
DesktopCloudSim: Simulation of Node Failures in

the Cloud

Abdulelah Alwabel, Robert Walters, Gary Wills

School of Electronics and Computer Science

University of Southampton

Southampton, UK

e-mail: {aa1a10, rjw1, gbw}@ecs.soton.ac.uk

Abstract—Simulation tools are commonly used by researchers

to simulate Clouds in order to study various research issues

and test proposed solutions. CloudSim is widely employed to

simulate Cloud computing by both academia and industry.

However, it lacks the ability to simulate failure events which

may occur to physical nodes in the infrastructure level of a

Cloud. This paper proposes DesktopCloudSim tool as an

extension developed to overcome this shortage. In order to

demonstrate the effectiveness of this tool, we evaluate the

throughput of simulating a private Cloud built on top of faulty

nodes based on empirical data collected from NotreDame

Desktop Grid.

Keywords-Cloud; CloudSim; DesktopCloudSim; Failure;

Nodes.

I. INTRODUCTION

Cloud computing has emerged with a promise to improve
performance and reduce running costs. The services of Cloud
computing are provided by Cloud Service Providers (CSPs).
Traditionally, CSPs use a huge number of computing
resources in the infrastructure level located in datacentres.
Such resources are claimed to have a high level of reliability
which makes them resilient to failure events [1]. However, a
new direction of Cloud has recently emerged with an aim to
exploit normal Desktop computers, laptops, etc. to provide
Cloud services [2]. This kind of Cloud can be called Desktop
Clouds [3]. In contrast to the traditional way of CSP which
uses a huge number of computing resources that are
dedicated to be part of the Cloud. Throughout this paper, the
term Traditional Cloud refers to this traditional way of
Clouds.

The cost-effectiveness of Desktop Clouds is the main
advantage over Traditional Clouds. Researchers in Desktop
Clouds can benefit from Cloud services at little cost, if not
free. However, such feature comes with a price. The nodes of
a Desktop Cloud are quite volatile and prone to failure
without prior knowledge. This may affect the throughput of
tasks and violate the service level agreement. The throughput
is defined as the number of successful tasks submitted to be
processed by Virtual Machines (VMs). Various VM
allocation mechanisms can yield different variations of
throughput level in the presence of node failures.

VM allocation mechanism is the process of allocation
requested VMs by Cloud‟s users to physical machines (PMs)
in the infrastructure level of a Cloud. The contribution of this
paper can be summarised into: (i) it proposes and describes
the DesktopCloudSim as being an extension for CloudSim
simulation toolkit; (ii) it investigates the impact of failure
events on throughput and (iii) three VM mechanisms: FCFS,
Greedy and RoundRobin mechanisms are evaluated in terms
of throughput using DesktopCloudSim. The reminder of this
paper is organised as follows: Section II discusses Desktop
Cloud as being a new direction of Cloud computing.
Section III proposes the simulation tool that extends
CloudSim. The section starts by reviewing CloudSim to
show the need to extend it. The section, then, reviews some
VM allocation mechanisms. Next section demonstrates
experiments conducted to evaluate the impact of node
failures in a Desktop Cloud based on empirical data of
failures in NotreDame nodes. The results are then analysed
and discussed in Section V. Several related works are
reviewed in Section VI. Finally, a conclusion and future
work insights are given in the last section.

II. DESKTOP CLOUD

The success of Desktop Grids motivates the idea of
harnessing idle resources to build Desktop Clouds. Hence,
the term Desktop comes from Desktop Grids because both of
Desktop Clouds and Desktop Grids are based on Desktop
PCs and laptops etc. Similarly, the term Cloud comes from
Cloud as Desktop Cloud aims to provide services based on
the Cloud business model. Several synonyms for Desktop
Cloud have been used, such as Ad-hoc Cloud [4], Volunteer
Cloud [2], Community Cloud [5] and Non-Dedicated Cloud
[6]. The literature shows that very little work has been
undertaken in this direction.

There are some differences between Desktop Clouds and
Traditional Clouds. Firstly, the infrastructure of Desktop
Cloud consists of resources that are non-dedicated, i.e., not
made to be part of Cloud infrastructure. Desktop Cloud helps
in saving energy since it utilises already-running undedicated
resources which would otherwise remain idle. Some studies
show that the average percentage of local resources being
idle within an organisation is about 80% [8]. It is shown that
an idle machine can consume up to 70% of the total power

14Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

consumed when it is fully utilized according to [9]. On the
contrary, the infrastructure of Traditional Clouds is made of
a large number of dedicated computing resources.
Traditional Clouds have a negative impact on the
environment since their data centres consume massive
amounts of electricity for cooling these resources.

Secondly, resources of Desktop Clouds are quite
distributed across the globe, whereas they are limited in
Traditional Cloud to several locations in data centres.
Furthermore, nodes in Desktop Cloud are highly volatile due
to the fact that they can be down unexpectedly without prior
notice. Node failures can happen for various reasons such as
connectivity issues, machine crashing or simply the machine
becomes busy with other work by its owner takes priority.
High volatility in resources has negative impact on
availability and performance [7]. Although, resources in both
Traditional Cloud and Desktop Cloud are heterogeneous,
they are even more heterogeneous and dispersed in Desktop
Cloud. Traditional Clouds are centralised, which leads to the
potential that there could be a single point of failure issue if a
Cloud service provider goes out of the business. In contrast,
Desktop Clouds manage and offer services in a decentralised
manner. Virtualisation plays a key role in both Desktop
Clouds and Traditional Clouds.

Desktop Clouds can be confused with similar distributed
systems, specifically Desktop Grids. Both Desktop Clouds
and Desktop Grids share the same goal that is exploiting
computing resources when they become idle. The resources
in both systems can be owned by an organisation or denoted
by the public over the Internet. Both Desktop Grids and
Desktop Clouds can use similar resources. Resources are
volatile and prone to failure without prior knowledge.
However, Desktop Grids differ from Desktop Clouds in the
service and virtualisation layers. Services, in Desktop
Clouds, are offered to clients in an elastic way. Elasticity
means that users can require more computing resources in
short term [10]. In contrast, the business model in Desktop
Grids is based on a „project oriented‟ basis which means that
every user is allocated a certain time to use a particular
service [11]. In addition, Desktop Grids‟ users are expected
to be familiar with details about the middleware used in
order to be able to harness the offered services [12]. Specific
software needs to be installed to computing machines in
order to join a Desktop Grid. Clients in Desktop Clouds are
expected to have little knowledge to enable them to just use
Cloud services under the principle ease of use. Desktop
Grids do not employ virtualisation to isolate users from the
actual machines while virtualisation is highly employed in
Desktop Clouds to isolate clients from the actual physical
machines.

III. DESKTOPCLOUDSIM

DesktopCloudSim is an extension tool proposed to
simulate failure events happening in the infrastructure level
based on CloudSim simulation tool. Therefore, this section
starts by a brief discussion of CloudSim. The extension tool,
DesktopCloudSim, is presented next. DesktopCloudSim is
used to evaluate VM allocation mechanisms, thus the last

subsection in this section discusses traditional mechanisms
that are used by open Cloud middleware platforms.

A. CLOUDSIM

CloudSim is a Java-based discrete event simulation
toolkit designed to simulate Traditional Clouds [13]. A
discrete system is a system whose state variables change
over time at discrete points, each of them is called an event.
The tool was developed by a leading research group in Grid
and Cloud computing called CLOUDS Laboratory at The
University of Melbourne in Australia. The simulation tool is
based on both GridSim [14] and SimJava [15] simulation
tools.

CloudSim is claimed to be more effective in simulating
Clouds compared to SimGrid [16] and GroudSim [17]
because CloudSim allows segregation of multi-layer service
(Infrastructure as a Service, Platform as a Service and
Software as a Service) abstraction [13]. This is an important
feature of CloudSim that most Grid simulation tools do not
support. Researchers can study each abstraction layer
individually without affecting other layers.

CloudSim can be used for various goals [18]. First, it can
be used to investigate the effects of algorithms of
provisioning and migration of VMs on power consumption
and performance. Secondly, it can be used to test VM
mechanisms that aim at allocating VMs to PMs to improve
performance of VMs. It is, also, possible to investigate
several ways to minimise the running costs for CSPs without
violating the service-level agreements. Furthermore,
CloudSim enables researchers to evaluate various scheduling
mechanisms of tasks submitted to running VMs from the
perspective of Cloud brokers. Scheduling mechanism can
help in decreasing response time and thus improve
performance.

Although CloudSim is considered the most mature Cloud
simulation tool, the tool falls short in providing several
important features. The first is that does not simulate
performance variations of simulated VMs when they process
tasks [18]. Secondly, service failures are not simulated in
CloudSim [19]. The service failures include failures in tasks
during running time and complex overhead of complicated
tasks. Furthermore, CloudSim lacks the ability to simulate
dynamic interaction of nodes in the infrastructure level.
CloudSim allows static configuration of nodes which remain
without change during run time. Lastly, node failures are not
included in CloudSim tool. DesktopCloudSim enables the
simulation of dynamic nodes and node failures while
performance variations and service failures are simulated by
other tools. Section VI discusses those tools.

B. The Architecture of DesktopCloudSim

Simulation is necessary to investigate issues and evaluate
solutions in Desktop Clouds because there is no real Desktop
Cloud system available on which to run experiments. In
addition, simulation enables control of the configuration of
the model to study each evaluation metric. In this research,
CloudSim is extended to simulate the resource management
model. CloudSim allows altering the capabilities of each host
machines located in the data centre entity in the simulation

15Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

tool. This feature is very useful for experimentations, as it is
needed to set the infrastructure (i.e., physical hosts) to have
an unreliable nature. This can be achieved by extending the
Cloud Resources layer in the simulation tool. Figure 1.
Depicts the layered architecture of CloudSim combined with
an abstract of the DesktopCloudSim extension.

 Cloud Resources Cloud Resources

VM Provisioning

 Cloud Services Cloud Services

Cloudlet Execution VM Management

 VM Services VM Services

Cloudlet Virtual Machine

 User Interface Structures User Interface Structures

Network Topology Message Delay Calculation

 Network Network

Data CentreCloud Coordinator Sensor Events Handling

VM Allocation Mechanism

CPU
Allocation

Storage Allocation
Bandwidth
Allocation

Memory
Allocation

D
e

skto
p

C
lo

u
d

S
im

Figure 1. DesktopCloudSim Abstract

 Figure 2. shows the components of DesktopCloudSim.
The simulation starts by reading failure trace file(s). The
trace files contain the specifications of the simulated nodes
and failure events. The Failure Analyser component analyses
the files of failures to send node specifications to Create
Nodes component and failure events to Failure Injection
component. Node specifications are the physical
specifications of nodes, such as CPU, RAM. etc. Create
Nodes component creates the nodes of a Desktop Cloud
according to the given specification. Failure Injection
component receives failure events from the Failure Analyser
to inject failures into associated nodes during run time. The
Failure Injection component informs the VM Mechanism
unit if a node is failed to let it restart failed VMs on another
alive node or nodes. VM Provisioning component provisions
VMs to clients to execute tasks.

Failure Analyser
Failure Trace

Nodes Specification
Create Nodes

Failure Injection
Failure Events Node Fail

VM Mechanism

VM Provisioning

VM Restart

Node Join

Execution
VM InstanceWorking PM

Figure 2. DesktopCloudSim Model

C. VM Allocation Mechanisms

Several VM allocation mechanisms that are employed in
open Cloud platforms are discussed in this subsection. VM
allocation mechanisms are: (i) Greedy mechanism which
allocates as many VMs as possible to the same PM in order
to improve utilisation of resources; (ii) RoundRobin
mechanism allocates the same number of VMs equally to
each PM; and (iii) First Come First Serve (FCFS)
mechanism allocates a requested VM to the first available

PM that can accommodate it. These mechanisms are
implemented in open source Cloud management platforms,
such as Eucalyptus [20], OpenNebula [21] and Nimbus [22].

When a VM is requested to be instantiated and hosted to
a PM, the FCFS mechanism chooses a PM with the least
used resources (CPU and RAM) to host the new VM. The
Greedy mechanism allocates a VM to the PM with the least
number of running VMs. If the chosen PM cannot
accommodate the new VM, then the next least VM running
PM will be allocated. RoundRobin is an allocation
mechanism, which allocates a set of VMs to each available
physical host in a circular order without any priority. For
example, suppose three VMs are assigned to two PMs. The
RoundRobin policy will allocate VM1 to PM1 then VM2 to
PM2 then allocate VM3 to PM1 again. Although these
mechanisms are simple and easy for implementation, they
have been criticised for being underutilisation mechanisms,
which waste energy [23]. The FCFS mechanism is expected
to yield the lowest throughput among the aforementioned
mechanisms because it assigns VMs to PMs in somehow
random manner.

IV. EXPERIMENT

The experiment is conducted to evaluate VM
mechanisms mentioned in Section III.C. There are two input
types needed to conduct the experiment. The first input is the
trace file that contains failure events happening during the
run time. Failure trace files are collected from an online
archive. Subsection IV.A discusses further this archive. The
second input set is the workload submitted to the Desktop
Cloud during running time. Subsection IV.B talks about this
workload.

A. Failure Trace Archive

Failure Trace Archive (FTA) is a public repository
containing traces of several distributed and parallel systems
[24]. The archive includes a pool of traces for various
distributed systems including Grid computing, Desktop Grid,
peer-to-peer (P2P) and High Performance Computing (HPC).
The archive contains timestamp events that are recorded
regularly for each node in the targeted system. Each event
has a state element that refers to the state of the associated
node. For example, an event state can be unavailable which
means this node is down at the timestamp of the event. The
unavailable state is considered a failure event throughout this
report. The failure of a node in an FTA does not necessarily
mean that this node is down. For example, a node in a
Desktop Grid system can be become unavailable because its
owner decides to leave the system at this time.

The Notre Dame FTA is collected from the University of
Notre Dame. The trace represents an archive of a pool of
heterogeneous resources that have run for 6 months within
the University of Notre Dame during 2007 [25]. Each month
is provided separately representing the behaviour of nodes
located in the University of Notre Dame. The FTA contains
432 nodes for month 1, 479 nodes for month 2, 503 nodes
for month 3, 473 nodes for month 4, 522 nodes for month 5
and 601 nodes for month 6.

16Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

We calculated the average percentage failure of nodes on
every hour basis. Such a study can help in evaluating the
behaviour of VM mechanisms. The failure percentage is
calculated as:

 ()

 

Figure 3. Average Hourly Failure

Figure 3 shows an average hourly failure percentage in
24 hour-period for analysis of 6 months run times of
NotreDame nodes. The period is set to 24 hours because this
is the running time set for our experiments. NotreDame
failure analysis shows that failure percentage is about 3% as
minimum in hour 6. Hour 17 recorded the highest failure
percentages at about 10%. It is worth mentioning that on
average about 6.3% of running nodes failed in an hour
during the 6-month period. However, it was recorded that the
percentage of node failures can reach up to 80% in some
hours. This can demonstrate that failure events in Desktop
Clouds are norms rather than exceptions.

B. Experiment Setting

The experiment is run for 180 times, each time
representing a simulation of running NotreDame Desktop
Cloud for one day. The run time was set to one day because
the FTA provides a daily trace for NotreDame nodes as
mentioned above. Each VM allocation mechanism is run for
180 times representing traces of 6 months from the FTA.
This makes the total number of runs 540 (3 * 180). The
workload was collected from the PlanetLab archive. The
archive provides traces of real live applications submitted to
the PlanetLab infrastructure [26]. One day workload was
retrieved randomly as input data in this experiment. Each
task in the workload is simulated as a Cloudlet in the
simulation tool. The workload input remains the same during
all the experiment runs because the aim of this experiment is
to study the impact of node failures on throughput of
Desktop Clouds.

The FTA files provide the list of nodes along with
timestamps of failure/alive times. However, the
specifications of nodes are missing. Therefore, we had set
specification up randomly for physical machines. The

missing specifications are technical specifications such as
CPU power, RAM size and hard disk size.

Clients requested that 700 instances of VMs to run for 24
hours. There are four types of VM instances: micro, small,
medium and large. They are similar to VM types that are
offered by Amazon EC2. The type of each requested VM
instance is randomly selected. The number of requested VMs
and types remain the same for all run experiment sets. Each
VM instance receives a series of tasks to process for a given
workload. The workload is collected from PlanetLab archive
which is an archive containing traces. PlanetLab is a research
platform that allows academics to access a collection of
machines distributed around the globe. A one day workload
of tasks was collected using CoMon monitoring tool [27].
The same workload is submitted in every one day run.

In the experiment, if a node fails then all hosted VMs
will be destroyed. The destruction of a VM causes all
running tasks on the VM to be lost which consequently
affect the throughput. The lost VM is started again on
another PM and begins receiving new tasks. During running
time, a node can become alive and rejoin the Cloud
according to the used failure trace file. The simulation was
run on a Mac i27 (CPU = 2.7 GHz Intel Core i5, 8 GB MHz
DDR3) running OS X 10.9.4. The results were analysed
using IBM SPSS Statistics v21 software.

V. RESULTS AND DISCUSSION

Table I shows a summary of descriptive results obtained
when measuring the throughput output for each VM
allocation mechanism implemented in NotreDame Cloud. N
in the table means that the number of days is 180 days
representing a six-month period. Kolmogorov-Smirnov
(K-S) test of normality shows that the normality assumption
was not satisfied because the FCFS and Greedy mechanisms
are significantly non-normal, . Therefore, the
non-parametric test Friedman‟s ANOVA was used to test
which mechanism can yield better throughput. Friedman‟s
ANOVA test confirms that throughput varies significantly
from one mechanism to another,

 ()
 . Mean, median, variance and standard deviation are
reported in Table I.

TABLE I. THROUGHPUT RESULTS

Mechanism N Mean Median Var. St. Dev. K-S Test

FCFS 180 79.21 % 78.77 % 37.03 6.09

Greedy 180 88.61 % 89.48 % 16.85 4.1

RoundRobin 180 85.47 % 85.29 % 15.13 3.89

Three Wilcoxon pairwise comparison tests were

conducted to find out which mechanism had the highest
throughput. Note that three tests are required to compare
three pairs of mechanisms which are FCFS Vs. Greedy,
FCFS Vs. RoundRobin and Greedy Vs. RoundRobin
mechanisms. The level of significance was altered to be
0.017 using Bonferroni correction [28] method because there

0

1

2

3

4

5

6

7

8

9

10

11

F
a

il
u

re
 (

%
)

17Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

were 3 post-hoc tests required (.05/3 ≈ .017). The tests show
that there is a significant difference between each mechanism
with its counterpart. Therefore, it can be concluded that the
Greedy mechanism yields the highest throughput since it has
the median with highest value (median = 89.48%).

The median throughput of FCFS was about 79%, as
being the worst mechanism among the tested mechanisms.
Our findings confirm our expectation in section III.C. The
RoundRobin came second in terms of throughput because
the mechanism distributes load equally. So, node failures are
ensured to affect the throughput. The median throughput was
about 89% when Greedy VM mechanism was employed.
The mechanism aims at maximising utilisation by packing as
many VMs as possible to the same PM, thus reducing the
number of running PMs. The average failure rate in
submitted tasks is about 12%, given the average node failure
percentage is about 6% as section IV.A shows. Such figures
demonstrate the importance to develop fault tolerant VM
mechanisms.

VI. RELATED WORK

Several simulators have been published to simulate Grid
computing. SimGrid [16] is one of the early simulation tools
to simulate Grid environment. GridSim [14] is another tool
that fits within the same goal. CloudSim is built on top of
GridSim. Donassole et al. [29] extended SimGrid to enable
simulating Desktop Grids. Their work enables building a
Grid on top of resources contributed by the public. The
simulation tool is claimed to be of high flexibility and enable
simulating highly heterogonous nodes. GroudSim [17] is a
scalable simulation tool to simulate both Grid and Cloud
platforms. The tool lets researchers to inject failures during
running time. However, all of these tools fall short in
providing virtualisation feature which is essential to evaluate
VM allocation mechanisms.

WorkflowSim [19] is a new simulation extension that has
been published recently as an extension for CloudSim tool.
The tool was developed to overcome the shortage of
CloudSim in simulating the scientific workflow. The authors
add a new management layer to deal with overhead of
complex scientific computational tasks. The authors argue
that CloudSim fails in simulating the overhead of such tasks.
The overhead may include queue delay, data transfer delay
clustering delay and postscript. This issue may affect the
credibility of findings and results. They, also, point out the
importance of failure tolerant mechanisms in developing task
scheduling techniques. WorkflowSim focuses on two types
of failures: tasks failure and job failure. A Task contains a
number of jobs, so a failure in a task causes a series of jobs
to fail. However our work differs from WorkflowSim in the
failure event and its impact. We focus on infrastructure level
which contains nodes that host VMs whereas the authors are
interested in the service level, i.e., the tasks and applications.
We argue that service providers should consider developing
failure tolerant mechanisms to overcome failures events in
the infrastructure level.

DynamicCloudSim [18] is another extension for
CloudSim tool. The authors are motivated by the fact that
CloudSim lacks the ability to simulate instability and

dynamic performance changes in VMs during runtime. This
can have a negative impact on the outcome of computational
intensive tasks which are quite sensitive to behaviour of
VMs. The tool can be used to evaluate scientific workflow
schedulers taking in consideration the variance of VM
performance. In addition, execution time of a given task is
influenced by I/O-bound such as reading or writing data. The
authors extend instability to include tasks failure.
Performance variation of running VMs is an open research
challenge, but it is out of this scope.

VII. CONCLUSION AND FUTURE WORK

Desktop Cloud represents a new direction in Cloud
computing. Desktop Cloud aims at exploiting idle computing
resources to provide Cloud services mainly for research
purposes. The success of Desktop Grids in providing Grid
capabilities has stimulated the idea of applying the same
concept within Cloud computing. However, Desktop Clouds
use infrastructure that is very volatile since computing nodes
have high probability to fail. Such failures can be
problematic and cause a negative impact on the throughput
of Desktop Clouds.

This paper presented a DesktopCloudSim as an extension
tool CloudSim, a widely used Cloud simulation tool.
DesktopCloudSim enables the simulation of node failures in
the infrastructure of Cloud. We demonstrated that the tool
can be used to study the throughput of a Desktop Cloud
using NotreDame real traces. We showed that Greedy VM
mechanism yielded better throughput in the presence of
failures compared to the FCFS and RoundRobin mechanism.

The results of experiments demonstrate that node failures
affect negatively the throughput outcome of Desktop Clouds.
This opens a new direction to design a fault tolerant
mechanism for Desktop Cloud. We intend to develop such a
mechanism and evaluate it using the proposed tool. In
addition, several metrics, such as power consumption and
response time, should be used to evaluate VM mechanism.

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility,” Futur. Gener.
Comput. Syst., vol. 25, no. 6, pp. 599–616, Jun. 2009.

[2] B. M. Segal, P. Buncic, D. G. Quintas, D. L. Gonzalez, A.
Harutyunyan, J. Rantala, and D. Weir, “Building a volunteer cloud,”
Memorias la ULA, 2009.

[3] A. Alwabel, R. Walters, and G. Wills, “A view at desktop clouds,” in
ESaaSA 2014, 2014.

[4] G. Kirby, A. Dearle, A. Macdonald, and A. Fernandes, “An Approach
to Ad hoc Cloud Computing,” Arxiv Prepr. arXiv1002.4738, 2010.

[5] A. Marinos and G. Briscoe, “Community Cloud Computing,” pp.
472–484, 2009.

[6] A. Andrzejak, D. Kondo, and D. P. Anderson, “Exploiting non-
dedicated resources for cloud computing,” 2010 IEEE Netw. Oper.
Manag. Symp. - NOMS 2010, pp. 341–348, 2010.

[7] A. Marosi, J. Kovács, and P. Kacsuk, “Towards a volunteer cloud
system,” Futur. Gener. Comput. Syst., Mar. 2012.

[8] A. Gupta and L. K. L. Awasthi, “Peer enterprises: A viable alternative
to Cloud computing?,” in Internet Multimedia Services Architecture
and Applications (IMSAA), 2009 IEEE International Conference on,
2009, vol. 2, pp. 1–6.

18Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

[9] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang,
“Power and performance management of virtualized computing
environments via lookahead control,” Cluster Comput., vol. 12, no. 1,
pp. 1–15, Oct. 2008.

[10] C. Gong, J. Liu, Q. Zhang, H. Chen, and Z. Gong, “The
Characteristics of Cloud Computing,” 2010 39th Int. Conf. Parallel
Process. Work., pp. 275–279, Sep. 2010.

[11] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid
computing 360-degree compared,” in Grid Computing Environments
Workshop, 2008. GCE’08, 2008, pp. 1–10.

[12] S. Choi, H. Kim, E. Byun, M. Baik, S. Kim, C. Park, and C. Hwang,
“Characterizing and Classifying Desktop Grid,” in Seventh IEEE
International Symposium on Cluster Computing and the Grid
(CCGrid ’07), 2007, pp. 743–748.

[13] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation
of scalable Cloud computing environments and the CloudSim toolkit:
Challenges and opportunities,” High Perform. Comput. Simulation,
2009. HPCS’09, pp. 1–11, Jun. 2009.

[14] R. Buyya and M. Murshed, “Gridsim: A toolkit for the modeling and
simulation of distributed resource management and scheduling for
grid computing,” Concurr. Comput. Pract. …, vol. 14, no. 13–15, pp.
1175–1220, Nov. 2003.

[15] F. Howell and R. McNab, “SimJava: A discrete event simulation
library for java,” Simul. Ser., 1998.

[16] H. Casanova, “Simgrid: a toolkit for the simulation of application
scheduling,” Proc. First IEEE/ACM Int. Symp. Clust. Comput. Grid,
pp. 430–437, 2001.

[17] S. Ostermann, K. Plankensteiner, R. Prodan, and T. Fahringer,
“GroudSim: an event-based simulation framework for computational
grids and clouds,” Euro-Par 2010 Parallel Processing Workshops,
no. 261585, pp. 305–313, 2011.

[18] M. Bux and U. Leser, “DynamicCloudSim: simulating heterogeneity
in computational clouds,” SWEET ’13 Proc. 2nd ACM SIGMOD
Work. Scalable Work. Exec. Engines Technol., 2013.

[19] W. Chen and M. Rey, “WorkflowSim : A Toolkit for Simulating
Scientific Workflows in Distributed Environments,” 2012.

[20] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L.
Youseff, D. Zagorodnov, and S. Barbara, “The Eucalyptus Open-
Source Cloud-Computing System,” 2009 9th IEEE/ACM Int. Symp.
Clust. Comput. Grid, pp. 124–131, 2009.

[21] J. Fontán, T. Vázquez, L. Gonzalez, R. S. Montero, and I. M.
Llorente, “OpenNEbula: The open source virtual machine manager
for cluster computing,” in Open Source Grid and Cluster Software
Conference – Book of Abstracts.

[22] B. Sotomayor, R. R. S. Montero, I. M. Llorente, and I. Foster,
“Virtual infrastructure management in private and hybrid clouds,”
IEEE Internet Comput., vol. 13, no. 5, pp. 14–22, Sep. 2009.

[23] A. Beloglazov and R. Buyya, “Optimal online deterministic
algorithms and adaptive heuristics for energy and performance
efficient dynamic consolidation of virtual machines in Cloud data
centers,” Concurr. Comput. Pract. Exp., vol. 24, no. 13, pp. 1397–
1420, Sep. 2012.

[24] B. Javadi, D. Kondo, A. Iosup, and D. Epema, “The Failure Trace
Archive: Enabling the comparison of failure measurements and
models of distributed systems,” J. Parallel Distrib. Comput., vol. 73,
no. 8, pp. 1208–1223, Aug. 2013.

[25] B. Rood and M. J. Lewis, “Multi-state grid resource availability
characterization,” 2007 8th IEEE/ACM Int. Conf. Grid Comput., pp.
42–49, Sep. 2007.

[26] L. Peterson, S. Muir, T. Roscoe, and A. Klingaman, “PlanetLab
Architecture : An Overview,” no. May, 2006.

[27] K. Park and V. S. Pai, “CoMon,” ACM SIGOPS Oper. Syst. Rev., vol.
40, no. 1, p. 65, Jan. 2006.

[28] A. Field, Discovering statistics using SPSS, Third. SAGE
Publications Ltd, 2009, p. 856.

[29] B. Donassolo, H. Casanova, A. Legrand, and P. Velho, “Fast and
scalable simulation of volunteer computing systems using SimGrid,”
in Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing - HPDC ’10, 2010, p. 605.

19Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

