
IDSaaS: Intrusion Detection System as a Service in Public Clouds

Turki Alharkan

School of Computing

Queen's University

Kingston, ON Canada

alharkan@cs.queensu.ca

Patrick Martin

School of Computing

Queen's University

Kingston, ON Canada

martin@cs.queensu.ca

Abstract - In a public cloud computing environment,

consumers cannot always just depend on the cloud provider’s

security infrastructure. They may need to monitor and protect

their virtual existence by implementing their own intrusion

detection capabilities along with other security technologies

within the cloud fabric. Intrusion Detection as a Service

(IDSaaS) targets security of the infrastructure level for a

public cloud (IaaS) by providing intrusion detection technology

that is highly elastic, portable and fully controlled by the cloud

consumer. A prototype of IDSaaS is described.

Keywords-Security; Cloud Computing; Intrusion Detection

System

I. INTRODUCTION

As the number of cyber attacks against social networks
and large internet enterprises continues to rise, organizations
are questioning the safety of moving their computational
assets toward the cloud [1]. Traditional network security
measurements face new challenges in the cloud such as
virtual machine intrusion attacks and malicious user
activities. New security measures are therefore needed to
increase users' level of trust in clouds. Currently, cloud
providers enforce data encryption for the storage containers,
virtual firewalls and access control lists [2]. However, cloud
consumers need to develop secure and customizable
solutions to comply with their application requirements. For
example, an attack classified as SQL injection with the
ability to control the host operating system targeting the
business application may wish to impose a combination of
application and system level policies [3]. The current
security mechanisms from the cloud providers are not
intended to enforce this level of constraints so additional
measurements are required.

In this paper, we propose the Intrusion Detection System
as a Service (IDSaaS) framework, which is a network and
signature based IDS for the cloud model. In particular,
IDSaaS is an on-demand, portable, controllable by the cloud
consumer and available through the pay-per-use cost model.
IDSaaS mainly targeting the IaaS level of the cloud.
However, other levels of the cloud can be monitored such as
the SaaS level. Therefore, the IDSaaS primary task is to
monitor and log suspicious network activities between
virtual machines within a pre-defined virtual network in
public clouds. A proof-of-concept prototype for the Amazon
EC2 cloud [4] is presented.

The major contribution for this work is a scalable and
customizable cloud-based service that provides cloud
consumers with IDS capabilities regardless of the cloud
model. IDSaaS administrators have the abilities to monitor
and react to attacks on multiple VMs residing within a
consumer’s Virtual Private Cloud (VPC) [5], and to identify
specific attacking scenarios based on their application needs.
Moreover, the system can adapt its performance to the traffic
load by activating the on-demand elasticity feature. For
example, the number of the available IDS Core components
can change based on the amount of traffic targeting the
protected business application. Furthermore, IDSaaS
components can be scaled to protect virtual machines
residing in different cloud regions. These features are
designed with the consideration of the cloud environment.

The rest of this paper is organized as follows: Section II
describes related work. Section III introduces the concept of
IDSaaS and outlines its main features. Section IV reviews
the IDSaaS main components and tools. A proof-of-concept
prototype implementation of IDSaaS in Amazon’s EC2
public cloud is presented in Section V. Section VI presents a
sample attack scenario and evaluates the operation of the
prototype IDSaaS. Finally, Section VII summarizes the paper
and discusses future work.

II. RELATED WORK

The introduction of IDS in the cloud is the focus of
several research projects. Each of these projects, however,
targets different service models of the cloud or pursues a
different goal. IDSaaS is intended to fill the gap in this
research area.

The Intrusion Detection based on Cloud Computing
(IDCC) architecture [6] was developed to achieve a global
monitoring view of the network resources and to help in
discovering coordinated attacks on local sites. This
architecture consists of two major parts, the local sites and
the global site. The purpose of the global site is to collects
the alerts generated by the local sites. When a threat is
detected by the global site, the particular local site security
administrator is informed so a proper action can be taken
such as blacklisting the source of the attack. This architecture
is more suitable for private clouds that are designed with the
needed infrastructure to allow global and local site nodes to
be communicated privately. As a result, cloud users at the
local sites are more dependent on the cloud provider's global
IDS administration. Furthermore, the process of

11Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

administrating the global and local sites raises some serous
security challenges.

The work by Mazzariello et al. [7] discusses various
deployments of existing IDS to an open source cloud
environment. The suggested model is to deploy multiple
IDSs next to every cloud physical controller, which monitors
a smaller portion of network traffic for a set of virtual
machines. The general setup for this approach requires deep
alteration of the physical implementation of the cloud assets,
which results in a strong dependency between the IDS
components and the cloud provider's infrastructure.
Consequently, the IDS administration process available to
the cloud consumers is limited and lacks customization.

The authors of Intrusion Detection In the cloud (IDC) [8]
introduce the concept of a partial IDS management for the
cloud users. The proposed architecture consists of several
sensors and a central management unit. This distributed-IDS
architecture is implemented in all of the three cloud
computing layers (Application layer, Platform layer and
System layer), which includes a combination of host-based
IDS (HIDS) and network-based IDS (NIDS) sensors. HIDS
is incorporated with every VM initialized by the user. On the
other hand, NIDS sensors are placed in each cloud layer to
monitor the management module of that layer. In the central
IDS management unit, alerts can be correlated and analyzed
from different sensors in different layers. Furthermore, cloud
users can configure which rules to use from the existing rule-
set based on their application needs. One of the main issues
with the IDC approach is the strong dependency between the
cloud users and the cloud provider substructure. The cloud
provider has to implement the main components of the
intrusion detection environment like the central management
unit, the integrated HIDS for each VM host, signature
databases, and the communication channels between VMs
and the IDS management unit. Cloud users are totally
dependent on the provider’s IDS infrastructure but they still
partially control the IDS management unit with limited
functionality. Moreover, there are serious privacy concerns
arising from integrating IDS components on every customer
virtual machine that is installed by the cloud provider.

Much of the proposed academic research on IDSs in the
cloud has focused on providing intrusion detection
mechanisms for specific security problems. The Autonomic
Violation Prevention System (AVPS) [9] concentrates on
self-protection against security policy violations generated
by privileged users. This goal is achieved by defining the
system's access policies and continuously monitoring the
internal traffic for any violations of these policies. The
authors of the AVPS framework suggest their system can be
deployed to virtual network environments like the cloud.
However, AVPS is not evaluated against many cloud
features. For example, scaling the system for multiple core
IDS nodes is needed to bear the increase in the traffic due to
heavy application requests. Moreover, the need to support
the distributed nature of the cloud by protecting multiple
applications in different cloud locations is absent.
Additionally, the work in [10] introduces a maneuvering
tactic to confront the denial of service attack on the cloud by
moving the attacked virtual machine to a safe datacenter.

Our main aim is to provide a general defense strategy by
protecting different levels of the cloud, and incorporating
tailored signatures for various security threats. IDSaaS is
intended to work in different cloud models and to provide
flexible user control of security.

III. IDSAAS IN THE CLOUD

A. Overview

Cloud consumers should not have to only depend on the
cloud provider’s security infrastructure. They need to be able
to monitor and protect their virtual existence by enforcing
additional security methods with other network security
technologies like firewalls, access control lists and data
encryption within the cloud fabric. Consequently, cloud
consumers require the capability to deploy IDSs within their
virtual boundaries.

IDSaaS, which is shown in Figure 1, assists cloud
consumers with securing their virtual machines by deploying
an intrusion detection system in public clouds. It protects
them against attacks initiated from any external source over
the internet in addition to those originating from inside the
cloud. Here, cloud consumers implement the applications
they want to protect in the form of Virtual Machine Instances
(VMI) within a secure virtual network (V-LAN).
Concurrently, IDSaaS components can be placed in the same
V-LAN to guard these valuable assets.

Figure 1. IDSaaS in the Cloud

B. IDSaaS Features

 IDSaaS provides the following features to cloud
consumers:

 On-demand Elasticity: Cloud consumers have
the ability to scale IDSaaS core components that
are responsible for discovering suspicious traffic
based on the traffic volume for the protected
business application.

 Portability: The IDSaaS model is implemented
as a collection of Virtual Machine (VM)
instances based on Xen virtualization [11].
Therefore, IDSaaS components can reside in
public or private clouds or even in multiple
regions within a single cloud.

12Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 Full-Control: IDSaaS management,
functionality and architecture are independent
from the cloud provider. For example, an
IDSaaS administrator can deactivate a particular
IDS core node or enable a specific threat
signature definition.

 Customizable Signatures: IDSaaS is equipped
with predefined threat scenarios for faster and
more accurate detection rates. These scenarios
are represented in the form of rules. In addition,
IDSaaS users can write customized signatures
based on the nature of the defended application.
These rules can protect the application (SaaS),
the system (PaaS), and the network (IaaS) levels
of the cloud model. The grammar and examples
of threat signatures are given in Table I.

TABLE I. Signature Examples

 Reliability: IDSaaS has the ability to backup the
collected alerts with system configuration files
and store them in an off-cloud location. This
facilitates an efficient system recovery in the
case of failure.

IV. IDSAAS ARCHITECTURE

IDSaaS, as shown in Figure 2, consists of five main
components: the Intrusion Engine, the Output Processor, the
Events Database, the Alerts Management, and the Rule-set
Manager.

Figure 2. IDSaaS Components

A. Intrusion Engine:

Initially, the sensor taps into the network and collects
network packets, which are decoded for the analysis step.
The Intrusion Engine is the brain of the system. It
preprocesses the incoming packets and examines their
payload section looking for any matching pattern of a threat
defined in the loaded attacking rules. The processed packet is
logged only if it matches a rule. The output binary file is a
collection of captured alerts. The signature-based detection
model is selected because of its suitability to the cloud
environment. Simplicity, flexibility and ease of sharing
signatures are some of the advantages of this approach. Also,
it will enforce the elasticity feature by eliminating the
learning time for the system’s behavior required for the
anomaly-based approach.

B. Output Processor

 The main purpose of the Output Processor is to increase

the performance of the intrusion engine by formatting the

output log files and inserting them into the Events Database.

This allows the intrusion engine to focus on processing

network packets and logging alerts while leaving the

relatively slow process of database insertion to the Output

Processor component.

C. Events Database

 The Events Database stores the formatted events

generated from the Output Processer component. Also, the

database stores other relative information like sensor ID,

event timestamp and packet payload details.

D. Alert Management

 The Alert Management component is used as a GUI tool

to view the generated alerts and correlate them. It allows the

security administrator to extract events and relate them to

predefined attacking situations. Moreover, it provides the

ability to generate reports based on time, source of the

attack, or types of threat.

E. Rule-set Manager

 IDSaaS is a rule-based IDS system, and its rule base has

to be frequently updated to reflect the new threats and

attacking scenarios. The Rule-set Manager automatically

downloads the most up-to-date set of rules from multiple

locations. Rules are generally obtained either for free from

the public community service or through a subscription

service such as the SourceFire VRT [12].

V. PROOF-OF-CONCEPT IDSAAS

A proof-of-concept prototype of IDSaaS is implemented
in Amazon web services using the EC2 cloud. Although it is
tested on a public cloud, the IDSaaS framework can be
applied to other types of clouds that support V-LAN
implementation. All IDSaaS components are constructed and
bundled in the form of Amazon Machine Images (AMI). The
on-demand elasticity feature of IDSaaS can therefore be
enforced by starting the AMI instances on the fly.

13Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

A. Tools

The prototype of IDSaaS is built using a collection of
open source tools. Snort [13] is an open source network-
based intrusion detection system that is used in the Intrusion
Engine component. As for the Output Process component,
Barnyard2 [14] is used to act as the middle tier between the
Intrusion Engine and the Event Database. MySql is used as
the relational database to store the generated alerts. Snorby
[15] is used as a graphical interface for the system to display
various information and statistics about the collected
incidents. The Rule-set Manager is built using Oinkmaster
[16], which is a simple Perl script that compares locally
stored rules with the shared communities’ rules repository
and downloads updated rules based on user preferences.

B. Network Environment

The IDSaaS utilizes the Virtual Private Cloud (VPC)
service from Amazon. This V-LAN setup has the advantage
of creating a private network area that can only be controlled
by the application owner within the public cloud borders. In
the VPC space, both private and public subnets were created.
The private subnet maintains the protected business
application VMs. Any virtual machine that is placed in the
private subnet is isolated from the cloud traffic except the
traffic traveling from or to the public subnet of the VPC. The
public subnet hosts various IDSaaS VMs. Figure 3 illustrates
the general layout of the IDSaaS in the Amazon VPC.

C. IDSaaS VMs

1) IDSaaS Manager

 The Manager VM is the security administrator access

point where various supervision tasks can be performed. For

instance, it hosts the Alert Management component that

monitors traffic for any suspicious activity in the VPC. The

Event Database also resides in the Manager VM. The

Manager VM can be used as an access point to configure

other VMs in both public and private subnets.

2) IDS Core

 The IDS Core VM is the gatekeeper to the business

application VMs in the private subnet. It inspects all

incoming traffic using the Intrusion Engine component.

Based on the threat rule matching process, a request to the

business application VMs can be allowed or trapped by the

IDS Core VM. As a result, the Output Processor will send

generated alerts to the Event Database.

D. Security Groups (SG)

 Security Groups are used to define permissible network

services that can run on each VM in the Amazon EC2 cloud.

These virtual firewalls can decide the nature of the traffic

permitted for each VM in the form of inbound and outbound

allowable ports. Any VM that is attached to a particular SG

will comply with the services defined for that SG.

VI. IDSAAS EVALUATION

We conducted several experiments to evaluate the
effectiveness of our proof-of-concept prototype of IDSaaS in
EC2. We first present an attacking scenario and then show
the results of the experiments.

A. Attacking Scenario

In the scenario, a business application that consists of

web and database servers are placed into a private subnet of

the Amazon EC2 cloud in order to be accessed by the end

users via the IDS Core VM. On the other hand, the IDSaaS

VMs are placed on the public subnet. Figure 3 demonstrates

the network setup and the deployment of IDSaaS

components.

The business application can be accessed using the

exposed URL or IP address assigned to the IDS Core VM.

Experiments were conducted with different IDSaaS network

setups. Each setup experienced two attacking locations; an

External Attacker located outside the cloud and an Internal

Attacker located inside the Amazon EC2 Cloud. Each

attacker used two TCP protocols to attack the victim system.

First, they issued a series of HTTP requests to access the

registered users’ information page of the business

application. This area is restricted to the application

administrator, so an alert is released for non-authorized

access to this area. Second, they used the FTP protocol to

upload a suspicious file to the target server through the file

transfer service of the business application. Customized

rules were enabled in the IDSaaS to capture such a harmful

activity for each attacking type.

B. IDSaaS Components Overhead Experiment

The effectiveness of IDSaaS was evaluated by

measuring the overhead added by the different IDSaaS

components while protecting business applications in a

public cloud. By providing an extra level of protection,

IDSaaS improves the security element of the virtual

machines on the Amazon cloud. Our results so far indicate

acceptable increases in the response time for the business

application after adding the IDSaaS components (Figure 4).

For example, in the case of the FTP requests, IDSaaS

imposes 10.60% and 9.27% increases in response time for

traffic originating from outside and inside the cloud,

respectively. Similarly, for HTTP requests, it imposes

increases of 8.58% and 3.57% for traffic originating from

outside and inside the cloud, respectively. We believe this

size of increase in response time is justifiable given the

additional ability to enforce tailor-made attacking rules.

Table II shows the average response time for all network

setups of the experiment.

14Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

TABLE II. Components Overhead Experiment results

Figure 4. IDSaaS Components Overhead

C. IDSaaS Rules Overhead Experiment

The number of loaded attacking rules can also affect the

efficiency of the IDSaaS in capturing many threats. In this

experiment, we observed the performance of the intrusion

engine (IDS Core VM) against different rule set stages.

Stage one includes a complete set of rules (18,833 rules)

addressing different attacking situations. This rule-set

contains a collection of the intrusion engine’s preinstalled

rules as well as rules obtained from the public communities

like Emerging Threats team [17]. Stage two decreases the

rule set to 11 rules, which represents the Attack-Response

(A-R) rules. Finally, the last stage incorporates a single rule

to detect the Automatic Directory Listing (ADL) attack.

The IDS Core VM is used to compare the rules from the

rule repository with the captured traffic in the form of a

pcap file [18]. Intrusion engine performance was defined as

the run time to process incoming packets, compare them

with enabled rules and produce alerts in the form of binary

logs. Therefore, the smaller the run time to analyze traffic

packets, the better the performance of the intrusion engine.

Figure 3. IDSaaS in Amazon Cloud

15Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 5. IDSaaS Rule Overhead Experiment Results

Figure 5 shows that intrusion engine produced a single

alert in an average time of 24.77 seconds by enabling the

ADL rule (Stage 3). On the other hand, the intrusion engine

took an average of 28.46 seconds to discover 68 threats by

enabling the A-R subset. As a result, there was a 14.90%

increase in the overhead for the extra rules enabled between

stage 3 and stage 2. Similarly, stage 1 managed to capture

10,504 threats from the data sample within an average time

of 48.72 seconds. This can be translated into an increase of

71.19% of the overhead compared to stage 2. For that

reason, enabling all rules will degrade the performance of

the intrusion engine and it will increase the percentage of

false-positive alerts. Hence, fine-tuning the intrusion engine

component to reflect the nature of the protected application

is an important step when dealing with large number of

rules.

D. Distributed IDSaaS Experiment

We implemented a distributed version of IDSaaS (D-

IDSaaS) that has the ability to protect application VMs

residing in multiple cloud regions. This is achieved by

placing one or more IDS Core VMs in the same VPC as the

business application VMs and placing the Manager VM in a

centralized location. The security administrator can

therefore monitor multiple business applications in different

regions of the cloud from the central Manager VM.

We examined the cost of sending alerts from the IDS

Core VM to the Manager component in three network

configurations. Configuration 1, places the IDS Core VM

and the Manager VM in the same VPC of the same cloud

region. This typical IDSaaS setup is illustrated previously

in Figure 3. Configuration 2, positions the Manager VM in a

corporate network outside the cloud to meet with the

privacy concerns of storing alerts in the cloud as well as

reducing the storage costs of archiving historical alerts. In

configuration 3, the IDS Core VM and the Manager VM are

placed in different regions of the cloud. The business

applications and the IDS Core VM are placed in the EU

region of Amazon cloud and the Manager VM is positioned

in the US East region of the Amazon cloud. Figure 6

displays the network layout for configuration 2 and 3.

The intrusion engine component was configured to read

from a single pre-captured traffic file rather than from live

network traffic. This standardized the input traffic to be

analyzed by the intrusion engine for all network layouts.

The used pcap file contained 30,000 network packets, which

generates 145 alerts when enabling all installed rules

(18,833 rules). Both the IDS Core VM and Manager VM

were initialized using the small EC2 instances (OS Ubuntu,

1.7 GB memory, 1 virtual core CPU and 160 GB storage).

However, the Manager VM in the off-cloud network (OS

Ubuntu, 1.7 GB memory, 1 virtual CPU, 20 GB storage)

was initialized using the VMware software [19] as a guest

operating system.

The average dispatching time for 145 alerts from the

pcap file using 100 trails was 2.35 seconds in configuration

1. In configuration 2, the same number of alerts was

received on an average of 30.94 seconds. However, the

highest dispatching time was obtained from configuration 3

with 119.70 seconds. The results are demonstrated in Figure

7. We believe this high value is due to alerts transmission

time between the two Amazon regions.

Figure 6. Distributed IDSaaS in Public Cloud

Figure 7. Distributed IDSaaS Experiment Results

VII. SUMMARY

In this paper, we introduced IDSaaS, which is a
framework that enables consumers to protect their virtual

16Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

machines in public clouds. IDSaaS is compatible with many
cloud features, such as portability, elasticity, on demand
requests and pay-per-use service. The approach presented in
this paper is implemented as a collection of virtual machines
in order to comply with the cloud model.

Cloud consumers need to have customizable and
controllable security solutions in the clouds. The major
contribution for this work is a service to provide them with
IDS capabilities regardless of the cloud model. With IDSaaS,
users can define a virtual private area within the cloud space
for their applications that can be secured with application-
specific policies. Therefore, IDSaaS adds new levels of
security onto those already supplied by cloud providers.

Increasing system availability is a feature to be
implemented for future IDSaaS system. A replica of the IDS
Core VM can be created to distribute the traffic load to
prevent single point of failure situations. Therefore, a virtual
load balancer node can increase the accessibility of the
IDSaaS components in the cloud. Also, it can be responsible
for balancing the traffic load between multiple IDS Core
VMs.

ACKNOWLEDGMENT

This research is supported by the Ministry of Higher
Education in the Kingdom of Saudi Arabia, the Saudi
Arabian Cultural Bureau in Canada and Queen's University.

REFERENCES

[1] C. Burns, "Public cloud security remains MISSION
IMPOSSIBLE," Network World. Oct, 2011. [Online].
Available:
http://www.networkworld.com/supp/2011/enterprise5/101011
-ecs-cloud-security-250973.html, [Retrieved: June, 2012].

[2] Amazon Web Services: Overview of Security Processes.
[Online]. Available: http://aws.amazon.com/security,
[Retrieved: June, 2012].

[3] B. Damele and A. Guimaraes, "Advanced SQL injection to
operating system full control", Black Hat Europe 2009, April
2009

[4] Amazon Elastic Compute Cloud (Amazon EC2). [Online].
Available: http://aws.amazon.com/ec2/, [Retrieved: June,
2012].

[5] Amazon Virtual Private Cloud (Amazon VPC). [Online].
Available: http://aws.amazon.com/vpc, [Retrieved: June,
2012].

[6] W. Xin, H. Ting-lei, and L. Xiao-yu, "Research on the
Intrusion detection mechanism based on cloud computing,"
Intelligent Computing and Integrated Systems (ICISS), 2010
International Conference pp.125-128, 22-24 Oct. 2010

[7] C. Mazzariello, R. Bifulco, and R. Canonic, “Integrating a
Network IDS into an Open Source Cloud Computing
Environment,” Sixth Internationl Conference on Information
Assurance and Security (IAS), 2010

[8] S. Roschke, F. Cheng, and C. Meinel, "Intrusion Detection in
the Cloud", In Proceedings of Workshop Security in Cloud
Computing (SCC'09), IEEE Press, Chengdu, China, pp. 729-
734 (December 2009).

[9] F. Sibai and D. Menasce, "Defeating the Insider Threat via
Autonomic Network Capabilities," Communication Systems
and Networks (COMSNETS), 2011 Third International
Conference pp. 1-10, 4-8 Jan. 2011

[10] A. Bakshi and Y. Dujodwala, “Securing Cloud from DDOS
Attacks Using Intrusion Detection System in Virtual
Machine,” ICCSN ’10, pp. 260-264, 2010, IEEE Computer
Society, USA, 2010

[11] Feature Guide: Amazon EC2 User Selectable Kernels.
[Online]. Available: http://aws.amazon.com/articles/1345,
[Retrieved: June, 2012].

[12] The official Snort Rule-set, Sourcefire Vulnerability Research
Team (VRT). [Online]. Available: http://www.snort.org/vrt,
[Retrieved: June, 2012].

[13] Sourcefire, Snort (version 2.9.5). [Online]. Available:
http://www.snort.org, [Retrieved: June, 2012].

[14] The Barnyard2 Project. [Online]. Available:
http://www.securixlive.com/barnyard2, [Retrieved: June,
2012].

[15] Snorby (version 2.2.6). [Online]. Available:
http://www.snorby.org, [Retrieved: June, 2012].

[16] The OinkMaster Project. [Online]. Available:
http://oinkmaster.sourceforge.net, [Retrieved: June, 2012].

[17] Snort Rules, Emerging Threats Project. [Online]. Available:
http://rules.emergingthreats.net, [Retrieved: June, 2012].

[18] 1999 Training Data - Week 4, DARPA Intrusion Detection
Evaluation. [Online]. Available:
http://www.ll.mit.edu/mission/communications/ist/corpora/ide
val/data/1999/testing/week4/index.html, [Retrieved: June,
2012].

[19] VMware Inc, Wmware Player (version 4.0.2). [Online].
Available: http://www.vmware.com/products/player,
[Retrieved: June, 2012].

17Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

