition created by the eligible pairs of
points from P and Q, plane sweep is applied along the other
axis, in our case the y-axis. It is possible to slice the strips
and sweep along the same axis (Fig. 7).

Figure 7. Strips Slice & Plane Sweep cases.

In order to check which choice is better (slicing and
sweeping along the same or different axes), we conducted
our next experiment. We used the BUILDINGSxPARKS
combination with n = 8, 16, 32, K =10 and fraction f = 0.001.

We ran each combination three times, used the average
time and the results are being presented in Fig. 8.

The results seem to lead us to the conclusion that
“crossing” the axes for slicing and sweeping is more efficient
than working on the same axis. This observation is clearer in
the cases of smaller strips number, when the algorithm gives
the best results.

Figure 8. Split axis vs plane sweep axis.

Although this is consistent with other observations we
have made during our experiments, we believe that it needs
further investigation, an action we plan to take in the near
future.

V. CONCLUSIONS AND FUTURE PLANS

In [9][10], plane-sweep algorithms and separation of data
in strips were utilized for computing KCPQs in a centralized
environment, taking advantage of main memory. In this
paper, we present an algorithm for Spark, a parallel and
distributed framework that supports in-memory processing,
separating data in strips and processing by plane sweep
within each strip. To the best of our knowledge, this is the
first KCPQ algorithm in Spark. By conducting experiments
on big real datasets we have explored the performance of our
algorithm.

In the future, we plan to further elaborate this algorithm
by exploring different ways to create strips of variable size
and investigate partitioning schemes for Spark to reduce the
need for examining combinations of data that reside in
different strips and also reduce the network communication
traffic. Another important research direction is finding a
better, fast and stable technique that will yield a good upper
bound for the KCPQ problem in a parallel system. We also
plan to compare the performance of our algorithm against
other solutions working in parallel and distributed
environments. Finally, we plan to study the scalability of our
algorithm.

REFERENCES

[1] S. Shekhar and H. Xiong, Encyclopedia of GIS. Springer,
2008.

[2] P. Rigaux, M. Scholl, and A. Voisard, Spatial databases - with
applications to GIS. Elsevier, 2002.

[3] A. Corral and M. Vassilakopoulos, “Query processing in
spatial databases,” Encyclopedia of Database Technologies
and Applications, pp. 511-516, 2005.

[4] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M.
Vassilakopoulos, “Closest Pair Queries in Spatial Databases,”
SIGMOD Conference, pp. 189-200, 2000.

[5] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M.
Vassilakopoulos, “Algorithms for processing K-closest-pair
queries in spatial databases,” Data Knowl. Eng., vol. 49, no.
1, pp. 67-104, 2004.

30Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

[6] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” OSDI 2004, pp. 137-150, 2004.

[7] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I.
Stoica, “Spark: Cluster computing with working sets,”
Proceedings of the 2nd USENIX Conference on Hot Topics in
Cloud Computing, pp. 10–10, 2010.

[8] M. Zaharia, et al., “Resilient Distributed Datasets: A fault-
tolerant abstraction for in-memory cluster computing,” NSDI
2012, pp. 15-28, 2012.

[9] G. Roumelis, M. Vassilakopoulos, A. Corral, and Y.
Manolopoulos, “A new plane-sweep algorithm for the K-
closest-pairs query,” SOFSEM 2014, pp. 478-490, 2014.

[10] G. Roumelis, A. Corral, M. Vassilakopoulos, and Y.
Manolopoulos, “New plane-sweep algorithms for distance-
based join queries in spatial databases,” GeoInformatica, vol.
20, no. 4, pp. 571-628, 2016.

[11] J. Lu and R. H. Güting, “Parallel Secondo, Boosting Database
Engines with Hadoop,” ICPADS 2012, pp. 738-743, 2012.

[12] A. Aji, et al., “Hadoop-GIS: A high performance spatial data
warehousing system over MapReduce,” PVLDB, vol. 6, no.
11, pp. 1009-1020, 2013.

[13] A. Eldawy and M. F. Mokbel, “SpatialHadoop: A MapReduce
framework for spatial data,” ICDE 2015, pp. 1352-1363,
2015.

[14] F. García-García, A. Corral, L. Iribarne, M. Vassilakopoulos,
and Y. Manolopoulos, “Enhancing SpatialHadoop with
closest pair queries,” ADBIS 2016, pp. 212-225, 2016.

[15] S. You, J. Zhang, and L. Gruenwald, “Large-scale spatial join
query processing in Cloud,” ICDE Workshops 2015, pp. 34-
41, 2015.

[16] J. Yu, J. Wu, and M. Sarwat, “GeoSpark: a cluster computing
framework for processing large-scale spatial data,” 23rd ACM
SIGSPATIAL/GIS, pp. 70:1-70:4, 2015.

[17] M. Tang, Y. Yu, Q. M. Malluhi, M. Ouzzani, and W. G. Aref,
“LocationSpark: A distributed in-memory data management
system for big spatial data,” PVLDB vol. 9, no. 13, pp. 1565-
1568, 2016.

[18] D. Xie, et al., “Simba: Efficient in-memory spatial analytics,”
SIGMOD Conference 2016, pp. 1071-1085, 2016.

[19] A. Corral, Y. Manolopoulos, Y. Theodoridis, M.
Vassilakopoulos, “Algorithms for processing K-closest-pair
queries in spatial databases,” Data Knowl. Eng., vol. 49, no.
1, pp. 67-104, 2004.

[20] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M.
Vassilakopoulos, “Closest pair queries in spatial databases,”
SIGMOD Conference 2000, pp. 189-200, 2000.

[21] G. R. Hjaltason and H. Samet, “Incremental distance join
algorithms for spatial databases,” SIGMOD Conference 1998,
pp. 237-248, 1998.

[22] H. Shin, B. Moon, and S. Lee, “Adaptive and incremental
processing for distance join queries,” IEEE Trans. Knowl.
Data Eng., vol 15, no. 6, pp. 1561-1578, 2003.

[23] C. Yang and K-I. Lin, “An index structure for improving
closest pairs and related join queries in spatial databases,”
IDEAS 2002, pp. 140-149, 2002.

[24] G. Gutierrez and P. Sáez, “The k closest pairs in spatial
databases - When only one set is indexed,” GeoInformatica,
vol. 17, no. 4, pp. 543-565, 2013.

[25] A. Aji, H. Vo, and F. Wang, “Effective spatial data
partitioning for scalable query processing,” CoRR
abs/1509.00910, 2015.

31Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

