
Memory Interface Simplifies Storage Virtualization

Shuichi Oikawa, Gaku Nakagawa
Department of Computer Science

University of Tsukuba
Tsukuba, Ibaraki, Japan

e-mail: {shui,gnakagaw}@cs.tsukuba.ac.jp

Abstract—Using a simple library operating system (OS) as a guest
OS of a virtualized environment is one of the current trends of
cloud computing in order to reduce the overheads incurred by
virtualization. Its persistent storage access, however, remains the
same as that for the existing guest OSes; thus, it poses a problem
of the long execution and data paths. This paper proposes
virtualized memory storage that provides the memory interface
for a library OS of a virtualized environment, and also discusses
the two key benefits of virtualized memory storage, journaling
acceleration by synchronous access and a modern implementation
of single-level store. The proposed memory interface to virtualized
memory storage can simplify both the execution and data paths,
and it accelerates the access to persistent storage.

Keywords-operating systems; virtualization; file systems;
storage

I. INTRODUCTION

There is a trend of using a simple library operating system
(OS) as a guest OS of a virtualized environment. A library
OS typically satisfies a specific need to execute a target
application; thus, its simple and light-weight implementation
enables higher efficiency of application execution than the
traditional OS, such as the Linux and the BSD (Berkeley
Software Distribution) UNIX. While a library OS lacks the
protection support between an application and the kernel, it
is protected from another library OS by a virtualized envi-
ronment. There are several library OSes that target such a
virtualized environment. Exokernel [1], [2] is one of early work
that realized the kernel functions as libraries, and its success
stimulated the following work. Mirage unikernel [3] is a library
OS, of which applications are executed on the OCaml language
runtime. OSv [4] is another library OS, applications of which
are executed on the Java language runtime.

While library OSes emphasize their high performance, li-
brary OSes employ the existing block interface to persistent
storage. The block interface for a virtualized environment,
however, poses a significant problem to achieve high storage
access performance. Fig. 1 depicts the architecture of the
common storage virtualization method. It provides the block
interface for a guest OS kernel; thus, a guest OS kernel requires
a block device driver to interact with the block interface.
Because of asynchronous nature and a long latency of the
block interface, it requires the page cache to accommodate
the recently accessed data. A file system is placed upon the
page cache and a block device driver and interacts with them.

The problem to provide the block interface for a library OS
is that the mechanisms for the block interface, a file system,

the page cache, and a block device driver, are duplicated in a
library OS, and they exist both in the host OS and a library
OS. Because of such duplication, both the data and execution
path become very long. They have to go though the layer of
a file system, the page cache, and a block device driver both
in a library OS and the host OS. The execution overhead of
going through the file access layer twice is huge, and also
data needs to be transferred several times. While a library
OS kernel simplifies its mechanisms by specializing them for
target applications, there is no simplicity achieved in the block
interface for a virtualized environment.

This paper proposes the use of memory interface to persis-
tent storage for a library OS of a virtualized environment. We
call it virtualized memory storage. This architecture provides
the memory storage for a library OS, and a file system is
constructed upon the memory storage. Since processors can
directly access memory, there is no need to interpose a device
driver between a file system and storage. Virtualized memory
storage makes the layer of a file system, the page cache,
and a block device driver for a library OS of a virtualized
environment as simple as that of the existing OS kernel, and
thus it significantly simplifies and also accelerates the access
for a library OS to persistent storage, since it enables the direct
access for a library OS to the page cache of the host OS kernel.
While this paper is based on the past work [5], [6], its focus
on a library OS is different from them.

The rest of this paper is organized as follows. Section II
describes the virtual memory storage and its key benefits.
Section III concludes the paper and describes the future work.

II. VIRTUALIZED MEMORY STORAGE

Virtualized memory storage provides the memory interface
for a guest OS of a virtualized environment. Fig. 2 depicts its
architecture. Virtualized memory storage constructs a single
hierarchy of a file system, the page cache mechanism, and a
block device driver, which is the same as the monolithic kernel,
while only a file system resides in a guest OS. Virtualized
memory storage consists of a memory image provided by a
virtual machine monitor, and is backed by the page cache
of the host OS. While such a memory image is the same as
that for a main memory of a guest OS, the memory image of
virtualized memory storage is backed by a persistent storage
device or a file on it. Therefore, the written data on virtualized
memory storage persists across the process of shutting down
a guest OS and rebooting it. Virtualized memory storage is
analogous to a memory image created for a user process by
the mmap system call. The mmap system call maps a file

1Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

HDD/SSD	Block	Device�

Page	Cache�

VirEo	Block	Device	Driver�

Library	OS	Kernel�

File	System�

Host	Linux	Kernel�

VirEo	Block	Device	Host�

QEMU	System	Emulator�

Page	Cache�

Block	Device	Driver�

File	System� KVM	Module�

Data	Path� ExecuEon	Path�

Figure 1. The common storage virtualization method that provides the block
interface for a guest OS kernel.

on a virtual address space of a user process, and the user
process can access a file through the mapped region of its
virtual address space. In case of virtualized memory storage,
the virtualization software maps a persistent storage device
or a file on it on a physical address space of a guest OS,
and the guest OS kernel can access the storage through the
memory interface. There are several file systems that were
designed to be constructed directly on memory storage. The
persistent random access memory file system (PRAMFS) [7]
and the storage class memory file system (SCMFS) [8] are
such examples. They can be used on virtual memory storage
in order to enable file access on it.

Virtualized memory storage best fits simple library OSes
since it significantly simplifies the storage access architecture
and also accelerates the access to persistent storage. The fol-
lowing are the benefits brought by virtualized memory storage:
1) No block device driver in library OSes and no device host in
the host OS: A block device driver is a complicated software
framework since it deals with the block and asynchronous
interface of devices and also enables efficient access to them
by utilizing the page cache mechanism. A block device driver
in a guest OS requires a counterpart in the host OS, a
device host, that emulates a block device. Virtualized memory
storage gets rid of them; thus, it significantly simplifies the
storage interface. 2) Simplified file system implementation:
The implementation of a file system on a block device cannot
be separated from the block interface even with the page cache
mechanism that provides the memory interface because it
needs to deal with block access natures and and to include their
management. A file system on virtualized memory storage
is greatly simplified since it does not include such block
management and the page cache mechanism. 3) Zero copy data
access: This is a great advantage of the integration of library
OSes and virtualized memory storage. When an application
accesses data on virtualized memory storage through a file
system, the application obtains the address of the data on the
virtualized memory storage. There is no need to copy from
storage to buffer cache. 4) Efficient virtual machine migration:
Virtualized memory storage is simply a memory image, and

HDD/SSD	Block	Device�

File	System�

Library	OS	Kernel�

Host	Linux	Kernel�Block	Device	Driver�

Page	Cache� KVM�

QEMU	System	
Emulator�

Data	
Path�

ExecuEon	
Path�

File	System�

Figure 2. Virtualized memory storage that provides the memory interface
for a library OS kernel.

it can be treated in the same way as the main memory of a
virtual machine. When a virtual machine is migrated from a
host to another over the network, the main memory is copied
between them. The same mechanism can be employed to
transfer virtualized memory storage; thus, there is no specific
shared storage necessary for virtualized memory storage to
enable virtual machine migration.

Virtualized memory storage is secured by a virtual machine
monitor since it is made independent form each other. The
memory image of virtualized memory storage is created for
each instance of a library OS, and its data is not shared by
default. An instance of a library OS can only access its memory
image but not the other images of the other instances since they
are separated by the virtual memory mechanism that the virtual
machine monitor sets up. Obviously, it is possible to create a
shared memory image of virtualized memory storage. In this
case, a whole memory image is shared; thus, all the files of
the shared image are shared.

Virtualized memory storage simplifies the execution path
to access storage; thus, such simplicity makes a system with
it more reliable. While it removes the page cache and block
device driver layers from a guest OS, it keeps the mechanisms
in the host OS the same. An only difference is that it exposes
the page cache of the host OS to a guest OS for data access.
Only a part of the page cache is, however, exposed to a guest
OS, and a guest OS does not have unlimited access to the page
cache of the host OS. Thus, the introduction of virtualized
memory storage does not increase security risks.

We discuss the two key benefits of virtualized memory
storage below.

A. Journaling Acceleration by Synchronous Access

The journaling is a mechanism to guarantee the consistency
of written data. It is known as write ahead logging (WAL)
for database management systems. The journaling writes data
twice, first in the journal and second in the destination place.
The significant cost of the journaling is brought by a latency
to complete writing. Logging must be completed and it must
ensure the log becomes persistent before writing in the desti-
nation place. In other words, writing in the destination place
must wait for the completion of logging. Each log tends to be
small data, and writing small data in block storage is a typical

2Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

inefficient operation; thus, it causes a long latency to complete
writing.

Virtualized memory storage employs synchronous access to
storage; thus, logging does not suffer from a long latency
caused by the block interface. Because the region for logging is
typically preallocated and fixed, its page frames can be pinned
down in the page cache of the host OS. Even without pinning
them down, logging is frequently performed, and the region
for logging is very likely on the page cache.

B. Modern Implementation of Single-Level Store
Virtualized memory storage can be considered as an imple-

mentation of the single-level store [9]. The single-level store
is the model of storage where applications access data storage
objects directly through the memory interface; thus, there is
only a single storage level [10]. From the point of view of the
single-level store, memory and disk storage are distinct parts of
computer systems since memory is byte addressable while disk
storage is block addressable; thus, processors cannot access
disk storage directly, and data on disk storage must be brought
to memory in order for the processors to access it. Files are
the abstraction of disk storage, and file systems manage disk
storage to provide storage spaces with users as files. Data in
files is accessed through the file application program interface
(API), which is designed to deal with block addressable disk
storage.

Virtualized memory storage takes the memory management
one step further towards the single-level store by involving
the memory interface in the hierarchy of memory and storage.
Library OSes can access data on memory storage directly since
memory storage is byte addressable and a file system serves
name and protection services.

III. CONCLUSTION AND FUTURE WORK

This paper proposed virtualized memory storage that pro-
vides the memory interface for a library OS of a virtualized
environment in order to simplify and to accelerate the access
to persistent storage. Because of a trend of using a simple
library OS as a guest OS of a virtualized environment for
higher performance, the proposed virtualized memory storage
best fits the use cases of a library OS.

Our future work includes the implementation and evaluation
of the proposed architecture. While we realized the basic
mechanism of the virtualized memory storage [5], we are
currently working on the implementation of a library OS on
top of it.

REFERENCES

[1] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr., “Exokernel: An op-
erating system architecture for application-level resource management,”
in Proceedings of the Fifteenth ACM Symposium on Operating Systems
Principles, ser. SOSP ’95. New York, NY, USA: ACM, pp. 251–266,
1995.

[2] M. F. Kaashoek, et al., “Application performance and flexibility on
exokernel systems,” in Proceedings of the Sixteenth ACM Symposium
on Operating Systems Principles, ser. SOSP ’97. New York, NY, USA:
ACM, pp. 52–65, 1997.

[3] A. Madhavapeddy, et al., “Unikernels: Library operating systems for
the cloud,” in Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’13. New York, NY, USA: ACM, pp. 461–
472, 2013.

[4] Cloudius-Systems, “Osv: the operating system designed for the cloud,”
http://osv.io [retrieved: February, 2017].

[5] S. Oikawa, “Virtualizing storage as memory for high performance stor-
age access,” in Proceedings of the 12th IEEE International Symposium
on Parallel and Distributed Processing with Applications (ISPA-14), pp.
18–25, 2014.

[6] S. Oikawa, “Adapting byte addressable memory storage to user-level
file system services,” in Proceedings of ACM Conference on Research
in Adaptive and Convergent Systems, ser. RACS 2014. ACM, pp.
338–343, 2014.

[7] “Pramfs: Protected and persistent ram filesystem,”
http://pramfs.sourceforge.net/ [retrieved: February, 2017].

[8] X. Wu and A. L. N. Reddy, “Scmfs: a file system for storage class
memory,” in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’11. New York, NY, USA: ACM, pp. 39:1–39:11, 2011.

[9] B. E. Clark and M. J. Corrigan, “Application system/400 performance
characteristics,” IBM Systems Journal, vol. 28, no. 3, pp. 407–423,
1989.

[10] J. S. Shapiro and J. Adams, “Design evolution of the eros single-level
store,” in Proceedings of the General Track of the Annual Conference
on USENIX Annual Technical Conference, ser. ATEC ’02. Berkeley,
CA, USA: USENIX Association, pp. 59–72, 2002.

3Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

