
A Generalized Approach for Fault Tolerance and Load Based Scheduling of
Threads in Alchemi .Net

Vishu Sharma, Manu Vardhan, Shakti Mishra, Dharmender Singh Kushwaha
Department of Computer Science and Engineering

Motilal Nehru National Institute of Technology, Allahabad
Allahabad, India

Email: {cs0916, rcs1002, shaktimishra, dsk}@mnnit.ac.in

Abstract— Computational grids can be best utilized by the
divide and conquer approach, when it comes to executing a
large process. In order to achieve this, building multithreaded
application is one of the efficient approaches. The threads are
scheduled on different computational nodes for execution. One
of the frameworks that support multithreaded applications is
Alchemi, but it does not incorporate any load based scheduling
and fault tolerance strategy. In Alchemi, a manager node uses
first come first serve (FCFS) scheduling to schedule threads on
executors (node that execute independent thread), but it does
not consider any CPU load on which the executors are
running. Moreover if an executor fails in between, then the
manager node reschedules the thread on other executor node.
One solution for the above problem is to save intermediate
results from each thread and reschedule these threads on
another executor. We propose an approach that provides fault
tolerance in Alchemi by using Alchemi Replica Manager
Framework (ARMF), where the manager node will be
replicated on one of its executor node. The proposed algorithm
is 6-16 percent more efficient than FCFS, when implemented in
Alchemi.

Keywords-ARMF; FCFS; fault tolerance; load based scheduling.

I. INTRODUCTION

A computational grid provides distributed environment in
which user jobs can be executed either on local or on remote
machines [2]. In grid, user jobs are considered as
applications that contain the tasks to be executed. Further,
each independent task is represented by a single thread.
Whenever a user is having a job which contains multiple
individual tasks it is better to use multithreading environment
because thread creation and management is easier and faster
than process creation. Threads provide following advantages
over processes [20]:

• Thread creation takes less time because it uses the
address space of process that owns it.

• Thread termination is easier than process
• There is less communication overhead between

threads because address space is shared.
Figure 4 shows the architecture of Alchemi. It shows a

manager connected with four executors. Alchemi provides
API’s that are used to create grid applications. In Alchemi,
Gthread class is used to implement the multithreading [13].
Figure 1 shows the Gthread class and its structure. It contains
an abstract method start ().Each thread is given a priority by

a user. Alchemi .NET has the 5 priority levels from lowest to
highest. Each application consists of several threads. The
manager node is responsible for the scheduling of threads on
different executors and collects the results from these
executors after successful completion. The two issues related
with Alchemi are scheduling of threads and fault tolerance.

 The first issue is that of scheduling, where the manager
node uses FCFS [17] policy for scheduling. It stores the
threads according to their priority and schedules the highest
priority thread on next available executor. It does not
consider the CPU load of the processors on which the
executors are running. If more than one executor is available
at a time, it might happen that a thread is scheduled on a
more loaded executor which can degrade the performance.

Figure 1. Structure of Gthread class.

Second issue is that of Fault tolerance, this helps system
to recover from faults [4]. In case of Alchemi grid, if a thread
is scheduled on an executor and due to some reasons, the
executor crashes, the thread running on this executor also
crashes. In such a case, the manager reschedules this thread
on another executor and the thread is restarted from the
scratch. Moreover there may be the case when the Alchemi
manager can crash and all the executors currently registered
with the manager will come to halt.

One solution to the above problem is discussed in [5].
The authors have used a file based implementation in which
a file stores the intermediate results and if thread crashes it is
rescheduled on another executor and resumes its execution
from last successful result, without starting from the scratch.
It reads the last successful result from the stored file.

The second limitation in [5] is that all the fault tolerance
code overhead is on the user who submits the application.
The Alchemi manager is not responsible for any kind of
activity. Thus we came across the following issues that are
yet to be resolved in Alchemi .NET.

• If a thread execution fails in between, then how the
values produced by this thread (till the point of
failure) can be saved at manager node and how the

public abstract class GThread : MarshalByRefObject
{
public abstract void Start();
/* method is overridden by the class that inherits the

Gthread class*/ }

211

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

remaining work of the failed thread is assigned to
other thread. Approach given in [5] does not talk
about how this kind of fault tolerance mechanism
can be implemented in manager node. It completely
relies on user. Neither have they discussed about the
possibility of Alchemi manager failure.

• If the more than one executor is available at same
time and the CPUs on which these executors are
running might be overloaded then how to schedule
threads to get a better solution.

To address above mentioned issues, a generalized
approach is proposed as under, in which fault tolerance is
provided for computational applications [12] running on a
global grid.

• To provide a kind of check pointing scheme which
stores the intermediate results produced by threads
and the Alchemi manager node is incorporated with
the facility to control the execution of failed threads
and reschedule these threads on other available
executors. In case of Alchemi manager failure the
ARMF is proposed, which will provide the backup
in such cases.

• To choose the best available executor on the basis of
the load of CPU.

For more complex scientific application this approach
may not work well as it requires users input. Hence, the
proposed approach is confined to the computation intensive
processes.

 Rest of the paper is organized as follows. Section 2
describes the existing work done in fault tolerance and
scheduling in grids. Section 3 shows the proposed approach.
Section 4 shows the case study using the proposed algorithm
and Section 5 derives the conclusion.

II. RELATED WORK

In load-based scheduling [18], load information can’t be
exchanged much frequently due to network communication
overheads [2]. It is desirable to exchange the load
information only when it is needed.

In a system, fault tolerance is achieved by means of some
redundancy that could be hardware, software or time
redundancy [19].

Vladimir et al. [7] discuss about the scheduling of
divisible load applications, where the resources are selected
dynamically, based on the intermediate results. In this
approach, application specific requirement also plays a vital
role in selecting the resources. But this approach is applied at
application level and does not concentrate on multi-threaded
grid [15] environment.

Zeljko et al. [8] discusses an improved scheduling
strategy in Alchemi. This approach still relies on a static
strategy for selecting the executors and adds nothing to fault-
tolerance. To achieve fault tolerance, a file based technique
is proposed in [5]. First problem with this approach is that it
places the burden of creating and manipulating the file on the
user who creates the application and the manager does not
contribute in any kind of fault tolerance activity. Second
problem is that for each thread there is a single file, means

incurring more overhead on the manager node. This
approach [5] has been shown only for one application.
Authors have not discussed how other applications can be
implemented using this approach.

One of the characterization techniques is given in [10]. In
this technique, individual machine faults are defined as,
resource level fault and faults in global environment of grid
are considered as service level faults. This paper does not
elaborate much about the resumption of jobs from the point
where it was crashed.

Another improved approach is given in [11]. Fault
tolerance is achieved at job level but as each job can be
divided into individual tasks using multithreading so several
issues like which thread got faulted, how to combine the
results from faulted threads etc remain unhandled.

An approach for thread scheduling is shown in [16],
where different threads are scheduled to download files from
different servers. But in this approach if a thread fails to
execute, it is rescheduled after all threads complete their
execution.

All the above discussed literature work motivated us to
put efforts for providing a novel solution to fault tolerance
and load based scheduling in Alchemi .NET.

III. PROPOSED APPROACH

In our approach two concepts, first is fault tolerance and
second is scheduling of threads, based upon CPU load are
integrated into single algorithm. We first discuss about the
fault tolerance approach followed by the thread scheduling
based on CPU load. The proposed approach did not consider
the manager load, as the thread will always execute on the
executor node, not on the manager node. There may be the
case of manager failure, which we have discussed below.

A. Fault Tolerance Approach

In Alchemi .NET the applications are divided into
individual threads and these threads are scheduled on
currently available executors. If a thread execution stops in
between then the work done by that thread till that point will
be lost.

In [5], an approach is proposed in which file is created
for each thread which keeps track of thread execution. This
approach puts extra burden of creating and using the file over
the application programmer who creates the application.

We propose an approach that enhances this idea [5] by
incorporating the manager with the capability of creating and
maintaining the file. Each application, submitted by a
different user is different and hence the intermediate results
(variables) would be different. We try to generalize this
approach so that different kind of applications can be
executed in the same way. To support this kind of
dynamicity, we are using the XML-file. As the application is
submitted, the manger node creates an XML-file with
relevant information loaded into it. This information is
responsible for resuming a crashed thread.

A big challenge in this approach is how to identify these
variables. In our approach these variables are supplied by the
user who submits the application because the user knows
what and where the values must be stored. During the thread

212

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

execution, the executor is responsible for saving these values
into the XML-file that is on manager. Whenever a crashed
thread is rescheduled on different executor the manager node
will extract the values from that XML-file and will pass it to
the thread so that it can resume its operations.

Figure 2. Proposed structure of thread implementation.

Figure 2 shows the structure of the threaded class that a
user implements. This class extends the Gthread class given
in Figure 1. The Structure of the XML file is given in Figure
3. This file contains the values for threads for which
processing has been successful.

Figure 3. Structure of XML file.

In the existing file-based fault tolerance approach [5],
fault tolerance is supported at user end. Fault tolerance is
completely dependent on application user. In our proposed
approach, fault tolerance is supported by the Alchemi
manager, application user need not to concern about its
implementation.

Next, in Alchemi architecture, there is no provision for
handling the situation where manager can fail. Under these
circumstances all the Executors registered with the failed
manager will stop executing, and the whole system will
come to halt. There should always be some backup / replica
manager, so that single point failure can be avoided.

Alchemi manager which is responsible for managing the
execution of grid applications can be replicated. This can be

achieved by replicating the Alchemi manager at its one of the
Executor, which is currently registered with this manager.

Figure 4 describes the whole scenario. The manager node
is connected with four executors. Each executor executes an
independent thread. User application is containing 3 threads.

Figure 4. Architecture of Alchemi and Alchemi Replica manager.

P1, P2, P3 are the thread priorities assigned by the user
for the respective thread. T1’, T2’, T3’ are the thread
associated with the Replica manager which is on Executor 4.

The information that needs to be transferred to the
Executor node, so that the Alchemi manager can continue
functioning from the point of failure and not from the
scratch, is stored in a XML file with the manager. This XML
file needs to be replicated to that Executor node, which is
acting as a replica of Alchemi manager. Periodic updation of
this XML file is required, so as to maintain the consistency
of the system.

 The information that needs to be transferred to the
executor node is stored in a XML file with the manager, so
that the Alchemi manager can continue functioning from the
point of failure and not from the scratch. This XML file
needs to be replicated to that Executor node, which is acting
as a replica of Alchemi manager. Periodic updation of this
XML file is required, so as to maintain the consistency of the
system.

 In the present Alchemi framework, an executor can
register itself only with one manager. Issue associated here,
from the developers/programmers perspective is “how the
Executor will register itself with the new manager i.e., the
replicated manager in case of manager failure”. With the
present framework, if the manager fails, the new replica
manager needs to inform all the executors, registered with
the failed manager, to get them registered with the new
replica manager. Or there should be some provision by
which an executor can register it with more than one
manager.

B. Modified Scheduling Algorithm

Alchemi .NET provides its grid API that is used to
develop grid applications to be submitted to the Alchemi.
Each application contains threads. Number and priority of

 Public class table: Gthread /* user code */ { table (
int starting_number, int last_number)

{/* constructor initializes the values in XML file */
/* initialization of values done by manager */
} Public void start()
{for(num=starting_number;num<=last_number;

number++)
 for(int i=1; i<= 10; i++)
 { result=num*i; }
savetofile(num, result);
}} Savetofile(values)/* method runs on executor */
{ /* sends intermediate values to the manager node

*/ }

<file application_id= “ “><thread>
<init><thread_id> 123</thread_id>
<first number>1</first number>
<last number>5<last number>
<completed>yes</completed></init></thread>
<thread>
<init><thread_id>163</thread_id>
<first number>6</first number>
<last number>10<last number>
<completed>no</completed>
</init>
</thread> </file>

213

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

threads are defined by the application programmer. It does
not consider current performance of the CPU on which the
executor is running. If at the same time two executors are
available and one of these is overloaded whereas other is not,
so it might happen that a highest priority thread is scheduled
on an executor that is overloaded. In those cases when the
higher priority thread execution duration is large, this
overloaded executor might degrade the performance.

In the proposed approach, an executor does not send its
load information periodically, rather it sends it whenever an
executor finishes execution of a thread and it is ready to
receive a new thread from the manager. We assume that no
thread is interrupted during its execution due to the load
information on its machine.

In Figure 5 default mechanism of selecting the executors
is shown.

Figure 5. Default scheduling mechanism in Alchemi.

Figure 6 shows the modified algorithm, if more than one
executor is available at the same time our algorithm selects
the best one.

Figure 6. Modified mechanism.

C. Algorithm

The algorithm combines both the approaches discussed
above. Its theoretical description is given in Figure 7.
The architecture of the proposed approach is shown in Figure
8. A ft_thread is added at manager and executor nodes. At
manager node the ft_thread is running continuously and is
responsible for receiving the intermediate values from the
ft_thread running on executors. It writes the intermediate
values into the XML file and reads them in case a faulty
thread needs to be rescheduled.

Figure 7. Proposed algorithm.

 Manager Node Executor Node
Figure 8. Architecture of Fault Tolerant Alchemi.

Step1: Thread=gethighestprioritythread();
Step2: Executor=Getnextavailableexecutor()
Step3: create new schedule with executor and thread.
Step4: Schedule(dedicateschedule);

Step1: Thread= Gethighestprioritythread();
Step2: Execut_available[]=Getcurrent_avail_executor()
 Executor= Executoravailable[].getleastloaded().
Step3: Create new schedule with executor and thread.
Step4: schedule(dedicateschedule);

1. Get the highest priority thread from the database.
2. Create the entry in XML file for that thread.
3. Get the available executors check their load factor

and if more than one executor is available get the
minimally loaded executor.

4. Receive the intermediate values sent by the executor
for that thread.

5. Replace the existing value in XML file with the
recently received values.

6. If executor gets disconnected then check the thread
status allocated to that executor. If it is not
completed create new thread with the same thread id
that was executing on the crashed executor.

7. Supply the last successful results to that newly
created thread so that it can resume its execution.

8. Get the minimally loaded executor and assigned this
thread to that executor.

9. Repeat steps 1 to 8 until the thread database is empty.

214

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

IV. CASE STUDY

We evaluate the scenario where an overloaded executor
might be a bottleneck for the performance. In Figure 9, we
show an example with three executors on which threads are
scheduled. We assume that all executors that are not
overloaded execute the threads in approximately same time.

In Figure 9, an executor is marked as overloaded and it
takes more time to execute a thread as compared to an
average loaded or underloaded executor.

An average loaded or underloaded executor takes 4 units
of time to execute a high priority thread and 2 units of time
to execute a low priority thread whereas an overloaded
executor takes 6 units of time for high priority thread and 3
units of time for low priority thread. Hence the completion
time for this application according to FCFS scheduling is 9
units of time.

In Figure 10, we see another arrangement of threads on
the executors. In this low priority threads are scheduled on
overloaded executor and all high priority threads are
scheduled on less overloaded executors. The completion
time of the application is 8 units of time.

Figure 9. Arrangement of threads on executors according to default

mechanism.

Load information collected from the executor also helps
in selecting the best available executor whenever a thread is
rescheduled after a crash. In our approach we assume that if
at any point of time two executors are available we select
one which is less loaded.

In the simulated environment we analyze the behavior of
proposed application with different applications. These
applications are included in random. In Alchemi, different
executor nodes are connected to manager node. From these
available executor nodes some are overloaded in comparison
to others.

Table I shows five applications, number of high and low
priority threads for each application. In this table, column
name A.N. stands for application number, N.T. for Total
number of threads in an application, N.H.P for Number of
high priority threads, N.L.P. for Number of low priority
threads and E.E.T. for Expected execution time on normal
executor. In Table II, completion time for FCFS and
proposed algorithm is shown. The total number of threads in
a single application is shown in Table I. The execution time

for a thread is shown on a normal executor. We assume that
an overloaded executor takes 50% more time to execute a
thread. In Table I application number 4 has threads of same
type, i.e., all the threads are having same priority. In this case
also, our proposed algorithm performs well.

Figure 10. Arrangement of threads on executors according to proposed

algorithm.

TABLE I. APPLICAION CHARACTERISTICS. H RPRESENTS THE HIGH
PRIORITY THREAD AND L REPRESENTS THE LOW PRIORITY THREAD

Figure 11 shows the results obtained from FCFS and
proposed algorithm in simulated environment. It shows that
our proposed algorithm gains better completion time. Figure
8 also shows that for a given application set, our proposed
algorithm is 6-16 % more efficient in comparison to FCFS
algorithm. In case where all the threads have same priority, it
is 11% more efficient than the FCFS algorithm.

V. CONCLUSION

An approach that achieves fault tolerance supported by
manager node of Alchemi is presented in this paper. In
comparison to other approaches, the scheduling of threads on
various nodes after the crash requires no user intervention.
Rather the proposed approach implements fault tolerance in
system by using manager node and executor node. We also
propose an Alchemi Replica Manager Framework (ARMF)
and a scheduling algorithm based on the load information of
executor nodes. ARMF replicates the XML-file, which is
maintained by the manager node and stores all the required
information about the threads executing on the executors, to
one of its executor, which will be acting as the replica
manager in case of manager failure. Our proposed algorithm
selects the executors depending upon the load information of
currently available executors. This helps Alchemi manager
to select best executor (least loaded for a high priority

A.N. N.T. N.H.P N.L.P E.E.T.
 H L

1 7 2 5 4 2
2 14 2 12 6 4
3 11 2 9 10 6
4 9 9 0 6 -
5 6 4 2 10 5

215

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

thread) amongst available ones. In performance study, it has
been found that the proposed approach is 6 – 16 % more
efficient than FCFS, when implemented in Alchemi.
Alchemi Replica Manager Framework (ARMF) provides a
mechanism to replicate manager node to one of its executor.

TABLE II. COMPARISON BETWEEN PROPOSED ALGORITHM AND FCFS

Figure 11. Performance study of both algorithms.

REFERENCES
[1] Sunita Bansal, Gowtham K, and Chittrnjan Hotta: Novel

adaptive scheduling Algorithm for computational grids.
Proceeding IMSAA'09 Proceedings of the 3rd IEEE
international conference on Internet multimedia services
architecture and applications, pp. 1-5, 2009.

[2] Ruchir Shah, Bhardwaj Veeravalli, and Manoj Misra: On the
Design of Adaptive and Decentralized load balancing
algorithms with Load estimation for computational grid
environments, IEEE transactions on parallel and distributed
systems, vol. 18, no. 12, pp. 1675-1685, 2007.

[3] Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, and
Srikumar Venugopal: Alchemi: A .NET-based Grid
omputing Framework and its Integration into Global Grids.
In: Grid Computing and Distributed Systems (GRIDS),
Technical Report, GRIDS-TR-2003-8, Grid Computing and
Distributed Systems Laboratory, University of Melbourne,
Australia, pp. 1-17, 2003

[4] William C. carter: Fault-Tolerant Computing: An Introduction
and a Viewpoint, IEEE TRANSACTIONS ON
COMPUTERS, vol. C-22, no. 3, pp. 225 – 229, 1973.

[5] Md. Abu Naser Bikas, AltafHussain, Abu Awal Md. Shoeb,
Md. Khalad Hasan, and Md. Forhad Rabbi: File Based GRID
Thread Implementation in the .NET-based Alchemi

Framework, Multitopic ConferenceI, NMIC. IEEE Intern., pp.
468-472, 2008.

[6] Veeravalli Bharadwaj, Debashish Ghose, and Thomas G.
Robertazzi: Divisible Load Theory: A New Paradigm for
Load Scheduling in Distributed Systems, Cluster Computing
6, pp. 7–17, 2003, 2003.

[7] Vladimir V. Korkhov, Jakub T. Moscicki, and Valeria V.
Krzhizhanovskaya: The User-Level Scheduling of Divisible
Load Parallel Applications With Resource Selection and
Adaptive Workload Balancing on the Grid, IEEE systems
journal, vol. 3, no. 1, pp. 121-129, 2009.

[8] Zeljko Stanfel, Goran artinovic, and ZeljkoHocenski:
Scheduling Algorithms for Dedicated Nodes in Alchemi Grid.
IEEE International Conference on Systems, Man and
Cybernetics, pp., 2531 – 2536, SMC 2008.

[9] Gracjan Jankowski, Radoslaw Januszewski, and Rafal
Mikolajczak.: Improving the fault-tolerance level within the
GRID computing environment - integration with the low-level
checkpointing packages, CoreGRID Technical Report
Number TR-0158, June 16, 2008.

[10] Jes´us Montes CeSViMa, Alberto S´anchez, and Mar´ıa S.
P´erez.: Improving grid fault tolerance by means of global
behavior modeling, Ninth International Symposium on
Parallel and Distributed Computing, pp. 101-108, 2010.

[11] HwaMin Lee1, DooSoon Park1, Min Hong1, Sang-Soo Yeo2,
SooKyun Kim3, and SungHoon Kim4.: A Resource
Management System for Fault Tolerance in Grid Computing,
International Conference on Computational Science and
Engineering, pp. 609-614, 2009

[12] Nirmalya Roy and Sajal K. Das: Enhancing Availability of
Grid Computational Services to Ubiquitous Computing
Applications, IEEE transactions on parallel and distributed
systems, vol. 20, no. 7, pp. 953-967, 2009.

[13] Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, and Srikumar
Venugopal: Alchemi: A .NET-based Enterprise Grid
Computing System, 6th International Conference on Internet
Computing. Las Vegas, pp. 1-10, 2005.

[14] Sandeep Singh Rawat and Dr. Lakshmi ajamani:
Experiments with CPU Scheduling Algorithm on a
Computational Grid, IEEE International Advance Computing
Conference (IACC 2009), pp. 71-75, India, 2009

[15] Jos´e Augusto Andrade Filho, Rodrigo ernandes de Mello,
and Evgueni Dodonov: Toward an efficient Middleware for
Multithreaded Applications in Computational Grid, 11th
IEEE International Conference on Computational Science and
Engineering, pp. 147-154, 2008.

[16] Suvarna N. A and Dinesh Chandra: Evaluation of
Improvement Algorithms for dynamic Co-Allocation with
respect to parallel downloading in Grid Computing, First
International Conference on Integrated Intelligent Computing,
pp. 79-83, 2010.

[17] U. Schwiegelshohn and R. Yahyapour: Analysis of first-
come-first serve parallel job scheduling, Proceedings of the
ninth annnal ACMSIAM symposium on Discrete algorithms
(SODA'98), pp. 629-638, 1998.

[18] Cui Zhendong and Wang Xicheng.: A Grid Scheduling
Algorithm Based on Resources Monitoring and Load
Adjusting, Knowledge Acquisition and Modeling Workshop,
2008, KAM Workshop, pp. 873-876, 2008.

[19] Nils Mullner, Abhishek Dhama, and Oliver Theel: Deriving a
Good Trade-off between System Availability and Time
Redundancy, Symposia and Workshops on Ubiquitous,
Autonomic and Trusted Computing, pp. 61-67, 2009.

[20] http://www.personal.kent.edu/~rmuhamma/OpSystems/Myos/
threads.htm accessed on 10-05-2011.

Application
number

No.of
exec-
utors

No.of
over

loaded
CPUs

FCFS
Comp-
letion
time

Proposed
algorithm
completion

time

1 3 1 9 8

2 4 2 21 18
3 3 1 33 28
4 3 1 18 16
5 3 1 22.5 20

216

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

