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Abstract—Preserving responsiveness is an enabling condition for
running interactive applications effectively in virtual machines.
For this condition to be met, low latency usually needs to be
guaranteed to storage-Input/Output operations. In contrast, in
this paper we show that in virtualized environments, there is
a missing link exactly in the chain of actions performed to
guarantee low storage-I/O latency. After describing this problem
theoretically, we show its practical consequences through a
large set of experiments with real world-applications. For the
experiments, we used two Linux production-quality schedulers,
both designed to guarantee a low latency, and a publicly available
I/O benchmark suite, after extending it to correctly measure
throughput and application responsiveness also in a virtualized
environment. Finally, as for the experimental testbed, we ran
our experiments on the following three devices connected to
an ARM embedded system: an ultra-portable rotational disk, a
microSDHC (Secure Digital High Capacity) Card and an eMMC
(embedded Multimedia card) device. This is an ideal testbed
for highlighting latency issues, as it can execute applications
with about the same I/O demand as a general-purpose system,
but for power-consumption and mobility issues, the storage
devices of choice for such a system are the aforementioned ones.
Additionally, the lower the speed of a storage device is, the
consequences of I/O-latency are more evident.
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I. I NTRODUCTION

Virtualization is an increasingly successful solution to
achieve both flexibility and efficiency in general-purpose and
embedded systems. However, for virtualization to be effective
also with interactive applications, the latter must be guaranteed
a high, or at least acceptable responsiveness. In other words,
it is necessary to guarantee that these applications take a
reasonably short time to start, and that the tasks requestedby
these applications, such as, e.g., opening a file, are completed
in a reasonable time.

To guarantee responsiveness to an application, it is nec-
essary to guarantee that both the code of the application and
the I/O requests issued by the applications get executed with
a low latency. Expectedly, there is interest and active re-
search in preserving a low latency in virtualized environments
[1][2][3][4][5], especially in soft and hard real-time contexts.
In particular, some virtualization solutions provide moreor less
sophisticated Quality of Service mechanisms also for storage
I/O [4][5]. However, even just a thorough investigation on
application responsiveness, as related to storage-I/O latency,
seems to be missing. In this paper, we address this issue by
providing the following contributions.

A. Contributions of this paper

First, we show, through a concrete example, that in a
virtualized environment there is apparently a missing linkin
the chain of actions performed to guarantee a sufficiently
low I/O latency when an application is to be loaded, or, in
general, when any interactive task is to be performed. To this
purpose, we use as a reference two effective schedulers in
guaranteeing a high responsiveness: Budget Fair Queuing [7]
and Completely Fair Queuing [9]. They are two production-
quality storage-I/O schedulers for Linux.

Then, we report experimental results with real-world ap-
plications. These results confirm that, if some applications
are competing for the storage device in a host, then the
applications running in a virtual machine executed in the same
host may become from not much responsive to completely
unresponsive. To carry out these experiments, we extended a
publicly available I/O benchmark suite for Linux [8], to letit
comply also with a virtualized environment.

As an experimental testbed, we opted for an ARM embed-
ded system, based on the following considerations. On one
hand, modern embedded systems and consumer-electronics
devices can execute applications with about the same I/O
demand as general-purpose systems. On the other hand, for
mobility and energy-consumption issues, the preferred storage
devices in the former systems are (ultra) portable and low-
power ones. These devices are necessarily slower than their
typical counterparts for general-purpose systems. Being the
amount of I/O the same, the lower the speed of a storage
device is, the more I/O-latency issues are amplified. Finally,
as a virtualization solution we used the pair QEMU/KVM, one
of the most popular and efficient solutions in ARM embedded
systems.

B. Organization of this paper

In Section II, we describe the schedulers that we use as
a reference in this paper. Then, in Section III we show the
important I/O-latency problem on which this paper is focused.
After that, in Section IV, we describe how we modified the
benchmark suite to execute our experiments. Finally, we report
our experimental results in Section V.

II. REFERENCE SCHEDULERS

To show the application-responsiveness problem that is the
focus of this paper, we use the following two storage-I/O
schedulers as a reference: BFQ [6] and CFQ [9]. We opted
for these two schedulers because, they, both guarantee a high

26Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-338-4

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization



throughput and low latency. In particular, BFQ achieves even
up to 30% higher throughput than CFQ on hard disks with
parallel workloads. Strictly speaking, only the second feature
is related to the focus of this paper, but the first feature
is however important, because a scheduler achieving only a
small fraction of the maximum possible throughput may be,
in general, of little practical interest, even if it guarantees
a high responsiveness. The second reason why we opted
for these schedulers is that up-to-date and production-quality
Linux implementations are available for both. In particular,
CFQ is the default Linux I/O scheduler, whereas BFQ is
being maintained separately [8]. In addition to the extended
tests for BFQ and CFQ, we also identified similar behaviour
with the Noop and Deadline schedulers. In the next two
sections, we briefly describe the main differences between
the two schedulers, focusing especially on I/O latency and
responsiveness. For brevity, when not otherwise specified,in
the rest of this paper we use the generic termdisk to refer to
both a hard disk and a solid-state disk.

A. BFQ

BFQ achieves a high responsiveness basically by providing
a high fraction of the disk throughput to an application that
is being loaded, or whose tasks must be executed quickly. In
this respect, BFQ benefits from the strong fairness guarantees
it provides: BFQ distributes the disk throughput (and not just
the disk time) as desired to disk-bound applications, with any
workload, independently of the disk parameters and even if
the disk throughput fluctuates. Thanks to this strong fairness
property, BFQ does succeed in providing an application re-
quiring a high responsiveness with the needed fraction of the
disk throughput in any condition. The ultimate consequenceof
this fact is that, regardless of the disk background workload,
BFQ guarantees to applications about the same responsiveness
as if the disk was idle [6].

B. CFQ

CFQ grants disk access to each application for a fixed
time slice, and schedules slices in a round-robin fashion.
Unfortunately, as shown by Valente and Andreolini [6], this
service scheme may suffer from both unfairness in throughput
distribution and high worst-case delay in request completion
time with respect to an ideal, perfectly fair system. In par-
ticular, because of these issues and of how the low-latency
heuristics work in CFQ, the latter happens to guarantee a worse
responsiveness than BFQ [6]. This fact is highlighted also by
the results reported in this paper.

III. M ISSING LINK FOR PRESERVING RESPONSIVENESS

We highlight the problem through a simple example. Con-
sider a system running a guest operating system, say guest G,
in a virtual machine, and suppose that either BFQ or CFQ
is the default I/O scheduler both in the host and in guest G.
Suppose now that a new application, say application A, is being
started (loaded) in guest G while other applications are already
performing I/O without interruption in the same guest. In these
conditions, the cumulative I/O request pattern of guest G, as
seen from the host side, may exhibit no special property that
allows the BFQ or CFQ scheduler in the host to realize that
an application is being loaded in the guest.

Hence, the scheduler in the host may have no reason for
privileging the I/O requests coming from guest G. In the end,
if also other guests or applications of any other kind are
performing I/O in the host—and for the same storage device
as guest G—then guest G may receiveno help to get a high-
enough fraction of the disk throughput to start applicationA
quickly. As a conclusion, the start-up time of the application
may be high. This is exactly the scenario that we investigatein
our experiments. Finally, it is also important to note that our
focus has been in local disk/storage, as scheduling of network-
based storage systems is not always under the direct control
of the Linux scheduling policies.

IV. EXTENSION OF THE BENCHMARK SUITE

To implement our experiments we used a publicly available
benchmark suite [8] for the Linux operating system. This suite
is designed to measure the performance of a disk scheduler
with real-world applications. Among the figures of merit
measured by the suite, the following two performance indexes
are of interest for our experiments:

Aggregate disk throughput. To be of practical interest,
a scheduler must guarantee, whenever possible, a high
(aggregate) disk throughput. The suite contains a bench-
mark that allows the disk throughput to be measured
while executing workloads made of the reading and/or
the writing of multiple files at the same time.

Responsiveness.Another benchmark of the suite measures
the start-up time of an application—i.e., how long it
takes from when an application is launched to when the
application is ready for input—with cold caches and in
presence of additional heavy workloads. This time is,
in general, a measure of the responsiveness that can be
guaranteed to applications in the worst conditions.

Being this benchmark suite designed only for non-
virtualized environments, we enabled the above two bench-
marks to work correctly also inside a virtual machine, by
providing them with the following extensions:

Choice of the disk scheduler in the host.Not only the active
disk scheduler in a guest operating system, hereafter
abbreviated as just guest OS, is relevant for the I/O
performance in the guest itself, but, of course, also the
active disk scheduler in the host OS. We extended the
benchmarks so as to choose also the latter scheduler.

Host-cache flushing.As a further subtlety, even if the disk
cache of the guest OS is empty, the throughput may be
however extremely high, and latencies may be extremely
low, in the guest OS, if the zone of the guest virtual
disk interested by the I/O corresponds to a zone of the
host disk already cached in the host OS. To address this
issue, and avoid deceptive measurements, we extended
both benchmarks to flush caches at the beginning of their
execution and, for the responsiveness benchmark, also
(just before) each time the application at hand is started.
In fact the application is started for a configurable number
of times, see Section V.

Workload start and stop in the host. Of course, re-
sponsiveness results now depend also on the workload
in execution in the host. Actually, the scenario where
the responsiveness in a Virtual Machine (VM) is to be
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TABLE I. Storage devices used in the experiments

Type Name Size Read peak rate
1.8-inch Hard Disk Toshiba MK6006GAH 60 GB 10.0 MB/s
microSDHC Card Transcend SDHC Class 6 8 GB 16 MB/s

eMMC SanDisk SEM16G 16 GB 70 MB/s

carefully evaluated, is exactly the one where the host disk
is serving not only the I/O requests arriving from the
VM, but also other requests (in fact this is the case that
differs most from executing an OS in a non-virtualized
environment). We extended the benchmarks to start the
desired number of file reads and/or writes also in the
host OS. Of course, the benchmarks also automatically
shut down the host workload when they finish.

The resulting extended version of the benchmark suite is
available here [10]. This new version of the suite also contains
the general scripts that we used for executing the experiments
reported in this paper (all these experiments can then be
repeated easily).

V. EXPERIMENTAL RESULTS

We executed our experiments on a Samsung Chromebook,
equipped with an ARMv7-A Cortex-A15 (dual-core, 1.7 GHz),
2 GB of RAM and the devices reported in Table I. There
was only one VM in execution, hereafter denoted as justthe
VM, emulated using QEMU/KVM. Both the host and the guest
OSes were Linux 3.12.

A. Scenarios and measured quantities

We measured, first, the aggregate throughput in the VM
while one of the following combinations of workloads was
being served.

In the guest. One of the following six workloads, where
the tagtype can be eitherseqor rand, with seq/rand meaning
that files are read or written sequentially/at random positions:

1r-type one reader (i.e., one file being read);
5r-type five parallel readers;
2r2w-type two parallel readers, plus two parallel writers.

In the host. One of the following three workloads (in addition
to that generated, in the host, by the VM):

no-host workload no additional workload in the host;
1r-on host one sequential file reader in the host;
5r-on host five sequential parallel readers in the host.

We considered only sequential readers as additional workload
in the host, because it was enough to cause the important
responsiveness problems shown in our results. In addition,for
each workload combination, we repeated the experiments with
each of the four possible combinations of active schedulers,
choosing between BFQ and CFQ, in the host and in the guest.

The main purpose of the throughput experiments was
to verify that in a virtualized environment both schedulers
achieved a high-enough throughput to be of practical interest.
Both schedulers did achieve, in the guest, about the same
(good) performance as in the host. For space limitations, wedo
not report these results, and focus instead on the main quantity

of interest for this paper. In this regard, we measured the start-
up time of three popular interactive applications of different
sizes, inside the VM and while one of the above combinations
of workloads was being served.

The applications were, in increasing-size order:bash, the
Bourne Again shell,xterm, the standard terminal emulator for
the X Window System, andkonsole, the terminal emulator
for the K Desktop Environment. As shown by Valente and
Andreolini [6], these applications allow their start-up time to be
easily computed. In particular, to get worst-case start-uptimes,
we dropped caches both in the guest and in the host before each
invocation (Section IV). Finally, just before each invocation a
timer was started: if more than60 seconds elapsed before the
application start-up was completed, then the experiment was
aborted (as60 seconds is evidently an unbearable waiting time
for an interactive application).

We found that the problem that we want to show, i.e.,
that responsiveness guarantees are violated in a VM, occurs
regardless of which scheduler is used in the host. Besides, in
presence of file writers, results are dominated by fluctuations
and anomalies caused by the Linux write-back mechanism.
These anomalies are almost completely out of the control of
the disk schedulers, and not related with the problem that we
want to highlight. In the end, we report our detailed results
only with file readers, only with BFQ as the active disk
schedulerin the host, and for xterm.

B. Statistics details

For each workload combination, we started the application
at hand five times, and computed the following statistics over
the measured start-up times: minimum, maximum, average,
standard deviation and95% confidence interval (actually we
measured also several other interesting quantities, but inthis
paper we focus only on application responsiveness). We denote
as asingle run any of these sequences of five invocations. We
repeated each single run ten times, and computed the same
five statistics as above also across the average start-up times
computed for each repetition. We did not find any relevant
outlier, hence, for brevity and ease of presentation, in thenext
plots we show only averages across runs (i.e., averages of the
averages computed in each run).

C. Results

Figure 1 shows our results with the hard disk (Table I).
The reference line represents the time needed to startxterm
if the disk is idle, i.e., the minimum possible time that it
takes to startxterm (a little less than2 seconds). Comparing
this value with the start-up time guaranteed by BFQ with no
host workload, and with any of the first three workloads in
the guest (first bar for any of the1r-seq, 5r-seq and 1r-rand
guest workloads), we see that, with all these workloads, BFQ
guarantees about the same responsiveness as if the disk was
idle. The start-up time guaranteed by BFQ is slightly higher
with 5r-rand, for issues related, mainly, to the slightly coarse
time granularity guaranteed to scheduled events in the kernel
in an ARM embedded system, and to the fact that the reference
time itself may advance haltingly in a QEMU VM.

In contrast, again with no host workload, the start-up time
guaranteed by CFQ with1r-seq or 1r-rand on the guest is3
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Figure 1. Results with the hard disk (lower is better).

times as high than on an idle disk, whereas with5r-seq the
start-up time becomes about17 times as high. With5r-seq the
figure reports instead anX for the start-up time of CFQ: we
use this symbolism to indicate that the experiment failed, i.e.,
that the application did not succeed at all in starting before the
60-second timeout.

In view of the problem highlighted in Section III, the
critical scenarios are however the ones with some additional
workload in the host; in particular,1r on host and5r on host
in our experiments. In these scenarios, both schedulers un-
avoidably fail to preserve a low start-up time. Even with just
1r on host, the start-up time, with BFQ, ranges from3 to 5.5

times as high than on an idle disk. The start-up time with CFQ
is much higher than with BFQ with1r on host and1r-seq on
the guest, and, still with1r on host (and CFQ), is even higher
than 60 seconds with5r-seq or 5r-rand on the guest. With
5r on host the start-up time is instead basically unbearable,
or even higher than60 seconds, with both schedulers. Finally,
with 1r-rand all start-up times are lower and more even than
with the other guest workloads, because both schedulers do not
privilege much random readers, and the background workload
is generated by only one reader.

Figures 2 and 3 show our results with the two flash-based
devices. At different scales, the patterns are still about the
same as with the hard disk. The most notable differences are
related to CFQ: on one side, with no additional host workload,
CFQ achieves a slightly better performance than on the hard
disk, whereas, on the opposite side, CFQ suffers from a much
higher degradation of the performance, again with respect to
the hard-disk case, in presence of additional host workloads.

To sum up, our results confirm that, with any of the devices
considered, responsiveness guarantees are lost when thereis
some additional I/O workload in the host.

VI. CONCLUSION AND FUTURE WORK

In this paper, we showed both theoretically and experi-
mentally that responsiveness guarantees, as related to stor-
age I/O, may be violated in virtualized environments. Even
with schedulers, which target to achieve low latency through
heuristics, the problem of low responsiveness still persists
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better).
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Figure 3. Results with the eMMC (lower is better).

in virtual machines. The host receives a mix of interactive
and background workloads from the guest, which can com-
pletely contradict per process heuristics by schedulers such
as BFQ. We are currently devising a solution for preserving
responsiveness also in virtualized environments. The target of
this approach is specifically for embedded systems and the
KVM on ARM hypervisor, which introduces the concept of
coordinated scheduling between the host/guest scheduler and
KVM itself. Besides, we also plan to extend our investigation
to latency guarantees for soft real-time applications (such
as audio and video players), and to consider more complex
scenarios, such as more than one VM competing for the storage
device.
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