
On the Performance Isolation Across Virtual Network Adapters in Xen

Blazej Adamczyk, Andrzej Chydzinski
Institute of Computer Sciences

Silesian University of Technology
44-100 Gliwice, Poland

{blazej.adamczyk,andrzej.chydzinski}@polsl.pl

Abstract—Virtualization has recently become a very popular
technique for utilizing hardware capabilities and lowering
infrastructure and maintenance costs. However, making several
virtual machines share the same resources can potentially
introduce performance isolation problems. Depending on the
application, proper quality of service and the performance
isolation may present critical requirements for the system.
In this paper, we focus on network performance isolation
among virtual adapters in Xen. We present several experi-
ments demonstrating how activity of one virtual machine can
affect the network performance of any other. Additionally, we
examine the network I/O scheduler in Xen to see if it is fair,
predictable and configurable enough. Finally, we propose an
idea on how to modify Xen back-end drivers to improve the
network performance isolation.

Keywords-performance isolation; Xen; virtualization; ne-
twork scheduler.

I. INTRODUCTION

The increasing number of different IT services are making
the virtualization idea a very important aspect of computer
science. Virtual Machine Monitors (VMMs) bring about the
dynamic resource allocation and enable full utilization even
of the most powerful servers, while still maintaining good
fault isolation between virtual machines (VMs). However,
the services provided over the network may require a certain
quality, which is not easy to ensure in a virtualized envi-
ronment. Several VMs can share the same physical network
interface as well as other hardware (processor, memory etc.)
what likely makes one VM affect other VMs performance.
Therefore, the performance isolation is crucial in case of
some applications and has to be carefully verified.

In this paper, we focus on Xen VMM, [1], which is one
of the most popular virtualization platforms and an Open
Source project. Firstly, we present a study of the network
performance isolation between Xen virtual machines. Diffe-
rent test scenarios allowed us to identify several problems.
Secondly, we carefully analyze the Xen CPU scheduler and
the network IO scheduler to find out their possible source
and resolution method.

The remaining part of the paper is structured as follows. In
Section III, Xen general architecture is overviewed. Then, a
description of the Xen schedulers is presented in Section
IV. Section V describes the testing environment and its
parameterizations. The results and discussion on them are

contained in Section VI. Finally, an idea of improving the
network performance isolation in Xen is presented in Section
VII. Conclusions are gathered in Section VIII.

II. STATE OF THE ART

This study verifies that there are problems related with
performance and isolation of virtualized network resources.
Several previous studies (see [9], [10], [11], [12], [13], [14],
[15]) focus on analysis of the performance of IO operations
and some of them present partial solutions. Unfortunately,
these studies do not examine isolation and manageability
in the field of resource sharing in considered virtualization
platforms. In [7], however, the authors tried to approach
the performance isolation problem focusing on all kinds of
resources. Unfortunately, this study was performed on older
version of Xen with an older CPU scheduler implementation.
They assumed that the main source of the problem is connec-
ted with CPU assignment and scheduling. We think however,
that to achieve good performance isolation across virtual
network adapters the proposed CPU scheduler improvement
could be used but is not sufficient. We present that even on
a low CPU utilization the problem is still noticeable and
is related with network scheduler itself. We have verified
that applying a modified for virtualization Weighted Round
Robin (WRR) network scheduler improves the performance
isolation and provides better control over virtual network
devices.

III. XEN VMM

Different virtualization environments have been developed
throughout the years. Xen, due to its unique architecture
(Fig. 1), is one of the leading solutions. The core of Xen,
which is responsible for control over all virtual machines,
is a tiny operating system called Xen Hypervisor. Its main
tasks are CPU scheduling, memory assignment and interrupt
forwarding. In contrast to other VMMs, the virtualization of
all other resources is moved outside the hypervisor. Such
original approach has the following advantages:

• Device drivers are not limited to the hypervisor ope-
rating system because they are installed on a virtual
machine (any OS),

222

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

• Device drivers, as the most vulnerable software, are
isolated from the hypervisor, significantly increasing
the stability,

• Distributed virtualization of resources allows creation
of several driver domains, eliminating the single point
of failure,

• Small hypervisor operating system is much more relia-
ble, efficient and stable.

CPUs

Hypervisor
CPU Scheduler

?

NIC

Dom0 DomU

VCPUs

?
VCPUs

-

Standard driver

?

Back-end IO Sched.
?

Front-end driver�

Figure 1. Xen architecture (Dom0 - Xen primary virtual machine, DomU -
other Xen virtual machine, Hypervisor - main Xen operating system running
directly on hardware, NIC - Network Interface Card, VCPU - virtual CPU)

There are two main virtualization methods. The first one
allows to run any kind of OS and emulates all the necessary
hardware to create an impression that the guest system is
running on a physical machine. Second approach is to run a
modified guest operating system, which is ”aware” of being
virtualized. The latter, called paravirtualization, is much
more efficient, but limited to some operating systems only.
Xen provides both methods, but performs much better in the
paravirtualization mode, which will be the only method used
further in this paper.

To make the IO operations as fast as possible, Xen
introduced also paravirtualized device drivers. Each guest
domain (Xen VMs are also called ”domains”) has the front-
end drivers installed. Such drivers, provided with Xen,
are communicating with the back-end drivers running on
a special driver domain (Dom0 in Fig. 1). All requests
addressed to a certain hardware are first scheduled and
processed by the back-end driver, then are sent to the
standard device driver inside the driver domain and finally
reach the hardware. Thanks to Xen internal page-flipping
mechanism called XenBus, (see [2], [3]), such solution is
much more efficient than the standard emulation technique.

IV. XEN SCHEDULERS

The main goal of this study is to examine the network
performance isolation across Xen guest domains. It means
to check, if activity of one virtual machine influences the
network performance of any other. The resulting knowledge

is of great importance from the perspective of many network-
related applications.

There are two elements in Xen, which may influence such
isolation, namely the CPU scheduler and the network IO
scheduler [6]. In the following two sections a description of
these two schedulers is given.

A. CPU Scheduler

The fundamental part of each multitasking operating sys-
tem is the CPU scheduler. Its aim is to create an impression
that all running processes are executed in parallel. Typically,
there are much more processes than available physical CPUs
and the processes have to share CPU time. The scheduler is
responsible for this division.

Inside Xen VMM, the hypervisor is the main operating
system running on the physical machine. It is responsible
for scheduling physical CPU time among virtual machines.
To make the process easier the term virtual CPU (VCPU)
is introduced. Every VM in Xen can have multiple virtual
processors. Also, every domain is running operating system
with another scheduler, which divides a VCPU time among
processes running inside the guest operating system. The
hypervisor on the other hand, schedules the physical CPU
time among VCPUs.

The newest version of Xen uses the credit scheduler [4]
[5]. It assigns two parameters for each domain - weight and
cap. The weight defines how much CPU time a domain
gets comparing to other virtual machines. The cap parameter
is optional and describes the maximum amount of CPU a
domain can consume. Using this two parameters the number
of credits can be calculated. As a VCPU runs, it consumes
credits. While VCPU has existing credits, its priority is
called under and it gets CPU time normally. When there are
no credits left, the priority changes to over. Each physical
CPU maintains its own local VCPU queue. In the first place,
the VCPU tasks with priority under from the local queue are
executed. Then, if there are no VCPUs with priority under,
the scheduler looks for such tasks in other CPU queues. If
there are no tasks with priority under, the tasks with priority
over from the local queue are executed. The credit scheduler
in Xen can by summarized in the following algorithm and
diagram (Fig. 2):

1) Process preemption - the scheduler takes control over
CPU.

2) Last taken VCPU inserted back into the local queue
according to its credits number.

3) Have the highest priority VCPU from the local queue
used all its credits?

• No: Highest priority VCPU taken from the local
queue.

• Yes: SMP Load Balancing - highest priority
VCPU taken from other CPU queues.

4) Switching context to the currently taken VCPU - the
VCPU takes control over CPU.

223

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

Figure 2. Xen CPU scheduler

Considering this CPU scheduler in the context of the
network performance isolation, it is worth noticing that the
scheduler operates on virtual CPUs only, so it should not
have a strong impact on IO performance. However, it may
happen that one misbehaving VM will slow down the total
responsiveness and performance of other domains. Also, as
it was presented in [7], the Xen CPU scheduler does not
take into account the amount of CPU consumed by the
driver domain on behalf of other VM. This may also have
an impact on the network performance isolation, as some
domains may use more CPU time than they are allowed.
Furthermore, a different type of IO request (e.g., more
demanding, like disk driver requests) can potentially slow
down the driver domain and affect the network performance
of other VMs.

B. Network IO scheduler

Looking at Xen architecture and analyzing its source code
from the network performance isolation point of view, one
can easily note that the most interesting part is the back-end
network driver, called Netback. It contains another scheduler,
responsible for gathering all IO requests sent to a certain
physical network adapter. This network scheduler is not a
complex mechanism and probably can be improved. Its only
configuration parameter is the maximum rate (parameter
rate) - in fact it can be perceived as the credits number in the
scheduler. The administrator can specify only the maximal
throughput achieved by a certain virtual network adapter.
Unfortunately, there is no way to prioritize and control the
quality of service in more details.

The scheduler itself counts the amount of data
sent/received in given periods. If rate has been reached, it
sets a callback to process the request in next periods. Such
solution is efficient, but does not guarantee any fair share or
quality. In fact, a misbehaving VM can theoretically flood
driver domain with requests.

V. EXPERIMENTAL SETUP

To perform the tests, we installed Linux Gentoo with Xen
4.0.0 on Intel Quad Core 2 (2.83GHz), 2GB RAM, with

hardware virtualization support. Two guest domains, each
having 1 VCPU and 1GB of RAM, were created. Although
there were separate physical CPU available for each VM,
both VCPUs were pinned to the same physical CPU. Such
configuration was used in order to check the influence of
the CPU scheduler on the network performance. All network
measurements were taken using iperf application. The UDP
protocol transferring datagrams of 1500B to an external host
over 100Mb link was used. We used the 100Mb link instead
of 1Gb to present that the isolation problems are still present
without a heavy CPU utilization. Only outgoing traffic was
measured, as this was our main point of interest. The testing
environment is presented in Fig. 3.

Physical machine

PV 1

PV 2
NIC

-

-

100Mb/s-

External machine

NIC

Figure 3. Testbed configuration. (PV1, PV2 - Xen paravirtualized
machines, NIC - Network Card Interface)

VI. RESULTS

In the first experiment, we observed how activity of one
VM can affect the performance of another, when both VMs
are configured with the same rate parameter. Four values
of rate were used in different test runs: 25Mb/s, 30Mb/s,
35Mb/s and 40Mb/s. In every run one machine started its
transfer at the very beginning and the other started after 5s
of delay. For every rate value, the experiment was repeated
10 times and the 0.95 confidence intervals were derived. The
results are presented in Fig. 4.

Firstly, we can see that the actual rate is always a little
smaller than rate parameter. As for the performance isola-
tion, it is not too bad for low values of rate. However, with
growing rate, the confidence intervals are getting larger and
larger - in sample runs we can observe stronger variations of
the throughput achieved by each VM. For the value of rate
equal to 35Mb/s, the performance isolation becomes rather
weak (although only about 60 percent of the total bandwidth
is consumed).

Thus the only way to achieve a good isolation is to limit
virtual adapters by far, which is not a satisfactory solution.
Also, it is worth mentioning that having only the upper limit
parameter is not enough in many cases. It would be much
better to have any means to prioritize certain virtual adapter
or even to have a minimum rate parameter and a scheduler
satisfying these requirements.

In the second experiment, different rate values per each
VM were used. Fig. 5 shows results for rate = 30Mb/s
in one VM, and rate = 40Mb/s in another. The isolation

224

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25

B
i
t
r
a
t
e

M
b
/
s

Time s

VM 1

VM 2

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25

B
i
t
r
a
t
e

M
b
/
s

Time s

VM 1

VM 2

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25

B
i
t
r
a
t
e

M
b
/
s

Time s

VM 1

VM 2

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25

B
i
t
r
a
t
e

M
b
/
s

Time s

VM 1

VM 2

Figure 4. The throughput per VM for different values of rate parameter,
namely for 25Mb/s, 30Mb/s, 35Mb/s and 40Mb/s, counting from the
top.

problem still remains but, what is worth noticing, both VMs
affects each other similarly.

In the presented two experiments the performance iso-
lation problem was either mild or moderate, depending on
the configuration. In the following two experiments, we will
demonstrate more severe performance isolation issues.

In the third experiment, we verified how Xen divides
available bandwidth among two VMs when the maximal rate
is not set. A sample path of the throughput achieved by each
VM in time is presented in Fig. 6. Surprisingly, sometimes
one virtual machine gets the total throughput and the other’s

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25

B
i
t
r
a
t
e

M
b
/
s

Time s

VM 1

VM 2

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25

B
i
t
r
a
t
e

M
b
/
s

Time s

VM 1

VM 2

Figure 5. Total throughput per VM for different values of rate parameter
(30Mb/s and 40Mb/s.

throughput decreases to 0. Moreover, there are long periods
when one VM dominates the other by far. Therefore, we
have in fact no performance isolation at all in this case.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

B
i
t
r
a
t
e

M
b
/
s

Time s

VM 1

VM 2

Figure 6. Sample throughput processes in time for two separate VMs
without limits

In the fourth set of tests, we wanted to verify if a
very abusive virtual machine can take more bandwidth then
others. This time we wanted to check the performance
isolation of the network IO scheduler only, therefore we
pinned one physical CPU to each VM.

In the first test, one domain was trying to transfer data
over one connection using full available speed, while the
second domain was using two connections, both of them
trying to achieve full available speed. In the next test, the
second domain was using three connections at full available
speed.

The results are presented in Fig. 7. As it can be observed,
the more abusive domain is, the better throughput it achieves.
Naturally, if the rate parameter had been set, the overactive

225

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

domain would never have crossed the maximum rate. In the
lower ranges however, the problem remains.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

B
i
t
r
a
t
e

M
b
/
s

Time s

VM 1

VM 2 (2x more active)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

B
i
t
r
a
t
e

M
b
/
s

Time s

VM 1

VM 2 (3x more active)

Figure 7. Bandwidth division with one overactive VM.

In the last experiment, we wanted to check if non-network
IO requests can influence the network performance isolation
of another domain. During the experiment one VM was
constantly sending datagrams at full speed, while the second
VM was performing some extensive disk operations (fio tool
was used for this purpose). The results are presented in Fig.
8; t0 and t1 are points in time when the extensive disk
operations were initiated and finished, respectively.

We can see that other IO request can also have a strong
impact on the network performance. This is probably caused
by driver domain not being able to process all the IO
requests. Block device access is being handled by separate
block device back-end drivers. Disk operations are much
more demanding in the driver domain than the Netback
drivers.

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40 45

B
i
t
r
a
t
e

M
b
/
s

Time s

t
0

t
1

VM 1

Figure 8. Disk IO influence on network performance. (t0 - disk IO start,
t1 - disk IO finish)

VII. IMPROVEMENT IDEA

After detailed analysis of the problem, we have gathered
some ideas on how to modify Xen to improve the network
performance isolation. Currently, in the driver domain se-
veral Netback kernel threads can be running, depending
on the number of VCPUs. Furthermore, several virtual
network adapters are mapped with one Netback kernel thread
dynamically and this single Netback thread schedules the
work using a simple round-robin algorithm, additionally
taking into account rate parameter (omitting adapters, which
used up all their bandwidth in the current period). Our idea
is to introduce two additional parameters for every virtual
adapter, namely priority and min rate. To implement the
former, it would be necessary to change the round-robin
mechanism to a more advanced priority based queue. Of
course, we have to remember that the algorithm should not
increase significantly the time complexity. The min rate
parameter could use the same prioritization mechanism,
assigning higher priorities to interfaces, which have not yet
achieved the minimum rate. Depending on the results, it may
be also necessary to introduce a user level application for
maintaining the niceness level of each Netback thread inside
the driver domain, according to actual needs.

A. Prioritization

The very first step to solve all the aforementioned pro-
blems is to introduce a prioritization mechanism into Xen’s
Netback driver. To achieve such functionality we implemen-
ted the simple Weighted Round Robin algorithm (see [8]). In
virtualized environment where a packet passes several virtual
adapters before it reaches the actual real interface and each
interface has its own input buffer the WRR scheduler has
to be modified to guarantee that the scheduled packets will
not be dropped before they reach the wire. Dynamic and
real-time priority assignment in this scheduler was created
by additional Linux kernel sysctl parameters, i.e., prioritize,
priorities and delay. The first parameter defines whether to
use the WRR scheduler or not. Second parameter is an array
of the actual priority values for each virtual adapter and the
delay is used to define the inactivity period (i.e. a period of
time after, which the vif is treated as inactive).

Each vif has a separate queue of data to transfer and
a priority. The latter corresponds to the weight in the
implemented WRR algorithm. Total bandwidth available at
the physical link is shared proportionally between all active
virtual interfaces according to their weights.

To test the prioritization we performed simple experiment
where two VMs transmit data to an external host. In the
meantime the priorities were changed every second. At the
begging VM 1 had much bigger priority, in the end VM 2
was favored in the same proportion (i.e., 30/1). The results
are presented in Figure 9.

226

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

B
i
t
r
a
t
e

M
b
/
s

Time s

VM 1

VM 2

Figure 9. Results of the improved scheduler for changing priorities of
each VM.

B. Further improvements

Prioritization brings a lot of new possibilities and impro-
ves the performance isolation by far. Nevertheless, in high
CPU utilization scenarios it is not sufficient. Much more
complicated mechanisms have to be created. Virtualization
makes the problem very complex, as three different sche-
dulers may affect the isolation: CPU Scheduler, Domain 0
VCPU Scheduler and Netback IO Scheduler. To achieve best
results it might be necessary to synchronize all schedulers.
Thus, partial solutions providing the minimal rate parameter
for given virtual interface may prove very valuable. Finally,
a modification proposed in [7] may also help to increase the
performance isolation taking the aggregate CPU consump-
tion into consideration. All these are subjects of our future
study.

VIII. CONCLUSION

Xen is a powerful and stable virtualization platform, what
accompanied with its Open Source formula makes it one of
the most interesting VMMs, especially for research purpo-
ses. However, when the network virtualization is considered,
the weak point of Xen is its lack of proper performance
isolation. We demonstrated this using five sets of tests. The
problems with isolation are caused by several factors mostly
connected with CPU and IO schedulers. We proposed the
Netback driver modification using WRR algorithm to provide
prioritization. We have also briefly presented an idea for
future improvements.

IX. ACKNOWLEDGMENT

This work is partially funded by the European
Union, European Funds 2007-2013, under contract number
POIG.01.01.02-00-045/09-00 ”Future Internet Engineering”.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield: Xen and the art of
virtualization. In: Proc.of the 19th ACM SOSP, New York,
2003, Vol. 37, pp. 164–177.

[2] Y. Xia, Y. Niu, Y. Zheng, N. Jia, C. Yang, and X. Cheng:
Analysis and Enhancement for Interactive-Oriented Virtual
Machine Scheduling, IEEE/IFIP International Conference on
Embedded and Ubiquitous Computing, 2008, Vol. 2, pp. 393–
398.

[3] Xen Wiki, http://wiki.xensource.com/xenwiki/XenBus, 29-06-
2011.

[4] L. Cherkasova, D. Gupta, and A. Vahdat: Comparison of the
three CPU schedulers in Xen, SIGMETRICS Performance
Evaluation Review; September 2007, Vol. 35, No. 2., pp. 42-
51.

[5] G. W. Dunlap: Scheduler development update, Xen Sum-
mit North America 2010, http://www.xen.org/files/xensummit
intel09/George Dunlap.pdf, 29-06-2011.

[6] J. Matthews, E.M. Dow, T. Deshane, W. Hu, J. Bongio, P.F.
Wilbur, and B. Johnson: Running Xen: A Hands-on Guide to
the Art of Virtualization; Prentice Hall; April 2008.

[7] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat: Enfor-
cing Performance Isolation Across Virtual Machines in Xen;
In Proceedings of the 7th ACM/IFIP/USENIX Middleware
Conference, 2006, pp. 342-362.

[8] A. K. Parekh and R. G. Gallager: A generalized proces-
sor sharing approach to flow control in integrated services
networks: The single-node case; IEEE/ACM Transactions on
Networking; 1993, Vol. 1, pp. 344-357.

[9] P. Padala et al.: Adaptive control of virtualized resources
in utility computing environments, ACM SIGOPS Operating
Systems Review, Vol. 41, No. 3, 2007, pp. 289-302.

[10] Y. Song, Y. Sun, H. Wang, and X. Song: An adaptive
resource flowing scheme amongst VMs in a VM-based utility
computing, in Computer and Information Technology, 2007.
CIT 2007. 7th IEEE International Conference on, 2007, pp.
10531058.

[11] J. Liu, W. Huang, B. Abali, and D. K. Panda: High perfor-
mance VMM-bypass I/O in virtual machines, in Proceedings
of the annual conference on USENIX, 2006, Vol. 6, pp. 3-3.

[12] V. Chadha, R. Illiikkal, R. Iyer, J. Moses, D. Newell, and
R. J. Figueiredo: I/O processing in a virtualized platform: a
simulation-driven approach, in Proceedings of the 3rd interna-
tional conference on Virtual execution environments, 2007, pp.
116-125.

[13] D. Ongaro, A. L. Cox, and S. Rixner: Scheduling I/O in
virtual machine monitors, in Proceedings of the fourth ACM
SIGPLAN/SIGOPS international conference on Virtual execu-
tion environments, 2008, pp. 1-10.

[14] G. Liao, D. Guo, L. Bhuyan, and S. R. King: Software tech-
niques to improve virtualized I/O performance on multi-core
systems, in Proceedings of the 4th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems,
San Jose, California, 2008, pp. 161-170.

[15] S. R. Seelam and P. J. Teller: Virtual I/O scheduler: a
scheduler of schedulers for performance virtualization, in
Proceedings of the 3rd international conference on Virtual
execution environments, 2007, pp. 105-115.

227

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

