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Abstract— In Hadoop job processing, it is reported that a large 

amount of data transfer significantly influences job 

performance. In this paper, we clarify that the cause of 

performance deterioration in the CPU (Central Processing 

Unit) heterogeneous environment is the delay of copy phase due 

to the heavy load in the inter rack links of the cluster network. 

Thus, we propose a new scheduling method -Residual Traffic 

Based Task Scheduling- that estimates the amount of inter rack 

data transfer in the copy phase and regulates task assignment 

accordingly. We evaluate the scheduling method by using ns-3 

(network simulator-3) and show that it can improve Hadoop job 

performance significantly.  

Keywords- distributed computing; Hadoop; MapReduce; job 

performance; network simulation. 

I.  INTRODUCTION 

Owing to the rapid reduction in hard disk drive (HDD) 
cost and the rapid expansion in the variety of services, the 
amount of data volume in the world is ever increasing. Along 
with it, there are ongoing efforts worldwide to extract useful 
information from a large amount of data (big data) [1]. Under 
these circumstances, MapReduce [2] was developed as a 
distributed processing framework for big data. In MapReduce, 
data processing is performed in two stages, namely map stage 
and reduce stage. By performing parallel distributed 
processing in each stage, big data can be processed at high 
speed. Hadoop [3] is an open source framework of 
MapReduce that implements the functionalities to deal with 
problems such as fault tolerance, load distribution and 
consistency. As a result, Hadoop removed many difficulties of 
conventional distributed processing, thus making many 
enterprises such as Facebook, Yahoo and New York Times to 
use it for site management or log analysis. 

Since Hadoop has become popular, research on improving 
Hadoop performance is being actively carried out in pursuit of 
a more efficient scheduling scheme [4]-[9]. However, these 
studies have been focusing on scheduling computation and 
storage resources, while mostly ignoring network resources. 
In [10], it is reported that data transfer time may account for 
more than 50% of total job execution time. In this paper, we 
explore how data transfer affects Hadoop job performance. In 
particular, we analyze how network congestion deteriorates 
overall job performance and, based on this analysis, we 

propose enhancements to Hadoop scheduler by introducing 
the concept of residual traffic over the network. 

For the study of Hadoop performance, we need to build a 
large-scale experimental environment. On the other hand, the 
scale of the production environment of Hadoop is very large, 
having several hundred to several thousand nodes [1]. Since 
building the actual size of the cluster is not realistic, many 
studies described above use cloud services such as Amazon 
Elastic Compute Cloud (Amazon EC2) [11] to construct the 
experimental environment. In the cloud service, although the 
node performance (e.g., CPU and HDD) and the minimum 
bandwidth of inter-node links are guaranteed, the network 
topology is opaque. Furthermore, resource usage may be 
affected by other users of the cloud. Accordingly, we have 
developed Hadoop cluster simulator using ns-3 (network 
simulator-3) [12] [13] so that we can set the size and the 
topology of a network freely. 

Using this Hadoop cluster simulator, we perform Hadoop 
simulation using sort benchmark. Through this experiment, 
we clarify that the cause of performance deterioration in the 
CPU heterogeneous environment is the delay of copy phase 
due to the heavy load in the inter rack links of the cluster 
network. Based on this analysis, we propose a new scheduling 
method -Residual Traffic Based Task Scheduling- that 
estimates the amount of inter rack data transfer in the copy 
phase and regulates task assignment accordingly. We evaluate 
the proposed scheduling method and show that it can improve 
Hadoop job performance significantly. 

The rest of this paper is organized as follows. Section II 
provides an overview of Hadoop architecture and mechanism. 
Section III and IV describe the Hadoop cluster simulator and 
experiment discussing performance issues. Based on this, 
Section V proposes residual traffic based task scheduling to 
improve Hadoop performance and Section VI discusses its 
effectiveness. Section VII concludes this paper. 

II. HADOOP OVERVIEW 

A. Hadoop Structure 

Hadoop consists of MapReduce engine and Hadoop 
Distributed File System (HDFS) as shown in Figure 1. 
Hadoop cluster is made of one MasterNode and many 
SlaveNodes. The MasterNode and the SlaveNode 
communicate with each other using the HeartBeat mechanism. 
The MasterNode receives HeartBeat message from a 
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SlaveNode at a constant frequency. It includes the state 
information of the SlaveNode.  

In MapReduce engine, the MasterNode is called 
JobTracker and the Slave Node is called TaskTracker. When 
JobTracker receives a job from a user, it divides it into small 
tasks and assigns them to TaskTrackers. When a TaskTracker 
requests a task assignment to JobTracker by sending a 
HeartBeat message, the JobTracker assigns a task in response 
to this so that the number of assigned tasks does not exceed 
the number of taskslots whose value is pre-determined 
according to the performance of each TaskTracker node. 

In HDFS, the MasterNode is called NameNode and the 
SlaveNode is called DataNode. When NameNode receives 
data from a user, it splits it into small file blocks (called 
chunks) having 64MB in size, and distributes them to 
DataNodes. At this time, NameNode produces replica to 
improve fault tolerance and reachability.  

 

 
Figure 1.  Hadoop Structure 

B. MapReduce Procedures 

MapReduce is a distributed processing framework for big  
data that processes data by using map function and reduce 
function that are defined by a user. Figure 2 shows 
MapReduce processing flow.  

When a user submits a job, the JobTracker receives the 
input data split of the user data and generates map tasks. One 
map task is generated for one input data split. After the Job is 
turned on and the HeartBeat arrives at the JobTracker from a 
TaskTracker, the JobTracker assigns as many map tasks as the 
number of free map taskslot of the TaskTracker. In this case, 
a map task is assigned preferentially to the TaskTracker that 
holds the input data split to be processed. This map task is 
called a data local map task. If a map task is not data local, 
input data split needs to be obtained from other node over a 
network. After obtaining the input data split, the map function 
is executed.  The result (map output) is stored in HDFS. When 
the map task is successfully completed, the TaskTracker sends 
a termination notice to the JobTracker. 

When a part of map tasks of a given job (5% by default) 
are completed, JobTracker starts to assign reduce tasks to 
TaskTrackers. Reduce task collects all the map output having 
the same key over the network (copy phase) and performs 
reduce function. The results are stored in HDFS. When the 
reduce task is successfully completed, the TaskTracker sends 
a termination notice to JobTracker. JobTracker sends the Job 
completion notification to the user when it confirmed the end 
of all of tasks, and the job completes.  

 

 
Figure 2.  MapReduce Procedures 

C. Hadoop Network I/O 

During the MapReduce procedures, data transfer occurs in 
the following occasions.  

1) Transfer of input data split: When assigned map task 

is not data local, input data split is obtained from other node. 

In this case, transmission of the size of input data split (by 

default 64MB) is generated. 

2) Transfer of map output data: Reducer node receives 

all the relevant map outputs from mapper nodes. In this case, 

transmission of the total amount of map outputs is generated. 

We define this as resilient traffic in the later section of this 

paper. 

3)  Transfer of reduce output replica:  
As reduce task output data (i.e., Job output data) is stored 

in the HDFS, transmission of copies corresponding to the 
number of replicas is generated. By default, three replicas are 
generated. One of the replicas is stored on the disk of the 
reducer node and the other two are stored in other nodes 

III. HADOOP CLUSTER SIMULATOR 

A. Design Principle 

The objective of Hadoop cluster simulator is to provide 
experimental environment of Hadoop cluster network whose 
size and topology can be set freely. It simulates Hadoop job 
scheduling and task scheduling as defined in Hadoop version 
1.1.2 and the three kinds of data transfer as described in 
Section II-C. We designed the simulator to keep track of 
cooperation with Hadoop scheduler behavior and network 
behavior. 

B. Input Parameters 

Although there are many parameters that can be set to 
actual Hadoop, the parameters that affect the performance of 
Hadoop are limited. The parameters used in our simulation are 
shown in Table I. 

TABLE I.  SIMULATION PARAMETERS 

Category Component 

Job parameter Scheduling method (FIFO, Fair),  
Job type (sort, search, index, etc.) 

Configuration parameter 
Number of taskslots, Chunk size, 

  Number of replicas 

Cluster parameter Network topology, Number of nodes 
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Job parameters include Job Scheduling methods such as 
FIFO (First In First Out) Scheduling and Fair Scheduling, and 
Job types such as sort, search and index. They affect data 
transfer in the data generation timing and the amount of data. 
Specific values are shown in Table II and explained in section 
C. 

The Configuration Parameters are the parameters that are 
set in the actual Hadoop configuration file. What affects data 
transfer is the block size when non-data local map task obtains 
input data split from other node and the number of replicas 
when the job output is copied to HDFS. The maximum 
number of task slots that is pre-allocated to each node affects 
the data transfer as well. If the number of slots is large, 
network traffic might occur in bursts and if the number of slots 
is not uniform among TaskTrackers, imbalance might occur 
in link bandwidth utilization.

The Cluster Parameters are the parameters that determine 
a network configuration of the cluster, such as the network 
topology and the number of nodes. 
 

C. Modelling of Map Task and Reduce Task Processing 

Key parameters that determine Hadoop performance are 
task processing time and output data size. We assumed the 
following: 

1) Task Processing Time: Task processing time is 

determined only by the data size, not by the data content.  

Specific values are shown in Table II. These values were 

determined by reference to [12] and the actual measurement 

value in our experimental Hadoop cluster made of real 

machines [14]. 

2) Disk I/O Time: The time needed for disk I/O is 

negligibly small. 
Output data size is calculated by “Filter” value. Filter means 

the ratio of output data size to input data size.  

TABLE II.  SPECIFIC PARAMETER VALUES 

Parameters 
Job Type 

sort search index 

MapFilter (%) 100 0-0.1 2-50 

ReduceFilter (%) 100 100 2-50 

MapProcessSpeed (sec/MB) 0.03 0.16 0.016 

Reduce ProcessSpeed (sec/MB) 

(Sort phase) 
0.016 0.016 0.016 

Reduce ProcessSpeed (sec/MB) 
(Reduce phase) 

0 0 0 

 
Reduce task is divided into copy, sort and reduce phases. 

Reduce tasks can start when only some map tasks complete 
(by default 5%), which allows reduce tasks to copy map 
outputs earlier as they become available and hence mitigates 
network congestion. However, no reduce task can step into the 
sort phase until all map tasks complete. This is because each 
reduce task must finish copying outputs from all the map tasks 
to prepare the input for the sort phase.  

The amount of data transfer in the copy phase is 
determined by “(map output data size) / (the number of reduce 
tasks)”. As the reduce output (i.e., job output) will be copied 

to other nodes by the HDFS, the data transfer amount 
generated at replication depends on the size of the reduce task 
output. 

D. Validation of Developed Simulator 

To validate the accuracy of the developed simulator, we 
performed comparative experiments with our experimental 
Hadoop cluster made of Amazon EC2[14]. The comparison 
scenario is shown in Table III. Validation was focused on 
scheduler behavior and network I/O of TaskTrackers. 

TABLE III.  COMPARISON SCENARIO 

Parameter Component 

# Nodes JobTracker : 1, TaskTracker :20 

# Task slots map slot = 4, reduce slot = 4 

Clunk Size 64 MB (by default) 

Job Type sort 

# Job 1 

Job Size 10 GB 

 

1) Scheduler Behavior: We validated the accuracy of task 

scheduling for the followings: 

a) Priority handling of Data Local Map Task: Basically, 

map tasks are processed in the order of task ID. However, if 

a particular map task is not data local, the assignment of that 

map task is skipped. 

b) Concurrent Processing of Map Tasks: If the number 

of map tasks of a given job is greater than the total number of 

map task slots within a cluster, all the map tasks cannot be 

assigned in one cycle. In this case, map task assignment is 

achieved in several cycles. 

c) Start of Reduce Task: Reduce task can starts to be 

assigned when a certain amount of map tasks are completed. 

d) Phased Processing of Reduce Task: Sort and reduce 

phases cannot be started until copy phase is completed. 

By comparing the task progress gantt charts of Hadoop 

EC2 cluster and the developed simulator as well as examining 

simulation logs, we confirmed that these behaviors are 

accurately simulated. 

2) Network I/O of TaskTrackers: We examined whether 

three kinds of data transfer as described in Section II-C occur 

at suitable timing. In our experiment, we measured the 

throughput at the network interface of a TaskTracker that is 

assigned one non data local map task and some reduce tasks. 

The result is shown in Figure 3. From Figure 3 and 

experimental log, we confirmed the following:  
i. Transfer of input data split occurs at the timing of 

non-data local map task assignment. 
ii. Transfer of map output data occurs at the timing of 

reduce task assignment. 
iii. Transfer of reduce output replica occurs at the end of 

reduce task. 

From the above, we have confirmed that this simulator  

correctly simulates Hadoop cluster behavior. 
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Figure 3.  Network Input Throughput at a TaskTracker 

 

IV. EXPERIMENT OF HADOOP PERFORMANCE 

By using the developed simulator, we carried out Hadoop 
performance experiment. 

A. Experiment Setting 

The network model of experimental Hadoop cluster is 
shown in Figure 4. It has a tree structure (double-star type) 
that is common in many datacenters.  It consists of 4 racks 
each of which includes 10 worker nodes.  In total, there are 40 
TaskTrackers (TTs) and one JobTracker (JT).  

Each worker node is connected to Top of Rack switch 
(ToR-SW) by 1Gbps link. We call these links ToR-TT link in 
this paper. Each ToR switch is connected to Aggregate switch 
(AGG-SW) by 2.5Gbps link. As for the links between AGG-
SW and Rack i, we call the uplink UP(i) and the downlink 
DOWN(i). Regarding CPU performance, we assumed 
heterogeneous environment. The CPU processing speed is 
faster in Rack 0, normal in Racks 1 and 2, and slower in Rack 
3. The specific values are shown in Table IV. Conforming to 
CPU processing speed, the number of pre-allocated task slots 
in worker node is 8 for Rack 0, 4 for Rack 1 and 2, and 2 for 
Rack 3. We assumed homogeneous environment within each 
rack.  

Job characteristics are summarized in Table V. In our 

experiment, a sort job having 5Gbytes was submitted every 5 

seconds to the cluster. A total of 10 jobs were submitted in one 

experiment. We used sort benchmark that generates a large 

amount of output data. This is because we focused on the 

analysis of data transfer in Hadoop performance.  

As for Job Scheduling, we used Fair Scheduler [5]. In Fair 

Scheduler, jobs are grouped into pools. When a slot needs to 

be assigned, the job that has been most unfair is scheduled. 

This time, we implemented to assign one pool for each job. 

Accordingly, all the running jobs are scheduled to obtain task 

slots equally.  

 

 

Figure 4.  Experiment Cluster Architecture 

 

TABLE IV.  NODE PARAMETERS 

Rack 
CPU 

performance 
# Map/Reduce 

taskslot 
Processing Speed  
(Relative Value) 

R0 Faster 8 2.0 

R1, R2 Normal 4 1.0 

R3 Slower 2 0.5 

 

TABLE V.  SIMULATION PARAMETERS 

Category Component Value 

Job Parameter 

Scheduling Method Fair Scheduling 

Job Type Sort 

Job Size 5GB 

Configuration 
Parameter 

#Taskslots per TT 2~8 

Chunk Size 64MB(default) 

#Replication 3 

Cluster Parameter #TaskTracker (TT) 40 

B. Experiment Results 

Figure 5 shows the job execution time. We can see that job 
execution time becomes significantly long after Job5. Figure 
6 shows the phase duration time of map task and reduce task 
(divided into copy phase and sort phase) of Job 0 and Jobs 7, 
8 and 9. Regarding map task, we distinguish node local map 
task, rack local map task and remote map task.  

For a given job, the meaning of phase duration time is as 
follows: Map Phase is the period from when the Job is turned 
on until the end of the final map task. Copy phase is the period 
from the start of the copy transmission of the first reduce task 
until the end of copy transmission of the last reduce task. 
Sort+Reduce Phase is the period from the beginning of reduce 
task that entered into the sort phase first until the end of the 
last reduce phase (i.e., the end of the job).  

From Figure 6, we can see that Map Phase is very short 
and completed immediately in each job. On the contrary, copy 
phase is very long for Job 7, 8, 9 whose job execution time is 
long. Similarly, Job 7, 8, 9 take a very long time since Map 
Phase is finished to Sort+Reduce Phase begins, compared to 
Job 0. 
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Figure 5.  Job Execution Time per Jobs 

 

Figure 6.  Phase Duration Time per Jobs（Job 0, Job 7, Job 8, Job9） 

 

Figure 7.  Max Bandwidth Utilization (TT-ToR) 

Next, in order to examine the factors that take time to copy 
phase, we measured the maximum utilization of the each TT-
ToR downlink and the bandwidth utilization of UP(i) and 
DOWN(i) at AGG-ToR links. Each is shown in Figure 7, 8 
and 9. From Figure 7, the maximum utilization of the TT-ToR 
links is 0.6 or at most 0.8. It can be seen that these links are 
underutilized through the Job execution time. By contrast, 
from Figure 8 and 9, UP(i) and DOWN(i) links are highly 
utilized. Especially, UP (0) link maintains 100% of utilization 
for a long period of time. 

Figure 10 shows the number of processing Tasks per rack. 
Here, the Remote MapTask is a map task that is neither node 
local nor rack local. Since we are using slot-dependent 
scheduling scheme (a task is assigned immediately if a 
taskslot is opened), the number of processing tasks of each  

 

Figure 8.  Uplink Bandwidth Utilization (UP) 

 
Figure 9.  Downlink Bandwidth Utilization (DOWN) 

 

Figure 10.  Number of Tasks per Rack 

rack is proportional to the total number of slots allocated to 
the rack. From Figure 10, we can see that Rack 0 has 
processed a larger number of tasks compared to other racks. 
In particular, the number of map processing is remarkable. 
Performance Deterioration Mechanisms 

From the above experimental results, the performance 
deterioration is inferred to occur in the following manner. First, 
in CPU heterogeneous environment, there always is a rack 
having faster nodes than others. In map task, as most of the 
retention time of taskslot is CPU processing time, the faster 
rack processes a large amount of map tasks at high speed. It 
can be confirmed from Figure 10 that the map task processing 
is concentrated in Rack 0. This phenomenon is called "Task 
Stealing" [15]. If map tasks concentrate on a particular rack, a 
large volume of map output requests occur from inside and 
outside of the rack. As a result, the uplink of the faster rack 
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becomes highly used. This can be confirmed by Figure 8. 
Bottleneck at UP (0) prolongs the copy phase of each reduce 
task, thus deteriorating Job performance. 

From the above discussion, we conclude that the cause of 
performance deterioration in the CPU heterogeneous 
environment is the delay of copy phase due to the heavy load 
in the inter rack link. Inter rack data transfer is generated in 
the following three cases:  

(1) Input data split transfer caused by Remote MapTask,  
(2) Copy phase transfer caused by ReduceTask,  
(3) Job output transfer caused by replication. 

Among these, Remote MapTassks are very few, as seen from 
Figure 10. Replication is not under the control of HDFS and 
out of the scope of Task Scheduling. Thus, we propose a new 
scheduling method -Residual Traffic Based Task Scheduling- 
that reflects the inter rack data transfer in the copy phase in 
task scheduling. 

V. RESIDUAL TRAFFIC BASED TASK SCHEDULING 

Based on the analysis described above, we propose 
enhancements to Hadoop task scheduling to improve Hadoop 
performance. Our proposal makes Hadoop scheduler aware of 
network congestion and regulates task assignment proactively. 
In this section, we propose the enhanced task scheduling 
algorithm. 

A. Residual Traffic 

To predict the inter rack link congestion status, we define 
residual traffic of Rack i.  Before describing the residual traffic, 
we define the residual transmission amount and the residual 
reception amount. The residual transmission amount is the 
total amount of the map output data that was already generated 
by map tasks but have not being received by relevant reduce 
tasks. The residual reception amount is the total amount of the 
map output data that has not been received yet by relevant 
reduce tasks since their assignment.  

Residual Up Traffic is the sum of the residual transmission 
amount of map output in each rack, and Residual Down 
Traffic is the sum of residual reception amount of running 
reduce tasks in each rack. Accordingly, ResidualUpTraffic (i) 
and ResidualDownTraffic (i) can be calculated as follows: 

 
ResidualUpTraffic(i) 

= ∑ 𝑅𝑒𝑚𝑎𝑖𝑛𝐷𝑎𝑡𝑎(𝑀𝐴𝑃(𝑖, 𝑗))
𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑚𝑎𝑝(𝑖)
𝑗=1        (1) 

 
ResidualDownTraffic(i) 

= ∑ 𝑅𝑒𝑚𝑎𝑖𝑛𝐷𝑎𝑡𝑎(𝑅𝐸𝐷(𝑖, 𝑗))
𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑟𝑒𝑑(𝑖)
𝑗=1        (2) 

 
Here, Map(i,j) is a map task that was assigned to Rack i in j-
th order, RemainData (MAP) is the total amount of map 
output data of a given map task whose transmission is not 
completed, RED (i, j)  is the ReduceTask that was assigned to 
Rack i in j-th order, and RemainData (RED) is the total 
amount of map output data that a given reduce task has not 
received yet. By calculating residual traffic, we can predict the 
load of inter rack links in the immediate future. If a rack has a 
large Residual Up Traffic, we can predict that the uplink from 
the rack is likely to congest. Similarly, if a rack has a large  

TABLE VI.  NUMBER OF ASSIGNABLE TASKS IN EACH REGULATORY 

LEVEL 

Level Green Yellow Red 

#Assignable  

MapTasks 

Available 

Map Slot 
1 0 

#Assignable  
ReduceTasks 

1 0 0 

 
Residual Down Traffic, we can predict that the downlink to 
the rack is likely to congest.  

B. Scheduling Algorithm 

In the residual traffic based scheduling, JobTracker 
monitors the inter rack link bandwidth utilization, and if the 
usage has exceeded the threshold level, it adjusts the 
regulatory level in task assignment of each rack (i.e., 
UPRegulatoryLevel and DownRegulatoryLevel) referring to 
the residual transmission amount and/or residual reception 
amount. We discriminate three stages of regulatory level 
(Green, Yellow and Red) depending on the combined status 
of link utilization and residual traffic amount, so that we can 
change the way of task assignment accordingly. Table VI 
shows the number of tasks that can be assigned in each of the 
regulatory levels. 

 Regulatory level (Green): Normal Task Scheduling. 
No regulation is applied.  

 Regulatory level (Yellow): MapTask can be assigned 
one at most. ReduceTask cannot be assigned at all. 

 Regulatory level (Red): No Map task or Reduce Task 
can be assigned. 

Regulatory level is updated at every HeartBeat 
communication. Update algorithm for UPRegulatoryLevel of 
Rack i is shown below. DownRegulatoryLevel is updated 
similarly.  
 

Algorithm Regulatory Level Update Algorithm 

WHEN JobTracker receive a HeartBeat from a TaskTracker in 

Rack i 

IF UPRegulatoryLevel(i) = Green THEN 

IF UpBandUsage(i) > StartTH 

IF ResidualUpTraffic(i) > Th_yr THEN 

Set UPRegulatoryLevel(i) to Red 

END IF 

IF ResidualUpTraffic(i) < Th_yr THEN 

Set UPRegulatoryLevel(i) to Yellow 

END IF  

END IF 

END IF 
IF UPRegulatoryLevel(i) = yellow or red THEN 

IF UpBandUsage(i) < EndTh THEN 

Set UPRegulatoryLevel(i) to Green 

END IF 

END IF 

END WHEN 

Figure 11.  Regulatory Level Update Algorithm 

In the above, UpBandUsage(i) is the uplink bandwidth 
utilization of Rack i between ToR Switch and Aggregation 
Switch, DownBandUseage(i) is the downlink bandwidth  
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Figure 12.  Average Job Execution Time in Each Experiment 

TABLE VII.  RESIDUAL TRAFFIC LOAD BASED SCHEDULING 

PARAMETER 

Parameter Value 

StartTH 0.8 

EndTH 0.6 

Th_yr 3.0 

 
utilization of Rack i between ToR Switch and Aggregation 
Switch, StartTH is the bandwidth utilization threshold to start 
regulation, EndTH is the bandwidth utilization threshold to 
exit regulation, and Th_yr represents the boundary of residual 
traffic between strong regulation (Red) and weak regulation 
(Yellow). 

StartTH and EndTH affect the strength and the duration of 
regulation. If StartTH is low, the regulation is easily invoked. 
If the difference between StartTH and EndTH is large, the 
duration of the regulation becomes long, because once the 
regulation is turned on, it is less likely to off. Th_yr also is a 
parameter related to the strength of the regulation. If Th_yr is 
low, regulatory level is likely to be Red and strong regulation 
is applied. Th_yr is a parameter that needs to be properly 
adjusted according to the execution environment. 

VI. EVALUATION 

In this section, we evaluate the Residual Traffic Based 
Scheduling described in Section V. In the experiment, we used 
the Hadoop cluster simulator described in Section III. We 
performed simulation five times by changing only the 
Scheduling scheme in the same scenario as preliminary 
experiments. The parameters used in the Residual Scheduling 
are shown in Table VII. The parameter values in Table VII 
were determined empirically to maximize the effectiveness of 
the proposed method in this execution scenario.  

A. Experiment Results 

1) Job Execursion Time: After performing the 

experiments five times, we took the average of Job execution 

time for each Scheduling method. The result is shown in 

Figure 12. The average reduction in Job execution time was 

24.2s and the reduction rate was about 13%. The maximum 

reduction in Job execution time was 48s and reduction rate 

was 23%. From 

 

Figure 13.  Job Execution Time Per Jobs 

 
Figure 14.  Phase Duration Time per Jobs (Residual Scheduling) 

here, we use the results of the third experiment as a result of 
Residual Scheduling. Figure 13 shows the Job execution time 
of Fair and Residual Scheduling and the reduction rate. The 
average, maximum and minimum job execution time was 
154s, 236s and 80s, respectively. The maximum reduction rate 
was 46% and it appeared in Job 5. 

2) Phase Duration Time: To explore the cause of job 

execution time improvement, we analyse the duration of each 

phase. Figure 14 shows the phase duration time of Job 5, 6, 

and 7 whose reduction rate were large in Figure 13. In all of 

these jobs, the time difference between the end time of Map  

Phase and the start time of Sort + Reduce Phase is  small, 

compared to Fair scheduling that is shown in Figure 6.  To 

examine the factors that shorten this interval, we investigate 

the state of network link utilization during the time from 50s 

to 250s which corresponds to the copy phase of Jobs 5, 6 and 

7. 

3) Inter Rack Link Bandwidth Utilization: To evaluate 

the effectiveness of Residual Scheduling, we measured the 

bandwidth utilization of the uplink and downlink between  
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Figure 15.  Bandwidth Utilization (Residual Scheduling) 

 

Figure 16.  Number of Tasks per Rack 

AGG-SW and ToR-SW of Rack 0 which was congested 

under Fair Scheduling. Figure 15 shows the measurement 

results. When compared with Figure 8 and 9, bandwidth 

utilization is improved during 50 ~ 250s.  To investigate the 

reason of this improvement, Figure 16 shows the number of 

tasks per rack. When compared with Figure 10 which is the 

result of Fair Scheduling, the difference between Rack 0 

(faster CPU) and Rack 1 & 2 (normal speed CPU) is 

shrinking.  

4) Residual Traffic: Figures 17 and 18 show the Residual 

Up Traffic of each rack under Fair Scheduring and Residual 

Scheduling, respectively. The difference in resudial traffic 

between racks is equalized under Residual Scheduling.  

B. Effectiveness of Residual Traffic Based Scheduling 

From Figures 17 and 18, we can see that the residual 

amount of transmission is regulated so as not to concentrate 

on Rack 0. This is also supported from the fact that the 

number of MapTasks assigned to Rack 0 is not concentrated 

as shown in Figure 16. However, even under the Residual 

Scheduling, the link bandwidth utilization UP (0) becomes 

100% at the later stage of simulation as shown in Figure 18. 

This is because of the replication of job output performed by 

the HDFS and cannot be regurated by task scheduling. As we 

used Sort job, twice the amount of job size of data transfer 

occurs when the number of Replica is three, thus made UP(0) 

bandwidth utilization 100%.  

 

 

Figure 17.  ResidualUpTraffic (Fair) 

 

Figure 18.  ResidualUpTraffic (Residual) 

In summary, although it cannot cope with HDFS replication, 

the proposed Residual Scheduling can alleviate inter rack link 

load and shorten the duration of copy phase, thus achieving 

job performance improvement up to 23%. 

C. Future Works 

The proposed scheduler could not be fully compatible with 

replication procedure. This could be improved if we take into 

account the replication traffic in residual traffic. Also, in this 

paper we assumed sort jobs only, because it generates large 

amount of data transfer over the network. Mixture of other 

job types needs to be considered. Furthermore, 

implementation of proposed scheduling method needs to be 

studied. 

VII. CONCLUSION 

This paper discussed the impact of data transfer in Hadoop 
job performance. Using network simulation, it revealed the 
mechanism of job performance deterioration caused by the 
delay of copy phase due to the heavy load in the inter rack link 
of the cluster network. Based on this analysis, we proposed a 
new scheduling method -Residual Traffic Based Task 
Scheduling- that estimates the amount of inter rack data 
transfer in the copy phase and regulates task assignment 
accordingly. We evaluated this scheduling method and 
showed that the proposed method can improve Hadoop job 
performance significantly. 
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