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Abstract—The growing prevalence of the microservice paradigm
has initiated a shift away from operating single image appliances
that host many services, towards encapsulating each service
within individual, smaller images. As a result thereof, the de-
mand for low-overhead virtualization techniques is increasing.
While containerization approaches already enjoy great popu-
larity, unikernels are emerging as alternative approaches. With
both approaches undergoing rapid improvements, the current
landscape of lightweight approaches to virtualization presents a
confusing scenery, impeding the task of picking an adequate tech-
nology for an intended purpose. While previous work has mostly
dealt with comparing the performance of either approach with
whole-system virtualization, this work provides an overarching
performance evaluation covering containers, unikernels, whole-
system virtualization, native hardware, and combinations thereof.
Representing common workloads in cloud-based applications,
we evaluate application performance by the example of HTTP
servers and a key-value store.

Keywords–Lightweight Virtualization; Performance; Unikernel;
Container

I. INTRODUCTION

With the increasing pervasiveness of the cloud computing
paradigm for all sorts of applications, low-overhead virtualiza-
tion techniques are becoming indispensable. In particular, the
microservice architectural paradigm, where small encapsulated
services are developed, operated and maintained by separate
teams, require easy-to-use and disposable machine images.
Ideally, such infrastructure should allow for fast provisioning
and efficient operation.

Approaches to lightweight virtualization roughly fall into
the categories of container virtualization and unikernels. Both
have been gaining notable momentum recently (see Figure 1).
As more and more virtualization techniques are being intro-
duced and discussed, making a choice between them is getting
harder. Published performance measurements thus far either
have a strong focus on throughput and execution time or
focus on highlighting the strengths of one particular approach
without comparing it to a broad range of alternative unikernels
and container technologies.

We close this gap by presenting the results of an extensive
performance analysis of lightweight virtualization strategies,
which takes into account a broad spectrum both of inves-
tigated technologies and measured metrics. Our evaluation
includes containers (Docker, LXD), unikernels (Rumprun and
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Figure 1. The increasing relevance of Docker and Unikernel in the research
community is indicated by the number of search results on Google Scholar
(as of October 19, 2016).

OSv), whole-system virtualization, native hardware, and certain
combinations thereof. Our goal is to evaluate metrics that are
applicable to cloud applications. For this purpose, we measure
application throughput performance using HTTP servers and
a key-value store.

The remainder of the paper is organized as follows:
Section II provides some background about the employed
virtualization approaches. Section III reviews related work that
deals with quantifying the performance impact of lightweight
virtualization approaches. Afterwards, Section IV refines the
scope of this work. Section V then documents the benchmark
procedure yielding the results presented in Section VI. Finally,
Section VII concludes this work with final remarks.

II. BACKGROUND

“Traditional”, whole-system virtualization comes with per-
formance and memory penalties, incurred by the hypervisor or
virtual machine manager (VMM). This problem has been ad-
dressed by introducing paravirtualization (PV) and hardware-
assisted virtualization (HVM). Still, the additional layer of
indirection necessitates further context switches, which hurt
I/O performance. [1] A further drawback of whole-system
virtualization is the comparatively large memory footprint.
Even though techniques such as kernel samepage merging
(KSM) [2] have managed to reduce memory demands, they
do not provide an ultimate remedy as they dilute the level of
isolation among virtual machines [3].

This work focuses on lightweight virtualization approaches,
which, addressing both issues, have gained notable momentum
both in the research community and in industry (see Figure 1).
Figure 2 illustrates how these approaches aim at supporting
the deployment of applications or operating system images
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while eluding the overhead incurred by running a full-blown
operating system on top of a hypervisor. With containers and
unikernels constituting the two major families of lightweight
virtualization approaches, the main characteristics and two
representatives of each family are introduced hereafter.
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Figure 2. Illustrated comparison of the software stack complexity of various
deployment strategies, including native setups, virtual machines, containers,
containers within virtual machines and unikernels.

A. Container (OS-Level Virtualization)

Containers were introduced as an oppositional approach
to whole-system virtualization. They were based on the ob-
servation that the entire kernel induces overly much resource
overhead for merely isolating and packaging small appli-
cations. Two classes of container virtualization approaches
exist: application- and OS-oriented containers. For application-
oriented containers, single applications constitute the units
of deployment. For OS-oriented containers, the entire user
space of the operating system is reproduced. This approach
was particularly popular with virtual private server (VPS)
solutions, where resource savings were essential. Currently,
with LXD, this approach is becoming more prominent again,
because it allows for the creation of virtual machine (VM)-like
behavior without the overhead of a hypervisor.

In the following paragraphs, we discuss some common
containerization technologies available. We do not consider
orchestration-oriented tools such as Kubernetes [4], its pre-
decessor Borg, or CloudFoundry’s PaaS solution Warden [5]
here.

1) Docker: Among the application-oriented containers, the
open source project Docker[6] is currently the most popular ap-
proach. It relies on Linux kernel features, such as namespaces
and control groups, to isolate independent containers running
on the same instance of the operating system. A Docker
container encapsulates an application as well as its software
dependencies; it can be run on different Linux machines with
the Docker engine.

Apart from providing basic isolation and closer-to-native
performance than whole-system virtualization, Docker con-
tainerization has the advantages that pre-built Docker con-
tainers can be shared easily, and that the technology can be
integrated into various popular Infrastructure as a Service
(IaaS) solutions such as Amazon web services (AWS).

2) LXD: The Linux-based container solution LXD [7]
builds up upon the LXC (Linux container) [8] interface to
Linux containerization features. LXD uses the LXC library

for providing low-overhead operating system containers. In
addition to advanced container creation and management fea-
tures, LXD offers integration into the OpenStack Nova compute
component [9].

3) lmctfy: lmctfy (Let Me Contain That For You) [10] is an
open source Google project which provides Linux application
containers. It internally relies on Linux cgroups, and provides
further user-mode monitoring and management features. In-
tended as an alternative to LXD, the status of lmctfy has been
declared as stalled [11] on May 28, 2015, which is why we
do not include lmctfy in our evaluation.

B. Unikernel (Hypervisor Virtualization)

Unikernels are a reappearance of the library operating sys-
tem concept, which only provides a thin layer of protection and
multiplexing facilities for hardware resources whereas hard-
ware support is left to employed libraries and the application
itself. While library operating systems (e.g., Exokernel [12])
had to struggle with having to support real hardware, uniker-
nels avoid this burden by supporting only virtual hardware
interfaces provided by hypervisors or VMMs. [13] With the
absence of many abstraction mechanisms present in traditional
operating systems, the unikernel community claims to achieve
a higher degree of whole-system optimization while reducing
startup times and the VM footprint [14], [15].

1) Rumprun: The Rumprun unikernel is based on the rump
kernel project, which is a strongly modularized version of the
NetBSD kernel that was built to demonstrate the anykernel
concept [16]. With the goal of simplified driver development
in mind, the anykernel concept boils down to enabling a
combination of monolithic kernels, where drivers are executed
in the kernel, and microkernel-oriented user space drivers that
can be executed on top of a rump kernel. One of the major
features of the Rumprun unikernel is that it supports running
existing and unmodified POSIX software[17], as long as it
does not require calls to fork() or exec().

2) OSv: The OSv unikernel has been designed specifically
to replace general-purpose operating systems such as Linux
in cloud-based VMs. Similarly to Rumprun, OSv supports
running existing and unmodified POSIX software, as long as
certain limitations are considered [18]. However, OSv provides
additional APIs for exploiting capabilities of the underlying
hypervisor, such as a zero copy API intended to replace the
socket API to provide more efficient means of communication
among OSv-based VMs.

III. RELATED WORK

Previous research has measured selected performance prop-
erties of lightweight virtualization techniques, mostly in com-
parison with a traditional whole-system virtualization ap-
proach.
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TABLE I. OVERVIEW OF RELATED WORK ON PERFORMANCE
MEASUREMENTS OF LIGHTWEIGHT VIRTUALIZATION APPROACHES.
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[20] X X X N/A

[18] X KVM

[1] X KVM

[15] X KVM

[21] X Xen, KVM

[22] X AWS

Felter et al.[1] have presented a comprehensive perfor-
mance comparison between Docker containers and the KVM
hypervisor [19]. Their results from various compute-intensive
as well as I/O-intensive programs indicate that “Docker equals
or exceeds KVM performance in every case tested”. For I/O-
intensive workloads, both technologies introduce significant
overhead, while the CPU and memory performance is hardly
affected.

Kivity et al.[18] focus on the performance of OSv in
comparison to whole-system virtualization with KVM. Both
micro- and macro-benchmarks indicate that OSv offers better
throughput, especially for memory-intensive workloads.

Table I further summarizes the most recent publications
of performance measurements of lightweight virtualization
techniques.

IV. SCOPE OF THIS WORK

Here, we present an extensive performance evaluation of
containers (Docker, LXD), unikernels (Rumprun and OSv),
and whole-system virtualization. Related work has focused on
subsets of the approaches we consider, but we are not aware
of any comprehensive analysis of up-to-date container versus
unikernel technologies. Our goal is to present data which is
applicable to cloud-based applications.

Our research questions are the following:

• How fast are containers, unikernels, and whole-system
virtualization when running different workloads? Do
the results from related work hold in our test case?

• What is the most suitable virtualization technology for
on demand provisioning scenarios?

V. BENCHMARK PROCEDURE

This section provides a description of the benchmark
methodologies applied within this work. All tests were per-
formed on the test system specified in Table II. Where appli-
cable, all approaches were evaluated using KVM and native
hardware. For container-based approaches, we also distinguish
between native and virtualized hosts, where the latter repre-
sents the common practice for deploying containers on top of
IaaS-based virtual machines.

Representing common workloads of cloud-hosted applica-
tions, we picked HTTP servers and key-value stores as exem-
plary applications for application performance measurements.

TABLE II. SPECIFICATIONS OF THE TEST SYSTEMS.

Server model HPE ProLiant m710p Server Cartridge
Processor Intel Xeon E3-1284L v4 (Broadwell)
Memory 4 × 8GB PC3L-12800 (SODIMM)
Disk 120GB HP 765479-B21 SSD (M.2 2280)
NIC Mellanox Connect-X3 Pro (Dual 10GbE)
Operating system Ubuntu Linux 16.04.1 LTS

As these I/O-intensive use cases involve a large number of both
concurrent clients and requests, the network stack contributes
to the overall application performance considerably. Hence,
in order to eliminate an unfavorable default configuration of
the network stack as a confounding variable, we modified
the configuration on Linux, Rumprun and OSv. Since many
best practices guides cover the subject of tuning network
performance on Linux, we employed the recommendations
from [23], resulting in the configuration denoted in Table III.

TABLE III. OPTIMIZED SETTINGS FOR THE Linux NETWORK STACK.

Path Parameter Value
/etc/sysctl.conf fs.file-max 20000
/etc/sysctl.conf net.core.somaxconn 1024
/etc/sysctl.conf net.ipv4.ip local port range 1024 65535
/etc/sysctl.conf net.ipv4.tcp tw reuse 1
/etc/sysctl.conf net.ipv4.tcp keepalive time 60
/etc/sysctl.conf net.ipv4.tcp keepalive intvl 60
/etc/security/limits.conf nofile (soft/hard) 20000

Based on this model, we modified the configuration pa-
rameters of both Rumprun and OSv to correspond to the
Linux-based settings [24]. Currently, there is no mecha-
nism in Rumprun to permanently modify the values of the
ulimit parameter. As a workaround, the Rumprun sysproxy
facility has be activated by passing the parameter -e
RUMPRUN_SYSPROXY=tcp://0:12345 to the rumprun
command-line utility upon start. Using the rumpctrl utility,
the configuration values of the ulimit parameter have to be
changed remotely, as exemplified in Listing 1.
1 export RUMP_SERVER=tcp://[IP]:12345
2 . rumpctrl.sh
3 sysctl -w proc.0.rlimit.descriptors.soft=200000
4 sysctl -w proc.0.rlimit.descriptors.hard=200000
5 sysctl -w proc.1.rlimit.descriptors.soft=200000
6 sysctl -w proc.1.rlimit.descriptors.hard=200000
7 sysctl -w proc.2.rlimit.descriptors.hard=200000
8 sysctl -w proc.2.rlimit.descriptors.soft=200000
9 rumpctrl_unload

Listing 1. The ulimit values of Rumprun have to be changed remotely using
the sysproxy facility and the associated rumpctrl utility.

A. Static HTTP Server

We use the Nginx HTTP server (version 1.8.0) to evaluate
the HTTP performance for static content, as it is available on
all tested platforms. Regarding OSv however, we refrain from
running HTTP benchmarks due to the lacking availability of
an adequate HTTP server implementation.

To be able to deal with a high number of concurrent
requests, we apply optimized configuration files for Nginx.
Our measurement procedure employs the benchmarking tool
weighttp [25] and the abc wrapper utility [26] for automated
benchmark runs and varying connection count parameters.
The abc utility has been slightly modified to report standard
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deviation values in addition to average throughput values for
repeated measurements. The benchmark utility is executed
on a dedicated host to avoid unsolicited interactions between
the HTTP server and the benchmark utility. While HTTP
server benchmark guidelines usually recommend executing
both HTTP server and benchmark utility on the same machine
[23], we intentionally included the traversal of an actual
network in the setup to represent real-world conditions more
accurately. As static content, we use our institute website’s fav-
icon [27]. We measured the HTTP performance ranging from
0 to 1000 concurrent connections, with range steps of 100 and
TCP keepalive being enabled throughout all measurements.

B. Key-Value Store

In our second application benchmark discipline, we use
Redis (version 3.0.1) as a key-value store, which is available on
all tested platforms. In order to rule out disk performance as a
potential bottleneck, we disabled any persistence mechanisms
in the configuration files and operate Redis in a cache-only
mode of operation. For executing performance benchmarks,
we use the redis-benchmark utility, which is included in the
Redis distribution. The benchmark utility is executed on a
separate host to represent real-world client-server conditions
more accurately and to avoid unsolicited interactions between
the benchmark utility and the Redis server. We measured the
performance of GET and SET operations ranging from 0 to
1000 concurrent connections, with range steps of 100 and both
TCP keepalive and pipelining being enabled throughout all
measurements. The CSV-formatted output of redis-benchmark
was aggregated to yield average values and standard deviation
using a simple python script.

VI. RESULTS & DISCUSSION

Here, we provide and discuss the results obtained from the
benchmark procedure elaborated in Section V in an analogous
structure. In order to retrieve a sufficiently meaningful dataset,
each condition was benchmarked 30 times [28]. Furthermore,
each benchmark was preceded by a warm-up procedure. For
a statistically meaningful evaluation of the collected data, an
ANOVA test and a post-hoc comparison using the Tukey
method were applied. All values are expressed as mean ±
SD (n = 30).

A. Static HTTP Server

Container-based approaches are generally expected to in-
troduce little overhead compared to the native operating system
performance. While this appears to be true for disk I/O,
memory bandwidth, and compute performance [1], networking
introduces a significant amount of overhead (p < 0.0001) as
illustrated in Figure 3a. A likely cause for this overhead is that
all traffic has to go through a NAT in common configurations
for both container-based approaches. Comparing containers
with whole-system virtualization, it does not come as a surprise
to see significant performance advantages on the side of
containers for 200 concurrent clients and above (p < 0.0001).

We also considered the condition where containers are
executed on top of whole-system virtualization images. This
setup reflects the common practice in IaaS scenarios where
containers are usually deployed on top of a virtual machine

instead of a native operating system instance. When deployed
above a hypervisor, containers evince a similar behavior as in
the native use case: Containers add significant overhead on top
of a virtualized Linux instance (p < 0.0001).

Proceeding with the evaluation of unikernel performance,
it is surprising to see a similar performance of Rumprun
compared to containers. Even though Rumprun can achieve
slim performance enhancements over containers, significant
improvements start to join in merely for 600 concurrent clients
and more (p < 0.0001). At first sight, these results may
appear disappointing given the fact that unikernels should
offer better performance in I/O intensive workloads due to
the absence of context switches. However, we suspect that
the mediocre performance originates from comparing apples
with oranges, as HTTP-servers heavily rely on the performance
of the operating systems network stack, where the Linux
networking stack has undergone massive optimization efforts
that the NetBSD network stack can hardly compete with. To
verify this hypothesis, we performed a brief evaluation where
we executed the same benchmark setup using NetBSD 7.0.1
instead of Ubuntu 16.04. For that purpose, we used a KVM-
based virtual machine and the same network configuration
parameters as in the other setups. Here, we obtained perfor-
mance measurements much slower than Rumprun (data not
shown), which demonstrates the potential of the unikernel
concept with Rumprun outperforming a virtualized instance
of its full-grown relative NetBSD. With further optimizations
of the network stack, Rumprun might achieve similar or even
better performance than a regular Linux-based virtual machine.

Regarding the memory footprint, unikernels manage to
undercut the demands of a full-blown Linux instance (see
Figure 4a). However, containers still can get by with the least
amount of memory. The major advantage of containers remains
that memory can be allocated dynamically, whereas virtual
machines are restricted to predefining the amount of allocated
memory at the time of instantiation.

B. Key-Value Store

As illustrated in Figure 5, the key-value store exhibits sim-
ilar results regarding container-based approaches and whole-
system virtualization: Regardless of native or virtualized de-
ployments, containers come with a significant amount of
overhead (p < 0.0001). In contrast, Rumprun and OSv offer
slight but nevertheless significant performance improvements
compared to Linux under many conditions. With Redis being
less sensitive to the performance of the network stack, this
use case demonstrates the potential of unikernels. Regarding
memory consumption (see 4b), containers still offer the highest
degree of flexibility. While Rumprun still undercuts the mem-
ory footprint of Linux, OSv required distinctly more memory
in order to withstand the benchmark. However, this increased
memory demand appears to be caused by a memory leak or a
similar bug in the OSv-port of Redis.

VII. CONCLUSION

With both containers and unikernels undergoing rapid
improvements, the current landscape of lightweight approaches
to virtualization presents a confusing scenery. Comparative
publications thus far have mostly highlighted the strengths of
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Figure 3. Throughput performance of Nginx (version 1.8.0) was evaluated on native hardware (a) and in virtualized environments (b). Throughput was measured
using the weightttp benchmark and the modified abc wrapper utility.
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Figure 4. The memory footprints of the static HTTP server scenario (a) and the Key-Value Store scenario (b) were measured for each each virtualization
technique. Due to the variety among the tested approaches, different tools were used to obtain memory consumption readings.
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Figure 5. Throughput performance of Redis (version 3.0.1) was evaluated on native hardware (a) and in virtualized environments (b). The plotted values show
the throughput for GET requests as retrieved through the redis-benchmark utility.
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one particular approach without comparing it to a broad range
of alternative technologies. To take remedial action, we present
an extensive performance evaluation of containers, unikernels,
and whole-system virtualization.

Regarding application throughput, most unikernels per-
formed at least equally well or even better than containers. We
also demonstrated that containers are not spared from overhead
regarding network performance, which is why virtual machines
or unikernels may be preferable in cases where raw throughput
matters. These are just some aspects demonstrating that while
containers have already reached a sound level of maturity,
unikernels are on the verge of becoming a viable alternative.
Even though we did not see unikernels outperforming a virtu-
alized Linux instance, our brief comparison between NetBSD
and Rumprun also suggested that unikernels have the potential
of outperforming their full-grown operating system relatives.
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