
Making the Case for Highly Efficient Multicore Enabled Unikernels With IncludeOS

Maghsoud Morshedi, Hårek Haugerud, Kyrre Begnum

Dept. of Computer Science
Oslo and Akershus University College of Applied Sciences

Oslo, Norway
Email: { maghsoud.morshedi|haugerud|kyrre.begnum } @hioa.no

Abstract—Today’s data centers utilized for cloud services rep-
resent a significant energy consumption and costs. Standard
operating systems used for cloud instances are still designed
largely to run on actual or emulated hardware, making them
wasteful when being idle. Ideally, the cloud should be populated
with leaner and more efficient operating systems. Unikernel op-
erating systems are a good example of such, but most Unikernels
are still not ready to be used in a cloud as they are built
on specialized emulators. Furthermore, they are designed for
single core operation and it is impractical to run hundreds
or thousands of virtual machines for large workloads without
straining the underlying cloud platform. The idea presented in
this paper is to have all benefits of a lean Unikernel operating
system while equipping it with multicore capabilities in order
to represent an energy efficient and cloud-optimized operating
system that can handle larger computations. IncludeOS has
shown to be an extremely efficient Unikernel operating system,
utilizing a much simpler event handler and foregoing the timer
interrupt altogether. In our case, the experiments demonstrated
increased performance for a multi-threaded processor intensive
task compared to a classic operating system, thus showcasing
a real-life solution for energy efficient computation in cloud
environments.

Keywords–Cloud computing; energy efficiency; green comput-

ing; Unikernel; multicore computing.

I. INTRODUCTION
Cloud computing has been focused on offering cost re-

duction for the consumer, business and scientific domains.
However, significant energy consumption of data centers has
started to constrain scaling and further cost reduction because
of electricity bills and carbon dioxide footprints.

Numerous dedicated approaches for energy efficiency in
cloud environments have been proposed. One traditional ap-
proach in optimising energy efficiency in such environments,
is through operating system (OS) virtualization, which allows
for multiple virtual machine (VM) to run on a shared cluster
of physical machines. In this context, a VM represents a
complete computer system with a standard OS and typically
a host of a single application. The VMs can be consolidated
and relocated in order to reduce energy waste. In this line of
thinking, however, little attention has been paid to the role of
the operating system.

By design, standard operating systems are multipurpose
and are intended to run on hardware with a variety of device
drivers. This allows them to support a diversity of services on
physical and emulated hardware with little modification, but
makes them wasteful in times when they are idle. One clear
example is the timer interrupt, which triggers the kernel of
an operating system to wake up at a regular pace to look

for device activity. In a virtual machine, where there are
very few ”hardware” devices, the kernel still emulates that
behavior, resulting in scores of VMs waking up and spending
CPU cycles thousands of times every second. As a result,
todays general purpose operating systems, though convenient,
constitute a continuous energy leak for todays data centers and
cloud environments.

In addition, there are also challenges which arise due
to processor design. Processor architecture has evolved from
featuring a single high-frequency processor, to having multiple
low-frequency processor cores. This development was partly
driven by frequency increment constraint on a single processor
- better known as the frequency wall[1].

In contrast to a standard operating system, a Unikernel
operating system is designed for a single purpose - where a
single service is bundled with only the essential libraries [2],
and is not designed to run on hardware. Unikernel operating
systems are capable of delivering optimal performance as well
as low resource consumption. However, cloud systems have
not been adapted to support Unikernel operating systems due
to the specialized nature of the required emulators.

Multicore processors have become the dominant processor
type, and have experienced a continuous growth in the number
of cores on a single processor, over time. The design of
currently available Unikernels does not take advantage of the
presence of multiple cores, as their operations are bound for
execution on a single core. This contributes to a diminishing
performance as the number of Unikernel virtual machines is
gradually increased on a single host. The deployment of a large
federation of single-core Unikernel VMs is impractical for a
sizable workload as it strains the underlying cloud layer.

On-going Unikernel development projects are at different
stages of maturity. Prominent among them is IncludeOS, which
is under development at the Oslo and Akershus University
College of Applied Sciences. It is being developed primarily
in C++, to run on the quick emulator (QEMU)/kernel-based
virtual machine (KVM) hypervisor, but with the potential of
being ported to other platforms with slight modification to its
binary. IncludeOS is an efficient Unikernel operating system,
which utilizes a simple event handler with little memory
overhead: when running a domain name system (DNS) service
it imposes a total memory footprint of 158KB [3]. IncludeOS
uses no regular timer interrupt, meaning that at idle, the virtual
machine will use no central processing unit (CPU) cycles.
Although it is efficient, IncludeOS has been a single-core
operating system and not been able to utilize multiple cores
for scientific and CPU-bound workloads.

10Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

This paper presents our approach to equip the IncludeOS
Unikernel with multicore capabilities so that it can handle large
workloads efficiently. By using multicore computing, a Uniker-
nel operating system can handle a large processor intensive
computation concurrently so that it enhances performance. The
rest of the paper is organized as follows:

• The existing IncludeOS architecture and limitation
along with typical challenges of multicore computing
appear in Section II. In addition, this section proposes
possible applications for multicore Unikernels.

• The design principles that form the multicore Uniker-
nel architecture appear in Section III. We identify race
conditions and utilize an efficient technique in Section
III-A in order to minimize energy waste. Handling
and distributing tasks in a multicore system appears
in Section III-B. Section III-C presents our inter-
communication scheme among the logical processors.

• The developed multicore capability for IncludeOS
Unikernel operating system is evaluated compared to
multiple single-core IncludeOS, Ubuntu VM and bare
metal Ubuntu. Hence, Section IV presents the results
of our experiments while Section V evaluates them.

• Section VI presents related projects in the scope of
multicore Unikernel development followed by conclu-
sion and future work in Section VII

II. COMMON CHALLENGES

A standard operating system was initially designed for a
single-core processor. The transition to multicore hardware
technology is a slow process due to the incredible complexity
of today’s established operating system kernels. For example,
many of the algorithms used in a standard operating system
cannot take advantage of complete multicore capabilities while
cores are in full power state. Hence, multicore computing
can not guarantee a sufficient performance to energy ratio
improvement despite an increase in clock speed.

The adoption of multicore computing poses critical chal-
lenges in software development, which influence energy effi-
ciency. An operating system with full parallelism will utilize all
of the available computing power of a multicore processor. On
the other hand, an operating system with little or no parallelism
will consume more energy in comparison to their output in a
multicore system. Therefore, operating system must manage
cores so that each core can execute independent instruction
streams concurrently in order to maximize energy efficiency
for a large workload.

Multicore processors require a new generation of operating
systems that capitalize form the available computing power
with low energy consumption. Hence, Unikernels as a new
generation of operating systems must address the fundamental
challenges presented by multicore computing.

A. Multicore Unikernel Applications
There are many compute-intensive applications in science,

research and engineering that demand parallelism. With a
minimal footprint and multicore computing, Unikernels could
enable scientist, researchers and engineers to deploy their
solutions in an efficient way. Researchers in the field of
bioinformatics analyse new sequences of DNA or protein in
order to predict their biological function. There are couple of
packages that utilize profile-hidden Markov models (HMM) in

order to search for and align sequences. These packages are
very processor-intensive and utilize more than 99 percent of
a single-core processor while they generally have the capacity
of being parallel[4].

The telecommunication industry is recognising the possi-
bility of cloud software defined radio (SDR) as an evolving
technology. The SDR perquisites of processor-intensive digital
signal processing, real-time throughput and minimum latency,
show the potential of multicore Unikernel as a SDR node.

Unikernels can be leveraged as simple caching and in-
memory storage solutions. In todays data-driven infrastruc-
tures, efficient, distributed databases can be built using Uniker-
nel operating systems.

B. IncludeOS design

The IncludeOS Unikernel operating system was designed
with a modular architecture in mind such that it enables devel-
opers to attach their C++ service code to the operating system
kernel during compile time, which eliminates the overhead
of system calls. This provides IncludeOS the capability of
attaching just what a service actually needs and minimizes
the memory footprint by excluding unused features.

Application developers will write their service applications
as a normal C++, standard library application. However, when
including the IncludeOS library in their code with the simple
addition of #include <os>, and subsequently compiling
the code using the IncludeOS toolchain, the end result is not
just a binary of the application, but a standalone, bootable
virtual machine image where the operating system components
that are needed by the application are statically linked into the
file. This image can then be booted using QEMU/KVM and is
compatible with popular cloud environments like OpenStack.

The IncludeOS comprises a modular network stack con-
nected to the only VirtioNet device driver so that it reduces
the overhead of other protocols for a service which does not
use them. For example, if the application only uses TCP
sockets, no UDP support will be added during compile time.
Beside the modular network stack, IncludeOS’ asynchronous
I/O setup uses a counter based approach in order to eliminate
context switching during the interrupt handling. The IncludeOS
memory footprint is quite small, which enables IncludeOS
to boot up quickly in about 0.3 seconds. All of the design
considerations enable IncludeOS to be a lean single-threaded
operating system, which can handle one task at a time.[3].
Likewise, Bratterud et al.(2015) presented detailed architecture
of IncludeOS.

III. DESIGN PRINCIPLES

The following part presents our design principles in or-
der to adapt IncludeOS to support multicore computing. In
a nutshell, multicore IncludeOS will utilize a design of a
master processor managing multiple application processors.
The developer writing an IncludeOS based application will
organize the parallel workloads as tasks in the code. Once the
VM is running, the initial bootstrap processor will become the
master and distribute the tasks among the available application
processors. The master will also execute task workloads in
order to optimize the efficiency.

11Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

A. Energy Efficient Memory Access
In a multicore system, parts of a program may be executed

concurrently by more than one core so that it requires mutual
exclusion of access over a critical memory section [5]. Any
multicore operating system should employ mutual exclusion
access over critical sections in order to guarantee serialized
access.

In multicore IncludeOS, a bootstrap processor is respon-
sible for booting the operating system, which then will wake
up application processors in order to take advantage of them.
Since application processors have been awakened through a
broadcasted inter-processor interrupt (IPI) call, they can run
self-configuration code concurrently following the principle of
single program, multiple data [6].

The application processors will encounter a critical section
problem in the early stage of the initialization procedure. The
challenge begins while application processors run the self-
configuration code concurrently and will manipulate a common
memory location. A common option to handle this situation is
to use a semaphore lock in order to serialize concurrent access
to a specific memory location. Semaphore locks also introduce
a new problem in virtual machines as they cost extra processor
cycles to function.

The multicore IncludeOS employed instead a bus locking
mechanism while manipulating a critical section in memory
in order to prevent electricity waste by using semaphores.
The LOCK instruction causes the bus to be locked so that
the underlying hardware will manage the race condition and
make an instruction atomic. Logical processors connected to
the system bus generally use a low priority mechanism in
order to deal with race conditions during bus acquisition.
In addition, locking the bus simplifies the development of
multicore support in an operating system.

B. Multicore Task Management
In a multicore system, the operating system must manage

tasks properly in order to maximize performance. There are
two main task scheduling mechanisms: preemptive and non-
preemptive. Standard operating systems use preemptive task
scheduling in order to share limited resources between multi-
ple tasks. Likewise, hypervisors utilize preemptive scheduling
while they oversubscribe limited resources to virtual machines.
Oversubscription forces hypervisors to do context switching
among the available physical resources.

Multicore IncludeOS has followed the idea to keep the
preemptive scheduling only at the hypervisor level. Hence,
it employs a non-preemptive task management such that it
adopts many virtual processors in order to handle a large
workload efficiently. Indeed, the hypervisor allocates as many
virtual processors as the multicore IncludeOS requires in order
to handle large workloads. Fig. 1 illustrates the multicore
IncludeOS operating system task management approach in
which each task is handled by one core in the multicore
IncludeOS.

In addition, the non-preemptive task management provides
energy efficiency by reducing memory consumption and avoid
context switching. The preemptive scheduling requires a bigger
stack size in order to store the state of switched tasks in mem-
ory. Hence, an operating system requires more memory for a
program stack whenever the number of cores increases. On the
other hand, by employing non-preemptive task management

Figure 1. Multicore IncludeOS non-preemptive task management approach.

and avoiding context switching inside the operating system,
the operating system can achieve fairness through multicore
computing.

Distributing tasks among the virtual processors is another
aspect of task management, which affects energy efficiency.
The fact is that execution of a task on a logical processor when
its sibling is idle is faster than when its sibling is executing
a task too. This is due to how hyper-threading technology
shares execution resources of each core in order to execute
two or more separate threads concurrently[7]. In a processor
that supports hyper threading technology, running one task per
core enhances performance but at the same time the processor
consumes extra electricity. In order to save power, multicore
IncludeOS utilized sibling logical processors in one core and
wakes the logical processors up whenever they are needed.
This enables the hypervisor to change the power state of idle
cores to an energy efficient state.

C. Multicore Synchronization
A processor may require communicating with other proces-

sors in a system. A bootstrap processor in a multicore system
should be able to feed in outputs of logical processors. Shared
memory and message passing are the two main techniques for
inter-processor communication.

Multicore IncludeOS employs shared memory in order to
avoid the complexity and extra overhead of message passing
between logical processors. Our design utilized the advanced
programmable interrupt controller (APIC) ID in order to build
an indexed array of shared memory such that logical processors
access their own address space. Since multicore IncludeOS
implements a master-slave architecture in order to manage
application processors, each application processor plays a
producer role and stores its execution result to a particular
memory location identified by the APIC ID. The bootstrap
processor acts as a consumer and checks the particular location
for new data. Indeed, the bootstrap processor may employ
busy waiting in order to check whether producers have written
data in the agreed memory location. Although busy waiting
for a memory location is not an efficient method, multicore
IncludeOS utilized the bootstrap processor to execute tasks, as
well in order to avoid wasting the processor cycles for busy
waiting. In addition, the monitor/mwait mechanism eliminates
busy waiting and causes the processor entering a power op-
timized state while waiting for a change in memory[8]. One
should note that hypervisors need to support monitor/mwait
before operating systems can utilize it.

IV. RESULTS
In order to assess the performance and efficiency of mul-

ticore IncludeOS, we compared the workload performance

12Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

Number of tasks

Ex
ec

ut
io

n
tim

e
(S

ec
on

ds
)

1 36 72 144

2

4

6

8

10

12

14

16

18 Multicore IncludeOS
Multiple single core IncludeOS
Ubuntu VM: Pthread
Ubuntu VM: processes
Bare metal Ubuntu: Pthread
Bare metal Ubuntu: processes

(a)

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00

Number of tasks

Pr
oc

es
so

r t
ic

ks

1 36 72 144

Multicore IncludeOS
Multiple single core IncludeOS
Ubuntu VM: Pthread
Ubuntu VM: processes
Bare metal Ubuntu: Pthread
Bare metal Ubuntu: processes

(b)

Figure 2. Execution time of prime number computation in multicore IncludeOS, multiple single-core IncludeOS, Ubuntu VM and bare metal Ubuntu with a
different number of tasks in the Intel server with 36 cores supporting hyper-threading technology. Fig. (a) illustrates the execution time of workloads in

seconds. Fig. (b) illustrates hypervisor processor ticks for each solution.

against a standard Ubuntu virtual machine, multiple single-
core IncludeOS instances, as well as a bare metal Ubuntu
installation. A series of experiments were conducted with the
same processor-intensive binary being executed on all multi-
threaded solutions. On the Ubuntu operating systems, paral-
lelism was achieved both through the POSIX thread (Pthread)
model and through standard processes scheduled by the kernel.
In the case of multicore IncludeOS, executing multiple tasks
simultaneously was achieved by making the master processor
distribute the tasks to each application processor. For single-
core IncludeOS, the parallelism was achieved by running one
Unikernel instance for each of the tasks.

Execution time and processor ticks of the virtual machines
were measured from the host in order to evaluate efficiency.
The task used in the experiments was to calculate the number
of prime numbers below a given large number, which is a
CPU-bound task. The tasks were distributed by sending the
given large number through UDP to the server for calculation.
Then the server calculated the largest prime N times using N
independent tasks. The sum of theses N numbers was returned
through UDP and the time for the whole process recorded. In
the special case of single-core IncludeOS, the large number
was sent through UDP to N single-core instances, each in-
stance returned a result through UDP and the sum was then
calculated.

The experiments were performed on two machines, each
with a different processor architecture. Table I shows the spec-
ification of both servers. One of the machines was equipped
with Intel CPUs, which support hyper-threading technology
while the second machine was equipped with AMD CPUs.
Our experiments were conducted with an increasing number of
task threads/application processors from 1 to twice the amount
of available physical CPUs. In the case of the Ubuntu VM, the
number of threads or processes was varied while with multiple
single-core IncludeOS instances, the number of IncludeOS

virtual machines was varied. Each experiment was repeated
30 times.

TABLE I. SERVERS SPECIFICATION.

Platform segment Dell server Dell server

Processors Intel(R)
Xeon(R) CPU E5-2699 v3 AMD Opteron 6234

Processor’s frequency 2.3 GHz 2.4 GHz
Memory 128 GB 128 GB
Number of processor sockets 2 4
Number of cores 36 48
Number of logical processors 72 48

Fig. 2a shows the execution time of the prime number
calculation workload for six different multi-threading solutions
on the Intel server. One might expect the execution time to be
roughly independent of number of tasks when there are less
tasks than physical cores. The number of cores is here 36, as is
indicated by the gray vertical line. However, this is not the case
for the Ubuntu VM, the execution time increases by roughly
50% when increasing the number of tasks from 1 to 36. For
the other systems, the increase in time is not as profound, but
on the other hand it is not flat as would be expected if the
system utilized the parallelism of the physical cores perfectly.
The experiments below 36 cores are the most important ones
as they do not involve overprovisioning of the cores. Except
for the case of very few cores, multicore IncludeOS performs
better than the Ubuntu VM and equally well as bare metal
Ubuntu, which is included as a reference. It also performs
better than the single core IncludeOS solution.

When the number of tasks increases from 36 to 72, some
of the jobs needs to share an arithmetic logic unit (ALU) as
there are only 36 hyper-threading cores, and the execution time
is almost doubled. The slope is even steeper from 72 to 144
tasks and a bit larger than 2, which makes sense since then
time-sharing is unavoidable. In these regions, the multicore

13Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

IncludeOS solution is even more efficient than its Ubuntu
counterparts.

It was assumed that using Pthreads would be the most
efficient way to run parallel tasks using a Linux OS and that
would give the most fair comparison. As Pthreads are known
to induce some overhead in certain cases, we also ran the
tasks forking ordinary processes and this turned out to be more
efficient in our case. This can be seen in Fig. 2a, the process
results for the Ubuntu variants outperforms the Pthread results.

Fig. 2b shows the total number of processor ticks per-
formed by the hypervisor during the same experiments, which
is a measure of the grand total of CPU resources needed by
each of the solutions in order to perform the same calculation.
It depicts that multicore IncludeOS consumes a similar amount
of processor ticks as Ubuntu VM and bare metal Ubuntu
processes which is a showcase of energy efficiency. When
there is no overprovisioning of cores, all the solutions consume
roughly equally many CPU ticks. But when the number of
tasks exceeds 36, the multiple single-core instances and the
Phtread based solutions seems to introduce an overhead in
terms of the need for more CPU ticks in order to consume
the given workload.

In order to find out how multicore IncludeOS performs
on another common processor architecture, we repeated the
experiments on an AMD server. Fig. 3 illustrates the execution
time of the same binary. The number of cores is 48 and there
is roughly just a 10% increase in execution time when going
from 1 to 48 tasks. There is no hyper-threading and hence
the doubling of execution time between 48 and 96 tasks is
as expected. For 30 cores and less, the Ubuntu VM performs
somewhat better than multicore IncludeOS, but from then on
the latter performs better. The single core IncludeOS is doing
slightly better than multicore IncludeOS and the reference
results of the bare metal solution is generally performing better
on this platform.

As can be seen from Fig. 3, the results of the Ubuntu
operating systems are quite similar when running parallel tasks
as processes as when using Pthreads. For the Intel architecture,
processes were most efficient.

V. DISCUSSION

The results from the Intel and AMD servers demonstrate
that multicore IncludeOS is an energy efficient operating
system, which can handle large workloads efficiently compared
to standard operating systems. When comparing our multicore
IncludeOS solution to systems running a full-blown operating
system like Ubuntu, it must be noted that the latter is much
more complex and allows the programmer to utilize multicore
computing in numerous ways. However, the results show
the potential efficiency when developing a fully functional
multicore IncludeOS kernel.

Multicore IncludeOS did, predictably, not perform as well
as other solutions for small workloads that do not require many
processor cores. This is due to the multicore IncludeOS design
in that it boots up with only one core and as soon as it receives
requests the bootstrap processor will wake up the application
processors. Finally, after the cores have no workload left, they
change their state to halted mode in order to save energy. With
this approach, multicore IncludeOS does not use processors
while there is no workload for them. The approach, however,
requires a constant time for waking up cores, which means

Number of tasks

Ex
ec

ut
io

n
tim

e
(S

ec
on

ds
)

1 48 96

10

15

20

25

30

35

40

45

50 Multicore IncludeOS
Multiple single core IncludeOS
Ubuntu VM: Pthread
Ubuntu VM: processes
Bare metal Ubuntu: Pthread
Bare metal Ubuntu: processes

Figure 3. Execution time of prime number computation with different
number of tasks in the AMD server with 48 cores.

that execution time increases and this is noticeable for few
and short tasks.

Apart for the case of few tasks, multicore IncludeOS
performed better than the Ubuntu VM operating system on
both Intel and AMD. For experiments where the number
of tasks exceeded the number of physical cores, multicore
IncludeOS even performed slightly better than the reference
experiments running Ubuntu on a physical server on Intel.
A possible reason for this behaviour could be a distinction
between the multi-threading mechanisms of the KVM kernel
modules and the plain Linux kernel.

For the Intel server, the multicore IncludeOS solution
performed better than single core IncludeOS for most of the
experiments and just as good for the rest. An additional benefit
of the multicore solution is that there is no need for the
management of and communication between a potentially large
number of separate virtual machines.

VI. RELATED WORK

There are today different approaches for Unikernel op-
erating systems where some of them target specific use
cases. Recent research on achieving a minimal operating
system footprint have led to development of ClickOS[9], [10],
Graphene[11], HermitCore[12], Drawbridge[13], HaLVM[14],
OSV[15] and MirageOS[16], which are in varying levels of
maturity. ClickOS aims to construct network appliances such
as firewalls and loadbalancers and it does not support multiple
processes. Graphene is a Linux compatible library OS, which
implements a multi-process environment by creating multiple
libOS instances that collaborate with each other in order to
create POSIX abstraction. The HermitCore as a Unikernel
operating system targets high-performance computing (HPC)
and it uses multi-kernel approach for providing parallelism.
Drawbridge represents Microsoft Windows library OS in which
a fixed set of abstractions connect the library OS to the
host kernel in order to achieve minimal footprint. HaLVM
is utilizing the Glasgow Haskell Compiler toolsuite to enable

14Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

creating a lightweight virtual machine for the Xen hypervisor.
The Haskell compiler is capable of equipping the virtual
machines with multicore capabilities.

The OSV project also implemented multicore computing
for its Unikernel operating system. The OSV operating system
is spinlock free operating system, but it is not clear how
spinlock was avoided by OSV. Multicore IncludeOS dealed
with race conditions through using the atomic operations and
locking bus over critical sections.

In addition, the MirageOS project wants to provide an
efficient runtime for single core computing with a common
immutable data store so that a large cluster of cloud-based
virtual machines operate over data. In this solution, virtual
machines will share data instead of logical processors. Mirage
project aims to run clusters of MirageOS through multiscale
compiler support in order to adopt a communication model
with hardware platforms constraints [16].

As illustrated in Fig. 2a, building multiple operating system
instances in a cluster requires extra time to handle workloads
due to increased overhead for communication between virtual
machines as well as resource consumption. Sharing the data
between the virtual machines will introduce new challenges in
the aspect of implementation and security. As demonstrated, a
multicore operating system can efficiently achieve the same
level of parallelism but with lower resource consumption.
It is notable that this approach increases performance for
distributed systems.

VII. CONCLUSION

Unikernels are designed to improve efficiency and perfor-
mance but they need to utilize multicore capabilities in order
to maximize performance and energy efficiency. This paper
demonstrated how a multicore Unikernel approach leads to
a greener cloud by adapting multicore computing to virtual
environments.

The experiments demonstrated that multicore IncludeOS
represents an energy efficient and cloud-optimized operating
system for large workloads. Hence, it presents a real life
solution as a lean and energy efficient cloud operating system
with an extremely small footprint. The design principles of
multicore IncludeOS improved the performance of the virtual
machine as well as energy efficiency in comparison with
standard operating systems and multi-kernel solutions.

A. Future Work
The multicore capability demonstrated in this paper was

developed as a modular service for IncludeOS, which enable
IncludeOS to easily detach it if it is not needed by the
developer. Although the master/slave based structure brings
flexibility to IncludeOS, it also has disadvantages such as
adding extra time for waking up application processors. In a
follow-up project, multicore IncludeOS will be embedded into
the IncludeOS kernel by which a significant wake up time for
small to medium workloads is eliminated. In addition, mul-
ticore capability can take advantage of the x2APIC standard
in order to address more than 255 cores in a virtual machine,
which would enable IncludeOS to utilize many-core processors
in the near future. Security study of Unikernels also requires
further research in order to improve reliability of Unikernel
operating systems.

REFERENCES
[1] M. J. Flynn and P. Hung, “Microprocessor design issues: Thoughts

on the road ahead,” IEEE Micro, vol. 25, no. 3, pp. 16–31, 2005.
[Online]. Available: http://dx.doi.org/10.1109/MM.2005.56

[2] Xenproject. Unikernels. [Online]. Available: http://wiki.xenproject.org/
wiki/Unikernels [retrieved: Jan, 2017]

[3] A. Bratterud, A. A. Walla, H. Haugerud, P. E. Engelstad, and K. Beg-
num, “Includeos: A minimal, resource efficient unikernel for cloud ser-
vices,” in 2015 IEEE 7th International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 250–257, Nov 2015.

[4] H. Stockinger, M. Pagni, L. Cerutti, and L. Falquet, “Grid approach
to embarrassingly parallel cpu-intensive bioinformatics problems,” in
2006 Second IEEE International Conference on e-Science and Grid
Computing (e-Science’06), pp. 58–58, Dec 2006.

[5] M. Raynal, Concurrent Programming: Algorithms, Principles, and
Foundations. Springer Publishing Company, Incorporated, 2012.

[6] A. A. Kamil, “Single program, multiple data programming for
hierarchical computations,” Ph.D. dissertation, EECS Department,
University of California, Berkeley, Aug 2012, [retrieved: Jan, 2017].
[Online]. Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2012/EECS-2012-186.html

[7] Intel 64 and IA-32 Architectures Software De-
velopers Manual:Basic Architecture, Intel Corporation,
Sep. 2016, [retrieved: Jan, 2017]. [Online]. Avail-
able: http://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf

[8] Intel 64 and IA-32 Architectures Software Developers Manual:
System Programming Guide, Part 1, Intel Corporation,
Sep. 2016, [retrieved: Jan, 2017]. [Online]. Available:
http://www.intel.com/content/www/us/en/architecture-and-technology/
64-ia-32-architectures-software-developer-vol-3a-part-1-manual.html

[9] J. Martins, M. Ahmed, C. Raiciu, and F. Huici, “Enabling fast, dynamic
network processing with clickos,” in Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN ’13, pp. 67–72. New York, NY, USA: ACM, 2013.
[Online]. Available: http://doi.acm.org/10.1145/2491185.2491195

[10] J. Martins and et al., “Clickos and the art of network function
virtualization,” in 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pp. 459–473. Seattle, WA:
USENIX Association, Apr. 2014. [Online]. Available: https://www.
usenix.org/conference/nsdi14/technical-sessions/presentation/martins

[11] C. Tsai and et al., “Cooperation and security isolation of library
oses for multi-process applications,” in Proceedings of the Ninth
European Conference on Computer Systems, ser. EuroSys ’14, pp.
9:1–9:14. New York, NY, USA: ACM, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2592798.2592812

[12] S. Lankes, S. Pickartz, and J. Breitbart, “Hermitcore: A unikernel
for extreme scale computing,” in Proceedings of the 6th International
Workshop on Runtime and Operating Systems for Supercomputers,
ser. ROSS ’16, pp. 4:1–4:8. New York, NY, USA: ACM, 2016.
[Online]. Available: http://doi.acm.org/10.1145/2931088.2931093

[13] D. E. Porter, G. Hunt, J. Howell, R. Olinsky, and S. Boyd-
Wickizer, “Rethinking the library os from the top down,” in
Proceedings of the 16th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS). Association for Computing Machinery, Inc., March
2011. [Online]. Available: https://www.microsoft.com/en-us/research/
publication/rethinking-the-library-os-from-the-top-down/

[14] Galois-Inc. Halvm. [Online]. Available: https://galois.com/project/
halvm/ [retrieved: Jan, 2017]

[15] A. Kivity and et al., “Osv—optimizing the operating system for virtual
machines,” in 2014 USENIX Annual Technical Conference (USENIX
ATC 14), pp. 61–72. Philadelphia, PA: USENIX Association, Jun.
2014. [Online]. Available: https://www.usenix.org/conference/atc14/
technical-sessions/presentation/kivity

[16] A. Madhavapeddy, R. Mortier, J. Crowcroft, and S. Hand,
“Multiscale not multicore: Efficient heterogeneous cloud computing,”
in Proceedings of the 2010 ACM-BCS Visions of Computer
Science Conference, ser. ACM-BCS ’10, pp. 6:1–6:12. Swinton,
UK, UK: British Computer Society, 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1811182.1811191

15Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

http://dx.doi.org/10.1109/MM.2005.56
http://wiki.xenproject.org/wiki/Unikernels
http://wiki.xenproject.org/wiki/Unikernels
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-186.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-186.html
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.html
http://doi.acm.org/10.1145/2491185.2491195
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
http://doi.acm.org/10.1145/2592798.2592812
http://doi.acm.org/10.1145/2931088.2931093
https://www.microsoft.com/en-us/research/publication/rethinking-the-library-os-from-the-top-down/
https://www.microsoft.com/en-us/research/publication/rethinking-the-library-os-from-the-top-down/
https://galois.com/project/halvm/
https://galois.com/project/halvm/
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
http://dl.acm.org/citation.cfm?id=1811182.1811191

	Introduction
	Common Challenges
	Multicore Unikernel Applications
	IncludeOS design

	Design Principles
	Energy Efficient Memory Access
	Multicore Task Management
	Multicore Synchronization

	Results
	Discussion
	Related Work
	Conclusion
	Future Work

	References

