
Cloud-Enabled Scaling of Event Processing Applications

Irina Astrova Arne Koschel Ahto Kalja
Institute of Cybernetics Faculty IV, Department for Computer Science Institute of Cybernetics

Tallinn University of Technology University of Applied Sciences and Arts
Hannover

Tallinn University of Technology

Tallinn, Estonia Hannover, Germany Tallinn, Estonia
irina@cs.ioc.ee akoschel@acm.org ahto@cs.ioc.ee

Abstract—Event processing is an important established concept
for event-driven system development – with database triggers
and event processing engines being typical examples of event
processing technology. With nowadays movement into cloud
computing, highly flexible scalability in cloud environments
becomes an important challenge for event processing
applications as they have many event sources and events to be
processed there. As the core contribution of our work, we
propose a novel approach to providing event processing
applications with cloud-enabled scalability transparently to
users (viz., the application developers) as part of an event-
driven system itself.

Keywords—Infrastructure-as-a-Service (IaaS) clouds; IaaS
scalability; event processing applications; agents; event-driven
systems.

I. INTRODUCTION

 Traditional applications execute in a sequential way. But
the real world is driven by events, which can come from
several event sources. So how can these events be caught by
traditional applications? One can create threads, which run in
loops to catch the events and dispatch them to event
consumers that can perform actions in response to the events.
The biggest problem with this approach is that the
applications can waste a lot of resources with otherwise not
needed loops. Another big problem is an increased time
between the raise of the events and their catch. Event
processing applications provide a solution to these problems.

Event processing applications can be defined as sense-
and-respond applications, i.e., the applications that can react
to and process events. An event processing application can
play the role of an event source, an event sink, or both. Event
sources can handle off events to event sinks. It should be
noted that an event source does not necessarily generate an
event, nor an event sink is necessarily an event consumer.
Furthermore, event sources and event sinks can be
completely decoupled from each other: one can add and
remove event sources and event sinks as needed without
impacting other event sources and event sinks.

Event processing applications use the following
concepts:

 Event: In an event processing application, every
event is represented as an event object. This object
holds all information about the event such as the
timestamp when the event was caught, the event
type, the event source, etc. After the catch of an

event and transforming it to an application object, it
is handed to an event stream.

 Event stream: An event stream is like a FIFO (First
In, First Out) queue. Application objects in the
stream are handled sequentially in the order of their
arrival. The speciality of this type of queue is that an
agent can subscribe to the stream and select which
events it wants to receive.

 Agent: The drivers of an event processing
application are one or more agents. They get the
events from an event stream and react to or operate
on those events. Examples of operations on events:
selection, aggregation and composition. To structure
agents and create a high cohesion with loose
connections, an event processing network is used.

 Event Processing Network (EPN): An EPN models
an event processing application as a set of
interconnected application components whose
execution is driven by events. Therefore, it is
typically represented as a directed graph, where
events are flowing through edges into nodes, which
in their turn represent application components.

 Event channel: This is typically a messaging
backbone, which transports the (formatted) events
between event sources and event sinks. Because of
the variety of event sources, not all events will be
created in the format required for processing them
by agents. In those cases, the events need to be
formatted prior to being deposited them in an event
channel.

Next we are presenting an example of event processing
applications. This example is a door access log into a
company, which uses a radio frequency identification (RFID)
transponder to control the work time of its employees.

1. Employee A comes to work and activates the RFID
transponder at the door with his chip, thus generating
an access event.

2. The information on the chip is scanned and given to
the adapter of an event processing application.

3. The application creates an event object and injects
the data into it.

4. With a bundle of the subscriptions, the application
knows which agents are interested on this event type
(say Agents A and B) and put the event into the
agent's event streams.

5. Agent A only reacts to the access event and logs the
timestamp of the event and the information on the
employee's chip to a database.

73Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

6. Agent B waits for another access event by the same
employee in a time window of 10 hours.

7. Employee A activates the RFID transponder at the
door with his chip again, when leaving work.

8. The application creates an another event object with
the information on the employee's chip and passes it
to the agents.

9. Agent A logs this event to the database.
10. Between the first and the second access events,

Agent B produces a new event with the time which
has passed between them.

11. Due to some other subscription, Agent B knows
another agent, say Agent C, which is interested in the
new event because it needs to gain the employee's
work time out of it.

Step 6 shows how the agent uses a selection operation to
get the information it needs. In this case, the agent also uses
a technique, which is called windowing. It is possible to
define a window by time (as it is in the example) or by the
number of events in an event stream. Step 10 is an example
of the composition of events. Here two events are merged
into a new one. Once the new event has been composed, any
agent in the application can use that event.

The remainder of this paper is organized as follows. The
next section gives the motivation for our approach. This is
followed by a description of our approach and a brief
overview of the work related to the combination of event
processing and cloud computing. The final section concludes
the paper.

II. MOTIVATION

Event processing applications are important because the
real world is event-driven [12]. With great demand on high-
speed and cost-efficient processing of events, event
processing applications are calling for IaaS (Infrastructure-
as-a-Service) scalability. IaaS scalability lets the applications
make optimum utilization of resources such as CPU and
RAM at different workload levels in order to avoid over-
provisioning (i.e., having too many resources), under-
utilization (i.e., not using resources adequately) and under-
provisioning (i.e., having too few resources) [1]. In
traditional environments, over-provisioning and under-
utilization can hardly be avoided [2]. There is an observation
that in many companies the average utilization of servers
ranges from 5 to 20 percent, meaning that many resources
are idle at no-peak times [3]. On the other hand, if the
companies shrink their infrastructures to reduce over-
provisioning and under-utilization, the risk of under-
provisioning will increase. While the costs of over-
provisioning and under-utilization can easily be calculated,
the costs of under-provisioning are more difficult to calculate
because under-provisioning can lead to a loss of users and
zero revenues [3].

Since event processing applications experience
variability in utilization of resources, they are calling for an
infrastructure that can dynamically scale according to the
application demand. IaaS scalability is one of the major
advantages offered by IaaS clouds. This gives rise to the idea

to deploy event processing applications into IaaS clouds.
However, IaaS scalability is not just about having a scalable
(virtual) infrastructure, but also about writing scalable
applications. Valuable rules of thumb have been provided by
Amazon.

Amazon provides a best practices guide [4] on how to
write applications for the best fit for IaaS clouds. The most
important guidelines are: an application should be divided
into loosely coupled components that can be distributed
across several servers and executed in parallel. Furthermore,
the application should be as stateless as possible. If an
application component fails or is temporarily not available,
the application should continue to run. This can be achieved
by developing the component as self-rebooting and using a
message queue [5]. If the component is temporarily not
available, messages will be stored in the queue and delivered
later when the component comes alive again. These rules
clearly indicate that IaaS scalability depends on the
application design as well as the communication mechanism
used to implement the application components. Therefore,
IaaS scalability cannot be achieved by simply deploying
applications into IaaS clouds. Rather, an IaaS cloud can
guarantee an infrastructure equal to the application demand
only when applications are designed properly or their design
is amenable to appropriate scaling (horizontal or vertical).

However, event processing applications typically rely on
a centralized event coordinator and could easily become a
scalability bottleneck as a result of that [11]. Event
processing applications are inherently stateful, which implies
that services cannot be migrated or located anywhere,
without affecting the application performance. Therefore, the
deployment of event processing applications to IaaS clouds
typically requires redesigning the applications for leveraging
on-demand resource utilization. Therefore, the biggest
problem is how to minimize the changes need to be done to
the application design.

Another big problem is how to scale EPNs in IaaS
clouds. An event-driven application can specify an EPN,
which assembles the other components (e.g., event sources,
event sinks and event streams) together. Virtual machines in
IaaS clouds can scale horizontally by cloning a virtual
machine or vertically by adding more resources to a virtual
machine. Besides the scaling of virtual machines, the
virtualization technologies inherent to IaaS clouds allow for
the scaling of EPNs. Unfortunately, this very desirable
feature is not supported by IaaS clouds yet, thus further
complicating the deployment of event processing
applications into IaaS clouds.

As an attempt to solve the problems above, in our
previous work [6][10] we proposed to make event processing
applications scalable through the integration of an event
processing engine into a cloud architecture. In this paper,
however, we propose a different approach.

III. OUR APPROACH

IaaS scalability is important for event processing
applications because these applications experience variability
in resource utilization. Therefore, our approach is aimed at

74Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

providing event processing applications with IaaS scalability.
IaaS scalability is service-oriented, meaning that scaling
decisions are made on the basis of infrastructural metrics
such as CPU and RAM utilization [1].

The basic idea behind of our approach was to bring IaaS
scalability into an event–driven system itself. An event-
driven system can generally be comprised of several event
sources, event processing applications and event sinks. Event
sinks have the responsibility of applying a reaction as soon
as an event occurs. The reaction might or might not be
completely provided by the sink itself. For example, the sink
might just have the responsibility to filter, transform and
forward the event to another component or it might provide a
self-contained reaction on such an event.

Event sources, event processing applications and event
sinks can be decoupled of each other; one can add or remove
any of these components without causing changes to the
others. However, an event-driven system could get quiet
complex due to a large number of agents and event sinks to
synthesize events out of aggregated data. Moreover, the
agents are independent of each other – they can be
distributed across several servers and executed in parallel.
The problem is that it is very difficult for a scaling
mechanism to decide which agents should use which rules to
produce which output. Also how could this decision be made
when the cloud should scale itself? Therefore, it was not an
easy task to bring IaaS scalability into an event–driven
system.

Figure 1 gives an overview of our approach, which
includes the following components:

 Load Balancing Agent (LBA): Each EPN has its
own LBA monitoring and interpreting (internal)
technical events occurring in an Event-Processing-
as-a-Service cloud and their data. LBAs ensure the
performance and the availability of each EPN (or its
agents), as they are the ones, which perceive the
need to provision or decommission resources.
Scaling decisions are made by LBAs on the basis of
the current resource utilization and calculated by
LBAs themselves. The resource utilization is
aggregated out of technical events. For example, if
the minimum or maximum threshold is crossed,
scaling rules will be fired and a scaling mechanism
will kick in.

 Scaling Agent (ScA): In addition to the LBA, each
EPN has its own ScA, which can clone the EPN for
horizontal scaling or restart it on a bigger virtual
machine for vertical scaling.

 Central Scaling Agent (CScA): The CScA
evaluates technical events against scaling rules.
Scaling actions may include, e.g., the invocation of a
service or the triggering of a scaling process. In
addition, the CScA maintains the EPN topology.

Figure 1. Cloud-enabled scaling of event processing applications

 Central Load Balancing Agent (CLBA): If the
CScA defines how to scale, the CLBA defines what
to scale. The CLBA takes the load of each EPN into
account. Each LBA has to periodically send the
information on the current resource utilization of its
EPN to the CLBA. The CLBA then instructs the
CScA to provision or decommission resources. This
allows the CScA to foresee critical situations and to
make scaling decisions beforehand. The CLBA is
also responsible for all external events. An exposed
interface (e.g., web services) make the interaction
between the outside world and the cloud possible.

 Configuration Agent (CA): The CA allows for the
configuration of the whole scaling mechanism (e.g.,
scaling rules and thresholds) and the EPN topology
through the cloud API. The CA could be
implemented as an agent fitting into the idea of a
Dynamic Control Plane [7], which gives users (viz.,
the application developers) the possibility to
configure the cloud through an easy-to-use
administrative interface.

 Cloud-Scaling EPN: The CLBA, the CScA and the
CA are “networked” together to form an EPN for the
scaling of an Event-Processing-as-a-Service cloud.
This cloud hosts services to be leveraged by event
processing applications as needed. As a result, the
cloud can scale up and down according to the
application demand.

Our architecture can be used by the following event
processing applications:

 Disaster management, where the input data need to
be gathered from various heterogeneous distributed
sources (e.g., scientific sensors) and processed using
the event processing technology to react on disasters.

75Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 Online business development, where the clicks of
website visitors need to be processed as events to
identify the interest to the website.

IV. RELATED WORK

Technical events occurring in an IaaS cloud are related to
resource utilization. Event processing engines can help in
monitoring and high-speed processing of these events.
Therefore, recently it was proposed to integrate an event
processing engine into an elastic controller in order to
enhance IaaS scalability [8][9].

An IaaS cloud requires that applications are designed
especially for the cloud. The scaling of traditional
applications is typically easy. The question is how to scale
event processing applications. These applications follow
their own design rules and thus, they have to be tailored to
the cloud. Therefore, in our previous work [6][10] we
proposed to integrate an event processing engine into a cloud
architecture itself, providing scaling decisions out of scaling
rules through the cloud API.

However, in this paper we decided to move from a
different direction – we tried to adapt IaaS scalability to an
event-driven system.

V. CONCLUSION AND FUTURE WORK

Event processing applications need to handle a lot of
information. Thus, the ability to process this information
quickly is important for those applications. But processing
the information quickly implies processing it efficiently,
which in turn implies spending less money on an
infrastructure. And this is the point where event processing
applications could benefit from the deployment into IaaS
clouds whose scalability enables efficient and cost-saving
event processing. However, a cloud architecture that allows
event processing applications to benefit from IaaS scalability
is currently missing [6][10]. Therefore, with our approach
and its components described below, we aim to fill this gap.

Each EPN will have a Load Balancing Agent (LBA),
which periodically sends the load of its EPN to the Central
Load Balancing Agent (CLBA). If the minimum or
maximum thresholds specified by users through the
Configuration Agent (CA) are crossed, the CLBA will
instruct the Central Scaling Agent (CScA) to provision or
decommission resources. In addition to the LBA, each EPN
will have a Scaling Agent (ScA) acting on behalf of the
CScA. The CScA will translate the CLBA's instructions into
an appropriate scaling action taken by the ScA to adjust the
load of its EPN. It should be noted that users will be kept
totally unaware of these scaling actions and delivered with
the illusion of a scalable infrastructure, the infrastructure that
can scale horizontally (by cloning an EPN) or vertically (by
restarting an EPN on a bigger virtual machine).

Our approach is geared to make event processing
applications scalable, while minimizing changes to be done

to the application design and allowing for the scaling of
EPNs as if they were virtual machines.

In the future, we are going to implement our approach
and evaluate its performance.

ACKNOWLEDGMENT

Irina Astrova’s and Ahto Kalja’s work was supported by
the Estonian Centre of Excellence in Computer Science
(EXCS) funded mainly by the European Regional
Development Fund (ERDF). Irina Astrova’s and Ahto Kalja’s
work was also supported by the Estonian Ministry of
Education and Research target-financed research theme no.
0140007s12.

REFERENCES

[1] J. Cáceres, L. Vaquero, L. Rodero-Merino, Á. Polo, and J. Hierro.
Service scalability over the cloud, Handbook of Cloud Computing,
eds. B. Furht and A. Escalante, Springer Verlag, Berlin, Heidelberg,
2010

[2] C. Braun, M. Kunze, J. Nimis, and S. Tai. Cloud Computing, Web-
based dynamic IT-Services. Springer Verlag, Berlin, Heidelberg, 2010

[3] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of
cloud computing. Communications of the ACM, 53(4), 2010, pp. 50–
58

[4] J. Varia. Architecting for the cloud: best practices. last accessed:
January 2013,
http://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pd
f

[5] P. Marshall, K. Keahey, and T. Freeman. Elastic site: Using clouds to
elastically extend site resources, Proceedings of the IEEE
International Symposium on Cluster Computing and the Grid, IEEE,
2010, pp. 43–52

[6] I. Astrova, A. Koschel, and M. Schaaf. Automatic scaling of complex-
event processing applications in Eucalyptus. Proceedings of the 15 th

IEEE International Conference on Computational Science and
Engineering (CSE), IEEE, 2012, pp. 22–29

[7] L. MacVittie, A. Murphy, P. Silva, and K. Salchow. Herscheruber die
wolke: Anforderungen an cloud-computing. Technical report, 2010

[8] H. Lim, S. Babu, and J. Chase. Automated control for elastic storage,
Duke University, 2010

[9] L. Vaquero, L. Rodero-Merino, and R. Buyya. Dynamically scaling
applications in the cloud. ACM SIGCOMM Computer
Communication Review, 41, 2011, pp. 45–52

[10] A. Koschel, I. Astrova, M. Schaaf, S. Gatziu Grivas, S. Priebe, J.
Raczek, J. Reehuis, and K. Scherer. Integrating complex event
processing into Eucalyptus, Proceedings of the 3rd IEEE International
Conference on Cloud Computing Technology and Science
(CloudCom), IEEE, 2011

[11] N. Shalom. Interview with Michael Di Stefano from Integrasoft on
their complex event processing cloud services using Esper
GigaSpaces. last accessed: January 2013,
http://blog.gigaspaces.com/interview-with-michael-di-stefano-from-
integrasoft-on-their-cep-cloud-services-using-esper-gigaspaces/

[12] M. Schaaf, A. Koschel, S. Gatziu Grivas, and I. Astrova. An active
DBMS style activity service for cloud environments. Proceedings of
the 1st International Conference on Cloud Computing, GRIDs, and
Virtualization, IARIA, 2010, 80–85

76Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

	I. Introduction
	II. Motivation
	III. Our Approach
	IV. Related Work
	V. Conclusion and Future Work

