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Abstract— Processing of spatial queries when the datasets 

involved are big can be accomplished efficiently in a parallel 

and distributed environment. The (K) Closest-Pair(s) Query, 

KCPQ, is a common query in many real-life applications 

involving geographical, or, in general, spatial data. It consists 

in finding the (K) closest pair(s) of objects between two spatial 

datasets. Although, processing of this query has been studied 

extensively for centralized environments, few solutions have 

appeared for parallel and distributed frameworks. Apache 

Spark is such a framework that has several advantages 

compared to other popular ones, like Hadoop MapReduce. In 

this work, we present an algorithm for processing the KCPQ in 

Apache Spark and experimentally study its efficiency and 

scalability, using big real-world datasets. 

Keywords-Closest-Pairs Query; Spatial Query Processing; 

Apache Spark. 

I.  INTRODUCTION 

Geographic information systems (GIS) [1] have been 
around for several decades. They provide the means for 
storing, querying, analyzing and sharing geographic 
information and have proven valuable in many modern 
application domains (e.g., disaster management, mapping, 
urban planning, transportation planning, environmental 
impact analysis, etc.). 

The term Big Data refers to unprecedented volumes of 
data. Such data appear in numerous modern applications, 
like applications based on sensor networks, commercial 
transactions, social media, web searches, etc. 

Spatial databases [2] are specialized databases that 
support storage and querying of multidimensional data 
(usually, points, line-segments, regions, polygons, volumes). 
They are core elements of GIS. Processing of spatial queries 
can become very demanding if the volume of data on which 
such a query is applied is big, or if the volume of the 
combinations of data objects that need to be examined for 
answering such a query are big.  

Some typical spatial queries are: the point query, range 
query, spatial join, and nearest neighbor query [3]. Spatial 
Join queries find all pairs of spatial objects from two spatial 
data sets that satisfy a spatial predicate, like intersects, 
contains, is enclosed by, etc. Nearest neighbor queries locate 
the spatial object(s) that is (are) nearest to a query object. 
The (K) Closest-Pair(s) Query, KCPQ, discovers the (K) 

closest pair(s) of object(s) (usually ordered by distance), 
between two spatial datasets. It combines join and nearest 
neighbor queries: like a join query, all pairs (combinations) 
of objects from the two datasets are candidates for the result, 
and like a nearest neighbor query, the (K) smallest 
distance(s) is (are) the basis for inclusion in the result (and 
the final ordering) [4][5]. The KCPQ can be very demanding 
if the datasets involved are big, since all the combinations of 
pairs of objects from the two datasets are candidates for the 
result. 

For example, we can use two spatial datasets that 
represent the archaeological sites and popular beaches of 
Greece. A KCPQ (K=10) can discover the 10 closest pairs of 
archaeological sites and beaches (in increasing order of their 
distances). The result of this query can be used for planning 
tourist trips in Greece that combine traveler’s interest for 
history / civilization and leisure / enjoyment. 

Parallel and distributed computing using shared-nothing 
clusters on big data has been very popular during last years. 
Hadoop MapReduce [6] is an open-source software 
framework for storing data and running applications on such 
clusters. MapReduce is file-intensive and computing nodes 
intercommunicate only through sorts and shuffles. Therefore, 
MapReduce is suitable mostly for non-iterative batch 
processing jobs. 

Apache Spark [7] is another, more recent, open-source 
cluster-computing framework with an application 
programming interface based on Resilient Distributed 
Datasets (RDDs), read-only multisets of data items 
distributed over the cluster of machines [8]. It was developed 
to overcome limitations of the MapReduce paradigm. 
Through RDDs a form of distributed shared memory is 
provided and the implementation of iterative algorithms is 
facilitated.  

Recently, the utilization of main memory in processing 
KCPQs on big datasets in centralized systems has been 
explored [9][10]. In this paper, considering ideas and 
methods presented in [9][10] we present a Spark based 
algorithm for computing KCPQs. Moreover, we present an 
experimental analysis of the performance of this algorithm, 
based on big real-world datasets.  

More specifically, in Section II, we review related 
frameworks and work; in Section III, we present Spark 
basics, we define the query that we study and present our 
algorithm; in Section IV, we present experimentation 
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settings and the results of experiments we performed for 
studying the efficiency of the proposed method. Finally in 
the last section, we present our conclusions and our plans for 
future work. 

II. RELATED WORK 

Extensions of Hadoop MapReduce supporting large-scale 
spatial data processing include Parallel-Secondo [11], 
Hadoop-GIS [12] and SpatialHadoop [13]. In [14], a general 
plane-sweep approach for processing KCPQs in 
SpatialHadoop and a more sophisticated version that first 
computes an upper bound of the distance of the K-th closest 
pair from sampled data points have been presented. 

Extensions of Apache Spark supporting large-scale 
spatial data processing include  

 SpatialSpark [15],  that has been used for spatial join 
algorithms based on point-in-polygon test and on 
point-to-polyline distance, 

 GeoSpark [16], that supports spatial range, join 
query and K nearest neighbors queries, 

 LocationSpark [17], that offers several spatial query 
operators, including range search, K nearest 
neighbors, spatio-textual operations, spatial join and 
K nearest- neighbors join, and 

 Spatial In-Memory Big data Analytics (SIMBA) 
[18] that supports box and circle range queries, K 
nearest neighbors, distance joins and K nearest- 
neighbors joins. 

The KCPQ has been actively studied in centralized 
environments, when both [19][20][21][22][23], one [24], or 
none [9][10] of the two spatial datasets are indexed. Two 
improvements of the classic plane-sweep algorithm and a 
new plane-sweep algorithm, called Reverse Run Plane 
Sweep, were proposed in [9] for processing KCPQs when 
the two datasets are not indexed and reside in main-memory. 
In [10], it is assumed that the (big) spatial datasets reside on 
secondary storage and are progressively transferred in main 
memory, by dividing them in strips, for processing utilizing 
the methods of [9]. 

To the best of our knowledge, the only work about 
KCPQs in a parallel and distributed framework is [14]. In 
this paper, we utilize ideas presented in [9][10] to develop an 
algorithm for processing KCPQs in Spark, by separating data 
in strips and utilizing a plane-sweep approach within each 
strip. 

III. CLOSEST-PAIR QUERIES IN SPARK  

Hadoop MapReduce processing is based on pairs of Map 
and Reduce phases. It is an excellent solution for one-step 
computations on massive datasets, but it not very efficient 
for problems that require multi-step computations. The 
output of each step is stored in the distributed file system, so 
that it can be used as input for the next, or one of the 
following steps. Replication and disk storage contribute to 
slowing down the overall computation. Apache Spark (or 
more simply, Spark) is an alternative to Hadoop MapReduce. 
It’s not intended to replace Hadoop MapReduce, but to 

extend it and allow the development of solutions for different 
big data problems and requirements.  

Spark was written in the Scala Programming Language. 
Programmers usually write Spark applications in Java, Scala, 
or Python, with Scala being the most popular choice. In 
addition to Map and Reduce operations, it supports SQL 
queries, streaming data, machine learning and graph data 
processing. These capabilities can be combined in a data 
pipeline. With Apache Spark, programmers can combine 
data pipelines in a directed acyclic graph (DAG). The DAG 
execution model can be seen as a generalization of the 
MapReduce model. Moreover, Apache Spark supports in-
memory data sharing across DAGs. Spark can run on top of 
an existing Hadoop Distributed File System (HDFS) 
infrastructure. Spark also supports lazy evaluation and holds 
intermediate results in memory. When data cannot fit in 
memory, disk storage is utilized. In fact, part of a data set 
can reside in memory and another part on secondary storage.  
The RDD is the fundamental data structure of Spark. An 
RDD can be resembled to a database table. It is a read-only 
collection of objects, partitioned in the cluster of machines. 

In the following, we present our algorithm for KCPQ 
processing in Spark. Let two datasets P and Q of spatial 
objects, a positive natural number K and a distance function 
between pairs of data objects formed from P and Q 
(members of the Cartesian Product of P and Q). The KCPQ 
discovers K pairs of data objects formed from P and Q that 
have the K smallest distances between them among all pairs 
of data objects that can be formed from P and Q. 

Since distances between objects may not be unique, note 
that if multiple pairs of objects have the same K-th distance 
value between them, more than one sets of K different pairs 
of objects can form the result of this query. The presented 
algorithm can be easily tailored to report all such sets of 
pairs. 

Our algorithm, for 2-dimensional space (for the ease of 
exposition), consists of the following steps: 

 Samples P'    P and Q'    Q are taken from both 
datasets P and Q. Spark function sample() was used 
for sampling the two datasets. sample() takes a 
parameter, fraction, denoting the expected size of the 
sample as a fraction of the dataset in question. 

 Proper keys are set, a join between P' and Q' is 
performed and the K closest pairs (CP) among all 
joined pairs are computed. Function join() is also 
provided by the Spark API. 

 Let Bound be the K-th smaller distance as computed 
previously. This is our pruning factor.  

 Both datasets are divided into n strips [25] 
corresponding to ascending intervals along one of 
the dimensions (x axis dimension is assumed in the 
following, w.l.o.g) (Fig. 1). Partitioning of each of 
the two datasets into strips of unequal width was 
done by sampling, calculating the border points from 
samples and applying the partition to the whole 
dataset.  

 

27Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization



 
Figure 1. Strips partitioning. 

 Using the distance of the K-th CP (Bound), 
combinations of strips are examined. If two strips 
reside in a distance smaller than the distance of the 
K-th CP, the pairs between data objects of these two 
strips are examined as candidates for the result. To 
achieve this, all (vertical) pairs of strips from P and 
Q are being evaluated with respect to their x-axis 
distance combined to the Bound.  

 Pairs of strips are classified into two categories, 
namely eligible and not eligible for further 
processing. The first category consists of two major 
subcategories: overlapping pairs, and pairs that do 
not overlap but have their x-distance smaller than 
Bound. For example, (Fig. 2) strip Ps1 from P 
overlaps with strips Qs1 and Qs2 from Q. 
Furthermore, the x-distance between Ps1 and Qs3 is 
d1 < Bound, while the x-distance between Ps1 and 
Qs4 is d2 > Bound (this holds for every consecutive 
Q-strip). Therefore, the eligible pairs that we derive 
for Ps1 are (Ps1,Qs1), (Ps1,Qs2) and (Ps1,Qs3).  
These pairs, and all other pairs identified by this 
procedure, are the pairs that will be subject to 
computation by the cluster. Note, that in the case of 
pairs like (Ps1, Qs3), not all points from both strips 
need to be considered. For example, since we know 
a bound for the K CPs, we can use it as a pruning 
condition with the filter() function of Spark to reduce 
Qs3 to these points that their x-axis distance from 
Ps1 is smaller than Bound.  

 

 
Figure 2. Eligible pairs of strips. 

 Within each eligible pair of strips from P and Q 
Plane-sweep is applied for calculating K CPs storing 
the result in a maximum binary heap (maxHeap) 
[9][10]. A separate maxHeap is utilized for each 
partition. Bound is sent -we used Spark’s broadcast() 
function- to all workers and they use it as stop 
condition for the plane sweep algorithm.  

 All binary heaps are used to form a RDD consisting 
of tuples (distance, Ppoint, Qpoint). Since all 
eligible pairs of strips contain all pairs of points from 
P and Q that may contribute to the final solution and 
there are no duplicate pairs, taking the first (sorted 
on distance) K tuples with the smaller distances, 
yields the final (and exact) solution. 

IV. EXPERIMENTAL EVALUATION 

To evaluate the performance of our algorithm, we used 
the following three big real 2d datasets from OpenStreetMap 
[13]: WATER resources consisting of 5,836,360 line 
segments, PARKS (or green areas) consisting of 11,504,035 
polygons and BUILDINGS of the world consisting of 
114,736,611 polygons. To create sets of points, we used the 
centers of the Minimum Bounding Rectangles (MBRs) of the 
line-segments from WATER and the centroids of polygons 
from PARK and BUILDINGS. 

All experiments were conducted on a cluster of 5 nodes. 
Each node has 4 vCPUs running at 2.1GHz, with a total of 
16GB of main memory per node, running Ubuntu Linux 
16.04 operating system. Spark 2.0.2 running on Hadoop 
2.7.2 Distributed File System (HDFS) was used as our 
parallel computing system. The block size of HDFS was 128 
MB. Of the 5 computing nodes, one was running the 
NameNodes for Hadoop and Master for Spark, while the 
remaining four (4 nodes x 4 vCPUs = 16 vCPUs) were used 
as HDFS DataNodes and Spark Worker nodes. Java openjdk 
ver. 1.8.0 and Scala code runner ver. 2.11 were used. 

All datasets are text files stored in HDFS. Each line 
contains an index and a pair of coordinates. We used the 
textFile() function of Spark to import the data, and set the 
numPartitions parameter to 4. Typically, Spark creates one 
partition for each block. We can increase the number of 
partitions by passing a larger value but it is not possible to 
have fewer partitions than the blocks of each file. 

We measured total execution time (i.e., response time) in 
seconds (sec) that expresses the overall CPU, I/O and 
communication time needed for the execution of each query. 
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We varied sample fraction (values used: 0.01, 0.001, 
0.0001), the number of closest pairs K (values used: 1, 10, 
100, 1000, 10000) and the number of strips per dataset 
(values used: 16, 32, 64, 80). We tested all possible 
combinations between the three datasets (PARKSxWATER, 
BUILDINGSxWATER, BUILDINGSxPARKS). In the 
following, we present a representative portion of the results. 

In Fig. 3, we present the results for the PARKSxWATER 
combination, for K=10, using different combinations of n 
(number of strips) and f (sample fraction). As one can see, 
there is a tradeoff between total execution time and the time 
taken in order to sample the datasets and compute the value 
of Bound. If we take a small fraction of the datasets as 
sample, the bound we compute is not tight enough, therefore 
leading to increased KCPQ computation time. The larger the 
fraction of dataset we sample, the better (lower) is the upper 
bound we obtain. But if we surpass a certain fraction, then 
the computation of Bound in the sample dominates the total 
computation time.  

 
Figure 3. Effect of sample fraction. 

Studying the results of the above experiment leads us to 
the observation that a fraction of 0.001 is a good selection for 
the rest of our experiments.  

In Fig. 4, we present the results for the PARKSxWATER 
combination, for all K values, using 16, 32, 64 and 80 strips 
per each dataset. Initially, we ran each experiment 
independently from the others. We faced a problem, though. 
Phase two (the KCPQ computation) relies on the value of 
Bound that is computed in phase one. Since phase one uses a 
randomly selected sample, Bound is likely to be different in 
each experiment. In order to be able to extract better and 
comparable results, we used the following procedure for our 
second experiment: having taken into consideration that 
phase one is independent from phase two, we conducted the 
first phase of the experiment (K=1, n=16, fraction=0.001) 
and saved the calculated value of Bound. In all consecutive 
phases of the experiment, the bound was computed as usual, 
but we used the value we found in the first phase of the 
experiment instead.  

 

 

 
Figure 4. KCPQ (PARKS x WATER). 

As we observe, n = 32 strips seems to be the optimal 
partitioning size for PARKS and WATER datasets, although 
n = 16 gives similar results. As K increases from 1 to 10,000, 
execution time is hardly affected, in some cases showing a 
tendency to increase slightly, as expected.  

We conducted our third experiment in order to see to 
what extent the value of Bound affects the running time of 
the algorithm. We used a value for Bound with an order of 
magnitude 10 times greater than the one previously used. 
Time for sampling and bound computation was taken into 
account when counting total running time. Fig. 5 presents the 
running times compared to the ones that were measured in 
the previous experiment. 

 

Figure 5. Effect of lower Bound 

From the above comparison, we conclude that the value 
of Bound is more significant than the number of strips and 
the number of partitions provided to Spark as well. 

In Fig. 6, we present the results for the 
BUILDINGSxWATER combination, for several K values 
using 8, 16, 32 and 64 strips per each dataset (once again 
Bound was set to a constant value for all cases, to an order of 
e-05). We observe than in the case of BULDINGS the 
algorithm gives better results for a lower number of strips 
than in the case of PARKS.  
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Figure 6. KCPQ (BUILDINGS x WATER). 

We believe that this has to do with a combination of the 
characteristics of the multi-parametric system we study 
(hardware, HDFS, Spark, our algorithm). The combination 
of available cores, starting partitions, Spark partitioning 
procedures, number of strips that lead to a number of eligible 
pairs, results to an increased number of partitions that in the 
cases of larger n (strips) overwhelms the computing cluster.  

In all previously described experiments, both datasets are 
being sliced into strips along x-axis (y-axis can also be used). 
Then, within each partition created by the eligible pairs of 
points from P and Q, plane sweep is applied along the other 
axis, in our case the y-axis. It is possible to slice the strips 
and sweep along the same axis (Fig. 7). 

 

Figure 7. Strips Slice & Plane Sweep cases. 

In order to check which choice is better (slicing and 
sweeping along the same or different axes), we conducted 
our next experiment. We used the BUILDINGSxPARKS 
combination with n = 8, 16, 32, K =10 and fraction f = 0.001. 

We ran each combination three times, used the average 
time and the results are being presented in Fig. 8.  

The results seem to lead us to the conclusion that 
“crossing” the axes for slicing and sweeping is more efficient 
than working on the same axis. This observation is clearer in 
the cases of smaller strips number, when the algorithm gives 
the best results.  

 
Figure 8. Split axis vs plane sweep axis. 

Although this is consistent with other observations we 
have made during our experiments, we believe that it needs 
further investigation, an action we plan to take in the near 
future.  

V. CONCLUSIONS AND FUTURE PLANS 

In [9][10], plane-sweep algorithms and separation of data 
in strips were utilized for computing KCPQs in a centralized 
environment, taking advantage of main memory. In this 
paper, we present an algorithm for Spark, a parallel and 
distributed framework that supports in-memory processing, 
separating data in strips and processing by plane sweep 
within each strip. To the best of our knowledge, this is the 
first KCPQ algorithm in Spark. By conducting experiments 
on big real datasets we have explored the performance of our 
algorithm. 

In the future, we plan to further elaborate this algorithm 
by exploring different ways to create strips of variable size 
and investigate partitioning schemes for Spark to reduce the 
need for examining combinations of data that reside in 
different strips and also reduce the network communication 
traffic. Another important research direction is finding a 
better, fast and stable technique that will yield a good upper 
bound for the KCPQ problem in a parallel system. We also 
plan to compare the performance of our algorithm against 
other solutions working in parallel and distributed 
environments.  Finally, we plan to study the scalability of our 
algorithm. 
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