
Residual Traffic Based Task Scheduling in Hadoop

Daichi Tanaka

University of Tsukuba

Graduate School of Library, Information and Media Studies

Tsukuba, Japan

e-mail: s1421593@u.tsukuba.ac.jp

Masatoshi Kawarasaki

University of Tsukuba

Faculty of Library, Information and Media Science

Tsukuba, Japan

e-mail: mkawa@slis.tsukuba.ac.jp

Abstract— In Hadoop job processing, it is reported that a large

amount of data transfer significantly influences job

performance. In this paper, we clarify that the cause of

performance deterioration in the CPU (Central Processing

Unit) heterogeneous environment is the delay of copy phase due

to the heavy load in the inter rack links of the cluster network.

Thus, we propose a new scheduling method -Residual Traffic

Based Task Scheduling- that estimates the amount of inter rack

data transfer in the copy phase and regulates task assignment

accordingly. We evaluate the scheduling method by using ns-3

(network simulator-3) and show that it can improve Hadoop job

performance significantly.

Keywords- distributed computing; Hadoop; MapReduce; job

performance; network simulation.

I. INTRODUCTION

Owing to the rapid reduction in hard disk drive (HDD)
cost and the rapid expansion in the variety of services, the
amount of data volume in the world is ever increasing. Along
with it, there are ongoing efforts worldwide to extract useful
information from a large amount of data (big data) [1]. Under
these circumstances, MapReduce [2] was developed as a
distributed processing framework for big data. In MapReduce,
data processing is performed in two stages, namely map stage
and reduce stage. By performing parallel distributed
processing in each stage, big data can be processed at high
speed. Hadoop [3] is an open source framework of
MapReduce that implements the functionalities to deal with
problems such as fault tolerance, load distribution and
consistency. As a result, Hadoop removed many difficulties of
conventional distributed processing, thus making many
enterprises such as Facebook, Yahoo and New York Times to
use it for site management or log analysis.

Since Hadoop has become popular, research on improving
Hadoop performance is being actively carried out in pursuit of
a more efficient scheduling scheme [4]-[9]. However, these
studies have been focusing on scheduling computation and
storage resources, while mostly ignoring network resources.
In [10], it is reported that data transfer time may account for
more than 50% of total job execution time. In this paper, we
explore how data transfer affects Hadoop job performance. In
particular, we analyze how network congestion deteriorates
overall job performance and, based on this analysis, we

propose enhancements to Hadoop scheduler by introducing
the concept of residual traffic over the network.

For the study of Hadoop performance, we need to build a
large-scale experimental environment. On the other hand, the
scale of the production environment of Hadoop is very large,
having several hundred to several thousand nodes [1]. Since
building the actual size of the cluster is not realistic, many
studies described above use cloud services such as Amazon
Elastic Compute Cloud (Amazon EC2) [11] to construct the
experimental environment. In the cloud service, although the
node performance (e.g., CPU and HDD) and the minimum
bandwidth of inter-node links are guaranteed, the network
topology is opaque. Furthermore, resource usage may be
affected by other users of the cloud. Accordingly, we have
developed Hadoop cluster simulator using ns-3 (network
simulator-3) [12] [13] so that we can set the size and the
topology of a network freely.

Using this Hadoop cluster simulator, we perform Hadoop
simulation using sort benchmark. Through this experiment,
we clarify that the cause of performance deterioration in the
CPU heterogeneous environment is the delay of copy phase
due to the heavy load in the inter rack links of the cluster
network. Based on this analysis, we propose a new scheduling
method -Residual Traffic Based Task Scheduling- that
estimates the amount of inter rack data transfer in the copy
phase and regulates task assignment accordingly. We evaluate
the proposed scheduling method and show that it can improve
Hadoop job performance significantly.

The rest of this paper is organized as follows. Section II
provides an overview of Hadoop architecture and mechanism.
Section III and IV describe the Hadoop cluster simulator and
experiment discussing performance issues. Based on this,
Section V proposes residual traffic based task scheduling to
improve Hadoop performance and Section VI discusses its
effectiveness. Section VII concludes this paper.

II. HADOOP OVERVIEW

A. Hadoop Structure

Hadoop consists of MapReduce engine and Hadoop
Distributed File System (HDFS) as shown in Figure 1.
Hadoop cluster is made of one MasterNode and many
SlaveNodes. The MasterNode and the SlaveNode
communicate with each other using the HeartBeat mechanism.
The MasterNode receives HeartBeat message from a

94Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

SlaveNode at a constant frequency. It includes the state
information of the SlaveNode.

In MapReduce engine, the MasterNode is called
JobTracker and the Slave Node is called TaskTracker. When
JobTracker receives a job from a user, it divides it into small
tasks and assigns them to TaskTrackers. When a TaskTracker
requests a task assignment to JobTracker by sending a
HeartBeat message, the JobTracker assigns a task in response
to this so that the number of assigned tasks does not exceed
the number of taskslots whose value is pre-determined
according to the performance of each TaskTracker node.

In HDFS, the MasterNode is called NameNode and the
SlaveNode is called DataNode. When NameNode receives
data from a user, it splits it into small file blocks (called
chunks) having 64MB in size, and distributes them to
DataNodes. At this time, NameNode produces replica to
improve fault tolerance and reachability.

Figure 1. Hadoop Structure

B. MapReduce Procedures

MapReduce is a distributed processing framework for big
data that processes data by using map function and reduce
function that are defined by a user. Figure 2 shows
MapReduce processing flow.

When a user submits a job, the JobTracker receives the
input data split of the user data and generates map tasks. One
map task is generated for one input data split. After the Job is
turned on and the HeartBeat arrives at the JobTracker from a
TaskTracker, the JobTracker assigns as many map tasks as the
number of free map taskslot of the TaskTracker. In this case,
a map task is assigned preferentially to the TaskTracker that
holds the input data split to be processed. This map task is
called a data local map task. If a map task is not data local,
input data split needs to be obtained from other node over a
network. After obtaining the input data split, the map function
is executed. The result (map output) is stored in HDFS. When
the map task is successfully completed, the TaskTracker sends
a termination notice to the JobTracker.

When a part of map tasks of a given job (5% by default)
are completed, JobTracker starts to assign reduce tasks to
TaskTrackers. Reduce task collects all the map output having
the same key over the network (copy phase) and performs
reduce function. The results are stored in HDFS. When the
reduce task is successfully completed, the TaskTracker sends
a termination notice to JobTracker. JobTracker sends the Job
completion notification to the user when it confirmed the end
of all of tasks, and the job completes.

Figure 2. MapReduce Procedures

C. Hadoop Network I/O

During the MapReduce procedures, data transfer occurs in
the following occasions.

1) Transfer of input data split: When assigned map task

is not data local, input data split is obtained from other node.

In this case, transmission of the size of input data split (by

default 64MB) is generated.

2) Transfer of map output data: Reducer node receives

all the relevant map outputs from mapper nodes. In this case,

transmission of the total amount of map outputs is generated.

We define this as resilient traffic in the later section of this

paper.

3) Transfer of reduce output replica:
As reduce task output data (i.e., Job output data) is stored

in the HDFS, transmission of copies corresponding to the
number of replicas is generated. By default, three replicas are
generated. One of the replicas is stored on the disk of the
reducer node and the other two are stored in other nodes

III. HADOOP CLUSTER SIMULATOR

A. Design Principle

The objective of Hadoop cluster simulator is to provide
experimental environment of Hadoop cluster network whose
size and topology can be set freely. It simulates Hadoop job
scheduling and task scheduling as defined in Hadoop version
1.1.2 and the three kinds of data transfer as described in
Section II-C. We designed the simulator to keep track of
cooperation with Hadoop scheduler behavior and network
behavior.

B. Input Parameters

Although there are many parameters that can be set to
actual Hadoop, the parameters that affect the performance of
Hadoop are limited. The parameters used in our simulation are
shown in Table I.

TABLE I. SIMULATION PARAMETERS

Category Component

Job parameter Scheduling method (FIFO, Fair),
Job type (sort, search, index, etc.)

Configuration parameter
Number of taskslots, Chunk size,

 Number of replicas

Cluster parameter Network topology, Number of nodes

95Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

Job parameters include Job Scheduling methods such as
FIFO (First In First Out) Scheduling and Fair Scheduling, and
Job types such as sort, search and index. They affect data
transfer in the data generation timing and the amount of data.
Specific values are shown in Table II and explained in section
C.

The Configuration Parameters are the parameters that are
set in the actual Hadoop configuration file. What affects data
transfer is the block size when non-data local map task obtains
input data split from other node and the number of replicas
when the job output is copied to HDFS. The maximum
number of task slots that is pre-allocated to each node affects
the data transfer as well. If the number of slots is large,
network traffic might occur in bursts and if the number of slots
is not uniform among TaskTrackers, imbalance might occur
in link bandwidth utilization.

The Cluster Parameters are the parameters that determine
a network configuration of the cluster, such as the network
topology and the number of nodes.

C. Modelling of Map Task and Reduce Task Processing

Key parameters that determine Hadoop performance are
task processing time and output data size. We assumed the
following:

1) Task Processing Time: Task processing time is

determined only by the data size, not by the data content.

Specific values are shown in Table II. These values were

determined by reference to [12] and the actual measurement

value in our experimental Hadoop cluster made of real

machines [14].

2) Disk I/O Time: The time needed for disk I/O is

negligibly small.
Output data size is calculated by “Filter” value. Filter means

the ratio of output data size to input data size.

TABLE II. SPECIFIC PARAMETER VALUES

Parameters
Job Type

sort search index

MapFilter (%) 100 0-0.1 2-50

ReduceFilter (%) 100 100 2-50

MapProcessSpeed (sec/MB) 0.03 0.16 0.016

Reduce ProcessSpeed (sec/MB)

(Sort phase)
0.016 0.016 0.016

Reduce ProcessSpeed (sec/MB)
(Reduce phase)

0 0 0

Reduce task is divided into copy, sort and reduce phases.

Reduce tasks can start when only some map tasks complete
(by default 5%), which allows reduce tasks to copy map
outputs earlier as they become available and hence mitigates
network congestion. However, no reduce task can step into the
sort phase until all map tasks complete. This is because each
reduce task must finish copying outputs from all the map tasks
to prepare the input for the sort phase.

The amount of data transfer in the copy phase is
determined by “(map output data size) / (the number of reduce
tasks)”. As the reduce output (i.e., job output) will be copied

to other nodes by the HDFS, the data transfer amount
generated at replication depends on the size of the reduce task
output.

D. Validation of Developed Simulator

To validate the accuracy of the developed simulator, we
performed comparative experiments with our experimental
Hadoop cluster made of Amazon EC2[14]. The comparison
scenario is shown in Table III. Validation was focused on
scheduler behavior and network I/O of TaskTrackers.

TABLE III. COMPARISON SCENARIO

Parameter Component

Nodes JobTracker : 1, TaskTracker :20

Task slots map slot = 4, reduce slot = 4

Clunk Size 64 MB (by default)

Job Type sort

Job 1

Job Size 10 GB

1) Scheduler Behavior: We validated the accuracy of task

scheduling for the followings:

a) Priority handling of Data Local Map Task: Basically,

map tasks are processed in the order of task ID. However, if

a particular map task is not data local, the assignment of that

map task is skipped.

b) Concurrent Processing of Map Tasks: If the number

of map tasks of a given job is greater than the total number of

map task slots within a cluster, all the map tasks cannot be

assigned in one cycle. In this case, map task assignment is

achieved in several cycles.

c) Start of Reduce Task: Reduce task can starts to be

assigned when a certain amount of map tasks are completed.

d) Phased Processing of Reduce Task: Sort and reduce

phases cannot be started until copy phase is completed.

By comparing the task progress gantt charts of Hadoop

EC2 cluster and the developed simulator as well as examining

simulation logs, we confirmed that these behaviors are

accurately simulated.

2) Network I/O of TaskTrackers: We examined whether

three kinds of data transfer as described in Section II-C occur

at suitable timing. In our experiment, we measured the

throughput at the network interface of a TaskTracker that is

assigned one non data local map task and some reduce tasks.

The result is shown in Figure 3. From Figure 3 and

experimental log, we confirmed the following:
i. Transfer of input data split occurs at the timing of

non-data local map task assignment.
ii. Transfer of map output data occurs at the timing of

reduce task assignment.
iii. Transfer of reduce output replica occurs at the end of

reduce task.

From the above, we have confirmed that this simulator

correctly simulates Hadoop cluster behavior.

96Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 3. Network Input Throughput at a TaskTracker

IV. EXPERIMENT OF HADOOP PERFORMANCE

By using the developed simulator, we carried out Hadoop
performance experiment.

A. Experiment Setting

The network model of experimental Hadoop cluster is
shown in Figure 4. It has a tree structure (double-star type)
that is common in many datacenters. It consists of 4 racks
each of which includes 10 worker nodes. In total, there are 40
TaskTrackers (TTs) and one JobTracker (JT).

Each worker node is connected to Top of Rack switch
(ToR-SW) by 1Gbps link. We call these links ToR-TT link in
this paper. Each ToR switch is connected to Aggregate switch
(AGG-SW) by 2.5Gbps link. As for the links between AGG-
SW and Rack i, we call the uplink UP(i) and the downlink
DOWN(i). Regarding CPU performance, we assumed
heterogeneous environment. The CPU processing speed is
faster in Rack 0, normal in Racks 1 and 2, and slower in Rack
3. The specific values are shown in Table IV. Conforming to
CPU processing speed, the number of pre-allocated task slots
in worker node is 8 for Rack 0, 4 for Rack 1 and 2, and 2 for
Rack 3. We assumed homogeneous environment within each
rack.

Job characteristics are summarized in Table V. In our

experiment, a sort job having 5Gbytes was submitted every 5

seconds to the cluster. A total of 10 jobs were submitted in one

experiment. We used sort benchmark that generates a large

amount of output data. This is because we focused on the

analysis of data transfer in Hadoop performance.

As for Job Scheduling, we used Fair Scheduler [5]. In Fair

Scheduler, jobs are grouped into pools. When a slot needs to

be assigned, the job that has been most unfair is scheduled.

This time, we implemented to assign one pool for each job.

Accordingly, all the running jobs are scheduled to obtain task

slots equally.

Figure 4. Experiment Cluster Architecture

TABLE IV. NODE PARAMETERS

Rack
CPU

performance
Map/Reduce

taskslot
Processing Speed
(Relative Value)

R0 Faster 8 2.0

R1, R2 Normal 4 1.0

R3 Slower 2 0.5

TABLE V. SIMULATION PARAMETERS

Category Component Value

Job Parameter

Scheduling Method Fair Scheduling

Job Type Sort

Job Size 5GB

Configuration
Parameter

#Taskslots per TT 2~8

Chunk Size 64MB(default)

#Replication 3

Cluster Parameter #TaskTracker (TT) 40

B. Experiment Results

Figure 5 shows the job execution time. We can see that job
execution time becomes significantly long after Job5. Figure
6 shows the phase duration time of map task and reduce task
(divided into copy phase and sort phase) of Job 0 and Jobs 7,
8 and 9. Regarding map task, we distinguish node local map
task, rack local map task and remote map task.

For a given job, the meaning of phase duration time is as
follows: Map Phase is the period from when the Job is turned
on until the end of the final map task. Copy phase is the period
from the start of the copy transmission of the first reduce task
until the end of copy transmission of the last reduce task.
Sort+Reduce Phase is the period from the beginning of reduce
task that entered into the sort phase first until the end of the
last reduce phase (i.e., the end of the job).

From Figure 6, we can see that Map Phase is very short
and completed immediately in each job. On the contrary, copy
phase is very long for Job 7, 8, 9 whose job execution time is
long. Similarly, Job 7, 8, 9 take a very long time since Map
Phase is finished to Sort+Reduce Phase begins, compared to
Job 0.

97Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 5. Job Execution Time per Jobs

Figure 6. Phase Duration Time per Jobs（Job 0, Job 7, Job 8, Job9）

Figure 7. Max Bandwidth Utilization (TT-ToR)

Next, in order to examine the factors that take time to copy
phase, we measured the maximum utilization of the each TT-
ToR downlink and the bandwidth utilization of UP(i) and
DOWN(i) at AGG-ToR links. Each is shown in Figure 7, 8
and 9. From Figure 7, the maximum utilization of the TT-ToR
links is 0.6 or at most 0.8. It can be seen that these links are
underutilized through the Job execution time. By contrast,
from Figure 8 and 9, UP(i) and DOWN(i) links are highly
utilized. Especially, UP (0) link maintains 100% of utilization
for a long period of time.

Figure 10 shows the number of processing Tasks per rack.
Here, the Remote MapTask is a map task that is neither node
local nor rack local. Since we are using slot-dependent
scheduling scheme (a task is assigned immediately if a
taskslot is opened), the number of processing tasks of each

Figure 8. Uplink Bandwidth Utilization (UP)

Figure 9. Downlink Bandwidth Utilization (DOWN)

Figure 10. Number of Tasks per Rack

rack is proportional to the total number of slots allocated to
the rack. From Figure 10, we can see that Rack 0 has
processed a larger number of tasks compared to other racks.
In particular, the number of map processing is remarkable.
Performance Deterioration Mechanisms

From the above experimental results, the performance
deterioration is inferred to occur in the following manner. First,
in CPU heterogeneous environment, there always is a rack
having faster nodes than others. In map task, as most of the
retention time of taskslot is CPU processing time, the faster
rack processes a large amount of map tasks at high speed. It
can be confirmed from Figure 10 that the map task processing
is concentrated in Rack 0. This phenomenon is called "Task
Stealing" [15]. If map tasks concentrate on a particular rack, a
large volume of map output requests occur from inside and
outside of the rack. As a result, the uplink of the faster rack

98Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

becomes highly used. This can be confirmed by Figure 8.
Bottleneck at UP (0) prolongs the copy phase of each reduce
task, thus deteriorating Job performance.

From the above discussion, we conclude that the cause of
performance deterioration in the CPU heterogeneous
environment is the delay of copy phase due to the heavy load
in the inter rack link. Inter rack data transfer is generated in
the following three cases:

(1) Input data split transfer caused by Remote MapTask,
(2) Copy phase transfer caused by ReduceTask,
(3) Job output transfer caused by replication.

Among these, Remote MapTassks are very few, as seen from
Figure 10. Replication is not under the control of HDFS and
out of the scope of Task Scheduling. Thus, we propose a new
scheduling method -Residual Traffic Based Task Scheduling-
that reflects the inter rack data transfer in the copy phase in
task scheduling.

V. RESIDUAL TRAFFIC BASED TASK SCHEDULING

Based on the analysis described above, we propose
enhancements to Hadoop task scheduling to improve Hadoop
performance. Our proposal makes Hadoop scheduler aware of
network congestion and regulates task assignment proactively.
In this section, we propose the enhanced task scheduling
algorithm.

A. Residual Traffic

To predict the inter rack link congestion status, we define
residual traffic of Rack i. Before describing the residual traffic,
we define the residual transmission amount and the residual
reception amount. The residual transmission amount is the
total amount of the map output data that was already generated
by map tasks but have not being received by relevant reduce
tasks. The residual reception amount is the total amount of the
map output data that has not been received yet by relevant
reduce tasks since their assignment.

Residual Up Traffic is the sum of the residual transmission
amount of map output in each rack, and Residual Down
Traffic is the sum of residual reception amount of running
reduce tasks in each rack. Accordingly, ResidualUpTraffic (i)
and ResidualDownTraffic (i) can be calculated as follows:

ResidualUpTraffic(i)

= ∑ 𝑅𝑒𝑚𝑎𝑖𝑛𝐷𝑎𝑡𝑎(𝑀𝐴𝑃(𝑖, 𝑗))
𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑚𝑎𝑝(𝑖)
𝑗=1 (1)

ResidualDownTraffic(i)

= ∑ 𝑅𝑒𝑚𝑎𝑖𝑛𝐷𝑎𝑡𝑎(𝑅𝐸𝐷(𝑖, 𝑗))
𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑟𝑒𝑑(𝑖)
𝑗=1 (2)

Here, Map(i,j) is a map task that was assigned to Rack i in j-
th order, RemainData (MAP) is the total amount of map
output data of a given map task whose transmission is not
completed, RED (i, j) is the ReduceTask that was assigned to
Rack i in j-th order, and RemainData (RED) is the total
amount of map output data that a given reduce task has not
received yet. By calculating residual traffic, we can predict the
load of inter rack links in the immediate future. If a rack has a
large Residual Up Traffic, we can predict that the uplink from
the rack is likely to congest. Similarly, if a rack has a large

TABLE VI. NUMBER OF ASSIGNABLE TASKS IN EACH REGULATORY

LEVEL

Level Green Yellow Red

#Assignable

MapTasks

Available

Map Slot
1 0

#Assignable
ReduceTasks

1 0 0

Residual Down Traffic, we can predict that the downlink to
the rack is likely to congest.

B. Scheduling Algorithm

In the residual traffic based scheduling, JobTracker
monitors the inter rack link bandwidth utilization, and if the
usage has exceeded the threshold level, it adjusts the
regulatory level in task assignment of each rack (i.e.,
UPRegulatoryLevel and DownRegulatoryLevel) referring to
the residual transmission amount and/or residual reception
amount. We discriminate three stages of regulatory level
(Green, Yellow and Red) depending on the combined status
of link utilization and residual traffic amount, so that we can
change the way of task assignment accordingly. Table VI
shows the number of tasks that can be assigned in each of the
regulatory levels.

 Regulatory level (Green): Normal Task Scheduling.
No regulation is applied.

 Regulatory level (Yellow): MapTask can be assigned
one at most. ReduceTask cannot be assigned at all.

 Regulatory level (Red): No Map task or Reduce Task
can be assigned.

Regulatory level is updated at every HeartBeat
communication. Update algorithm for UPRegulatoryLevel of
Rack i is shown below. DownRegulatoryLevel is updated
similarly.

Algorithm Regulatory Level Update Algorithm

WHEN JobTracker receive a HeartBeat from a TaskTracker in

Rack i

IF UPRegulatoryLevel(i) = Green THEN

IF UpBandUsage(i) > StartTH

IF ResidualUpTraffic(i) > Th_yr THEN

Set UPRegulatoryLevel(i) to Red

END IF

IF ResidualUpTraffic(i) < Th_yr THEN

Set UPRegulatoryLevel(i) to Yellow

END IF

END IF

END IF
IF UPRegulatoryLevel(i) = yellow or red THEN

IF UpBandUsage(i) < EndTh THEN

Set UPRegulatoryLevel(i) to Green

END IF

END IF

END WHEN

Figure 11. Regulatory Level Update Algorithm

In the above, UpBandUsage(i) is the uplink bandwidth
utilization of Rack i between ToR Switch and Aggregation
Switch, DownBandUseage(i) is the downlink bandwidth

99Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 12. Average Job Execution Time in Each Experiment

TABLE VII. RESIDUAL TRAFFIC LOAD BASED SCHEDULING

PARAMETER

Parameter Value

StartTH 0.8

EndTH 0.6

Th_yr 3.0

utilization of Rack i between ToR Switch and Aggregation
Switch, StartTH is the bandwidth utilization threshold to start
regulation, EndTH is the bandwidth utilization threshold to
exit regulation, and Th_yr represents the boundary of residual
traffic between strong regulation (Red) and weak regulation
(Yellow).

StartTH and EndTH affect the strength and the duration of
regulation. If StartTH is low, the regulation is easily invoked.
If the difference between StartTH and EndTH is large, the
duration of the regulation becomes long, because once the
regulation is turned on, it is less likely to off. Th_yr also is a
parameter related to the strength of the regulation. If Th_yr is
low, regulatory level is likely to be Red and strong regulation
is applied. Th_yr is a parameter that needs to be properly
adjusted according to the execution environment.

VI. EVALUATION

In this section, we evaluate the Residual Traffic Based
Scheduling described in Section V. In the experiment, we used
the Hadoop cluster simulator described in Section III. We
performed simulation five times by changing only the
Scheduling scheme in the same scenario as preliminary
experiments. The parameters used in the Residual Scheduling
are shown in Table VII. The parameter values in Table VII
were determined empirically to maximize the effectiveness of
the proposed method in this execution scenario.

A. Experiment Results

1) Job Execursion Time: After performing the

experiments five times, we took the average of Job execution

time for each Scheduling method. The result is shown in

Figure 12. The average reduction in Job execution time was

24.2s and the reduction rate was about 13%. The maximum

reduction in Job execution time was 48s and reduction rate

was 23%. From

Figure 13. Job Execution Time Per Jobs

Figure 14. Phase Duration Time per Jobs (Residual Scheduling)

here, we use the results of the third experiment as a result of
Residual Scheduling. Figure 13 shows the Job execution time
of Fair and Residual Scheduling and the reduction rate. The
average, maximum and minimum job execution time was
154s, 236s and 80s, respectively. The maximum reduction rate
was 46% and it appeared in Job 5.

2) Phase Duration Time: To explore the cause of job

execution time improvement, we analyse the duration of each

phase. Figure 14 shows the phase duration time of Job 5, 6,

and 7 whose reduction rate were large in Figure 13. In all of

these jobs, the time difference between the end time of Map

Phase and the start time of Sort + Reduce Phase is small,

compared to Fair scheduling that is shown in Figure 6. To

examine the factors that shorten this interval, we investigate

the state of network link utilization during the time from 50s

to 250s which corresponds to the copy phase of Jobs 5, 6 and

7.

3) Inter Rack Link Bandwidth Utilization: To evaluate

the effectiveness of Residual Scheduling, we measured the

bandwidth utilization of the uplink and downlink between

100Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 15. Bandwidth Utilization (Residual Scheduling)

Figure 16. Number of Tasks per Rack

AGG-SW and ToR-SW of Rack 0 which was congested

under Fair Scheduling. Figure 15 shows the measurement

results. When compared with Figure 8 and 9, bandwidth

utilization is improved during 50 ~ 250s. To investigate the

reason of this improvement, Figure 16 shows the number of

tasks per rack. When compared with Figure 10 which is the

result of Fair Scheduling, the difference between Rack 0

(faster CPU) and Rack 1 & 2 (normal speed CPU) is

shrinking.

4) Residual Traffic: Figures 17 and 18 show the Residual

Up Traffic of each rack under Fair Scheduring and Residual

Scheduling, respectively. The difference in resudial traffic

between racks is equalized under Residual Scheduling.

B. Effectiveness of Residual Traffic Based Scheduling

From Figures 17 and 18, we can see that the residual

amount of transmission is regulated so as not to concentrate

on Rack 0. This is also supported from the fact that the

number of MapTasks assigned to Rack 0 is not concentrated

as shown in Figure 16. However, even under the Residual

Scheduling, the link bandwidth utilization UP (0) becomes

100% at the later stage of simulation as shown in Figure 18.

This is because of the replication of job output performed by

the HDFS and cannot be regurated by task scheduling. As we

used Sort job, twice the amount of job size of data transfer

occurs when the number of Replica is three, thus made UP(0)

bandwidth utilization 100%.

Figure 17. ResidualUpTraffic (Fair)

Figure 18. ResidualUpTraffic (Residual)

In summary, although it cannot cope with HDFS replication,

the proposed Residual Scheduling can alleviate inter rack link

load and shorten the duration of copy phase, thus achieving

job performance improvement up to 23%.

C. Future Works

The proposed scheduler could not be fully compatible with

replication procedure. This could be improved if we take into

account the replication traffic in residual traffic. Also, in this

paper we assumed sort jobs only, because it generates large

amount of data transfer over the network. Mixture of other

job types needs to be considered. Furthermore,

implementation of proposed scheduling method needs to be

studied.

VII. CONCLUSION

This paper discussed the impact of data transfer in Hadoop
job performance. Using network simulation, it revealed the
mechanism of job performance deterioration caused by the
delay of copy phase due to the heavy load in the inter rack link
of the cluster network. Based on this analysis, we proposed a
new scheduling method -Residual Traffic Based Task
Scheduling- that estimates the amount of inter rack data
transfer in the copy phase and regulates task assignment
accordingly. We evaluated this scheduling method and
showed that the proposed method can improve Hadoop job
performance significantly.

101Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

REFERENCES

[1] T. White. Hadoop: The Definitive Guide, 3rd Edition, O'Reilly
Media / Yahoo Press,California, 2012.

[2] J. Dean, S. Ghemawat, “MapReduce: Simplified data
processing on large clusters" Communications of the ACM
51.1 (2008): pp.107-113.

[3] The Apache Software Foundation. Apache Hadoop. [Online].
Available from: http://hadoop.apache.org 2015.1. 13.

[4] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S.
Shenker, and I. Stoica, “Delay scheduling: A simple technique
for achieving locality and fairness in cluster scheduling”.
EuroSys conf., pp. 265-278, Paris, France, Apr. 2010.

[5] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S.
Shenker, and I. Stoica, “Job Scheduling for Multi-User
MapReduce Clusters”, Technical Report of EECS Department,
University of California, Berkeley, 2009.

[6] A.Verma, B. Cho, N. Zea, I. Gupta, R. H. Campbell, "Breaking
the MapReduce Stage Barrier", Cluster computing, 2013 –
Springer

[7] J. Xie, S. Yin, X. Ruan, Z. Ding, Y.Tian, J.Majors, A.
Manzanares, X. Qin, “Improving MapReduce performance
through data placement in heterogeneous Hadoop clusters”,
IEEE International Symposium on Parallel & Distributed
Processing, Workshops and Phd Forum (IPDPSW), pp 1-9,
2010

[8] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, I Stoica,
“Improving MapReduce Performance in Heterogeneous

Environments”, Technical Report of EECS Department, University of
California, Berkeley, No. UCB/EECS-2009-183, Dec. 2009

[9] C. Qi, C. Liu, Z. Xiao, "Improving MapReduce Performance
Using Smart Speculative Execution Strategy", IEEE
Transactions on Computers, pp954-967, 2013

[10] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, I. Stoica,
"Managing data transfers in computer clusters with orchestra"
ACM SIGCOMM2011, pp98-109, 2011

[11] Amazon Web Services Inc. Amazon Web Services, Cloud

Computing: Compute, Storage, Datababase. [Online].

Abailable from: http://aws.amazon.com 2015.1. 13.

[12] G. Wang, A. R. Butt, P. Pandey, K Gupta, "A simulation
approach to evaluating design decisions in mapreduce setups."
MASCOTS'09. Pp1-11, 2009.

[13] ns-3. [Online]. Available from: http://www.nsnam.org/ 2015.1.
13.

[14] H. Watanabe, M. Kawarasaki, “Impact of Data Transfer to
Hadoop Job Performance - Architectural Analysis and
Experiment -, ACMSE2014, Mar. 2014

[15] T. Chao, H. Zhou, Y. He, L. Zha, "A dynamic mapreduce
scheduler for heterogeneous workloads." Grid and Cooperative
Computing, 2009. GCC'09. Eighth International Conference on.
IEEE, 2009.

[16] F. Ahmad, S. T. Chakradhar, A. Raghunathan, T. N. Vijaykumar,
"Tarazu: optimizing mapreduce on heterogeneous clusters." ACM
SIGARCH Computer Architecture News. Vol. 40. No. 1. ACM, 2012.

102Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

