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Abstract—Deterministic execution offers a lot of benefits for 
debugging, fault tolerance, security of multiprocessor systems. 
Most previous work to address this issue either depends on 
custom hardware or needs to recompile the program. Some 
others combine the hardware and software technologies. Our 
goal in this work is to provide deterministic execution and 
repeatability of arbitrary, unmodified, multiprocessor systems 
without custom hardware. To this end, we propose a new 
abstraction of a multiprocessor virtual machine named 
Deterministic Concurrency State Machine (DCSM). With the 
virtual private memory model, the multiprocessor virtual 
machine can execute deterministically as a DCSM. With the 
replay of the DCSM, better debugging methods and intrusion 
analysis can be obtained to improve the availability and 
security of the whole system, not only a program. We 
implemented DCSM on the Kernel-based Virtual Machine 
(KVM) and the performance cost can be acceptable if some 
parameters and optimization strategies are chosen correctly 
based on the preliminary evaluation results. 

Keywords-availability; concurrency; deterministic execution; 
security 

I.  INTRODUCTION  
Nowadays, cloud computing is accelerating the market 

for parallel software development. However, the 
concurrency in multithreaded programs brings the problem 
of non-determinism. This non-determinism makes a 
concurrency system produce different outputs, even given 
the same input. Such weak repeatability may not ensure that 
a server running in the cloud can rerun to the previous state 
right before the physical machine crashed. Then, the wrong 
results may be sent to clients. 

Determinism is the foundation of replay, debugging, fault 
tolerance and auditing. Many intrusion analysis tools assume 
that the system can enforce determinism even on malicious 
code designed to evade analysis [1]. The replicated state 
machine technology [2] is also based on the assumption that 
the virtual machine can execute deterministically. 

To address the issue of non-determinism, some work that 
depends on custom hardware [4-5] can obtain a good 
performance. For software-only solutions, some of them 
need to recompile the program [6, 12]. When referring to the 
non-determinism of the whole system, previous software-
only solutions [7] primarily focus on pure record-and-replay 
technology, which incurs high overheads and large space 
costs. Other software-only technologies [15-16] are tailored 
to specific classes of programs, but they do not notice that 
the environment of the program can also induce an 

unexpected bug (e.g., one Mozilla bug cannot be triggered 
unless another program modifies the same file concurrently 
with Mozilla [3]). 

In order to provide deterministic execution of arbitrary, 
unmodified, multiprocessor systems without custom 
hardware support, we propose Deterministic Concurrency 
State Machine (DCSM). The deterministic execution of 
DCSM is enforced by our modified hypervisor or virtual 
machine monitor which we call dVMM. This solution can 
ensure the repeatability of the environment-caused bug, 
improving the ability of debugging. Given an external input, 
this DCSM will make a deterministic state transition based 
on current execution state. Therefore, the record-and-replay 
technology is used on this DCSM to ensure the repeatability 
of the execution of a multiprocessor virtual machine. 

This paper makes the following contributions. First, we 
propose the virtual private memory model and relative 
scheduling algorithm. With this model and algorithm, the 
multiprocessor virtual machine that encapsulates 
multithreaded programs can execute deterministically. As a 
result, the controllability can be obtained. Second, we define 
the Deterministic Concurrency State Machine. With this 
DCSM, the record-and-replay technology can be used to 
improve the repeatability of the whole virtual machine’s 
execution. Meanwhile, it eliminates the large space costs due 
to recording the interleaving of CPUs. 

The outline of this paper is as follows. In Section 2, we 
define the DCSM, propose the virtual private memory model 
and describe how the dVMM ensures the deterministic 
execution with a scheduling algorithm and record-and-replay 
technology. Section 3 describes some implementation issues. 
Section 4 provides some evaluation results. Section 5 
discusses relevant issues. Section 6 outlines related work and 
Section 7 concludes. 

II. DETERMINISTIC EXECUTION AND REPLAY OF 
MULTIPROCESSOR VIRTUAL MACHINES 

A. The Problem of Non-determinism 
Figure 1 [3] shows a concurrency bug in Mozilla. In this 

figure, if thread 2 writes the variable io_pending after thread 
1 writes it, there will be an expected correct execution path. 
But if thread 1 writes the variable io_pending after thread 2 
writes it, the expectation of the program will be violated. By 
default, thread 1 should initialize the variable before they 
execute concurrently. 

This is a common concurrency bug, which makes 
contribution to the non-determinism of multithreaded 
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programs. If a multiprocessor system is intruded, this non-
determinism will make the replay of the intrusion more 
difficult and result in inaccurate intrusion analysis. 

Another example is shown in Figure 2, which is 
mentioned in DMP [4]. The table inside the figure shows the 
frequency of the outcome of 1000 runs on a Intel Core 2 Duo 
machine [4].  

Figure 1.  An order violation bug in Mozilla [3].  

The result demonstrates that the underlying parallel 
architecture can affect the result of a system. The Symmetric 
MultiProcessor (SMP) model is used widely nowadays. But, 
Figure 2 shows the case of non-determinism in a SMP 
system. The non-determinism in parallel is caused by the 
data races of concurrent memory accesses in a SMP system. 
Our DCSM solution is a software-only approach to solve 
such a system-level issue. In addition to DCSM, external 
non-determinism is considered with the record-and-replay 
technology, which can improve the repeatability of the whole 
system’s execution. 

Figure 2.  A simple program with a data race between two threads and 
runs 1000 times [4].  

 
Next section describes the characteristics of DCSM, 

while its building methods are described in two following 
sections. The record-and-replay section specifies the method 
to deal with external non-determinism outside DSCM. 

B. Deterministic Concurrency State Machine 
Bocchino Jr. et al. [9] argue that parallel programming 

must be deterministic by default. But many programs are 
coded serially. They can reach parallel with the support of 
other tools such as compiler. Further more, people are used 
to thinking serially, which will probably result in buggy 
programs. Therefore, some measures must be taken to make 
the multithreaded programs execute deterministically. Those 
measures must also consider the environments influence on 
the programs. To meet these demands, a deterministic 
multiprocessor virtual machine is used to encapsulate the 
multithreaded programs and their environments. This kind of 
virtual machines ensures deterministic execution of the 

whole system. And their execution is controlled by dVMM 
to ensure a deterministic execution path. Such a deterministic 
multiprocessor virtual machine is called a Deterministic 
Concurrency State Machine (DCSM).  

Figure 3 depicts the behaviors of a DCSM. A DCSM can 
be represented by a tuple {(V, M), I, A}, where V is the set 
of cpus’ states, M is the set of memory states, I is the set of 
inputs, A is the set of actions. Given the initial state (V0, M0) 
and certain input, the DCSM will take a subset of actions in 
A and reach a deterministic state, thus produce a 
deterministic result. During the actions, DCSM will not 
receive any external inputs. The actions DCSM takes are the 
concurrent instructions; the size of these instructions is 
further determined and controlled to realize the DCSM in the 
following sections. 

Figure 3.  State transitions of a DCSM. The DCSM will deterministically 
take certain actions to reach state (V1, M1) if given certain input and 

certain initial state. 

C. Virtual Private Memory Model 
In a multiprocessor VM, if one virtual cpu (vcpu) is hung 

up after it acquires a lock, then other running vcpus that want 
to acquire this lock will waste their time in trying to get the 
lock. In that case, it is very difficult to control the 
concurrency for deterministic synchronization because of its 
complexity. Therefore, the basic scheduling strategy is that 
all vcpus in the multiprocessor VM must be running 
concurrently on physical cpus. Otherwise, they must be 
paused at the same time.  

Figure 4 shows the virtual private memory model. There 
are two main stages-when virtual memory is created and 
when it is merged or synchronized. 

This basic scheduling strategy makes the situation 
simpler. Based on that strategy, an algorithm can be designed 
to ensure a multiprocessor VM’s deterministic execution. To 
be deterministic, the concurrent execution must be 
synchronized at some critical points. So, our algorithm is 
mainly based on the idea of quantum, which is composed of 
certain quantity of instructions. These quanta are the actions 
that DCSM will take to reach the next deterministic state. At 

206

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-153-3



 

 

system level, data races are happened on the shared memory. 
So the virtual private memory model is proposed to provide 
each vcpu an illusion that each has its own memory. This 
illusion makes each vcpu executes concurrently without 
considering the memory interactions. As a result, without the 
interference from external non-determinism, an isolation of 
the executions of the quanta is provided before the 
synchronization stage. So this memory model provides the 
concurrent stages to fully execute and the synchronization 
stages to make the result of previous executions deterministic. 
Algorithms can use these two stages to get fully parallel 
execution and make the result deterministic when 
synchronizing. 

Figure 4.  Virtual private memory model. 

D. DMP-VPM Algorithm 
At the virtualization level, the virtual private memory 

model ensures the virtual memory isolation of concurrent 
executions. According to the characteristics of virtualization 
level, our quantum based algorithm utilizes the virtual 
private memory model and privatizes the shared memory. 
And it synchronizes the concurrent quanta to make the result 
deterministically. This algorithm is called DMP-VPM 
(Deterministic Shared Memory Multiprocessing based on 
Virtual Private Memory). Figure 5 tells how a vcpu behaves 
in DCSM. 

Figure 5 describes how the algorithm works. Each vcpu 
executes after obtaining its virtual private memory. When the 
quantum finishes, it is time to merge the private memory in 
order. So for the sake of the sequence guarantee at the 
merging or synchronization stage, the idea of token ring is 
utilized. The token is passed in a deterministic sequence 
among vcpus. A vcpu with the token has the right to merge 
its private memory and create a new virtual private memory. 
Otherwise, it must wait for its turn. In the algorithm, when a 
vcpu with the token wants to merge, it must make sure that 
the vcpu has not read the pages merged or written by the 
previous vcpus in this memory version. Otherwise it will 
create its new virtual memory and re-execute the quantum. 
After merging successfully, the vcpu with the token will 
create its new virtual memory, pass the token to the next 
vcpu and execute its next quantum. Such a deterministic 
sequence in accessing or modifying memory will result in a 

deterministic memory state. Note that the design of DCSM 
does not consider the external non-determinism which will 
change the execution sequence of a quantum. Under such a 
condition, vcpus can also reach a deterministic state. 

 
Figure 5.  Each vcpu’s execution diagram with virtual private memory. 

E. The Record and Replay of DCSM 
A deterministic executing VM can be regarded as a 

deterministic state machine. Because given current state and 
some external input, such a VM can produce a deterministic 
result, namely make a transition to another deterministic 
state. Then this VM can be replayed with the initial state and 
the recorded external inputs. This is the main characteristic 
of the DCSM. Although the record-and-replay technology 
has been used in many fields, the record and replay of the 
DCSM is kind of different. 

To replay a DCSM, external non-determinism must be 
injected during replay at the exactly right time when the 
injection will not break the execution sequence of a quantum. 
Which vcpu needs the injection must be recorded. Some 
information about the non-determinism must also be 
recorded. When recording the DCSM, the external injections 
are controlled to happen at the beginning of each quantum, 
making the replay easier. Such an injecting method further 
improves the isolation between the quantum and external 
world and makes sure that the DCSM will not receive any 
input when taking actions. As a result, the quantum’s result 
is deterministic. But some special instructions like RDTSC 
must be treated differently. The results of such instructions 
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and the exact occurrence time must be recorded for the 
replay. 

III. IMPLEMENTATION ISSUES BASED ON KVM 
The hardware virtual technology VT, which is developed 

in some Intel’s cpus, makes the implementation easier and 
will be of great help in performance. KVM is a module in 
linux and makes the whole operating system a hypervisor 
based on VT. It utilizes the kernel’s memory management 
mechanism to provide the guest virtual machine with a fake 
contiguous guest physical memory. To implement the 
DCSM and its record-and-replay, the interface 
VMEntry/VMExit is a good place for coding. The 
implementation framework is shown in Figure 6. According 
to this figure, some implementation issues are described as 
follows. 

Figure 6.  The framework of the dVMM. 

A. Implementation of DCSM 
When implementing DCSM, we have to take into 

account the implementation of the virtual private memory 
model. The implementation of that model will be described 
along with the DMP-VPM algorithm. The EPT (Extended 
Page Table) mechanism in intel’s VT technology can be used 
to implement that model. In EPT’s page table, each entry has 
several relevant control bits, namely readable bit, writable bit 
and executable bit. To provide each vcpu an isolated virtual 
private memory, we utilize the copy-on-write technology.  

In KVM, each EPT violation will cause a VMExit which 
will call the relevant handler handle_ept_violation(). Then 
the function kvm_mmu_page_fault() is called to process this 
violation. In this function, the key memory process function 
tdp_page_fault() is called. Therefore, the process in this 
function can be changed to realize our goal. Note that each 
vcpu is designed to have its own page table. During the 
creation of the EPT page table, lazy allotment strategy is 
used. Once the guest accesses a page not present in the EPT 
page table, we first identify whether it is a write or a read. If 

it is a read, the EPT page is allotted, set as readable and not 
writable and the read action on this page is recorded. And if 
it is a write, a new host physical page is allocated and the 
original page’s data are copied to the new page. Then 
dVMM will make the relevant EPT page entry redirect to the 
new page, set corresponding control bits and record this 
redirection for merging. Again, if it is a write on a page that 
has the EPT page present and not writable, it will be checked 
whether it is caused for recording. If so, dVMM will do the 
same thing for the write. All the records are produced during 
the first attempt to read or write for the sequential merging; 
these records are not written to the log file. After the first 
access to the page, the same subsequent accesses will not be 
interposed. So, there are only limited times of the control 
actions of dVMM. 

B. Implementation of DCSM’s record and replay 
To record and replay the DCSM, some external non-

determinism must be treated differently. For instructions like 
RDTSC, the exact logical time of the result delivery after the 
instruction’s execution must be logged and replayed. For 
other external non-determinism, signals are delivered at the 
beginning of the quantum. 

To record the exact logical time of non-determinism’s 
occurrence, a tuple <eip, bc, ecx> is used to represent the 
logical time, where eip is the instruction counter, bc is the 
performance counter and ecx is a register used for string 
operations. As in figure 6, the recorder program in user space 
will communicate with KVM by forwarding custom 
commands through the ioctl() interface of the kvm device. 
With these commands, users can run an assigned VM as a 
DCSM and replay it if needed. During recording, the 
recorder is wakened to read the records from KVM. Then the 
recorder writes the records in the log file. During replay, the 
recorder keep extracting the records from the log file and 
passing them to KVM with the ioctl() interface. After 
receiving enough records, the assigned VM is able to run. If 
KVM does not have any records for replay, it will check 
whether the recorder has marked that all records have been 
sent. If not, the assigned VM will be paused until new 
records arrive. Otherwise, the VM continues running. 

IV. EVALUATION 
To get the performance evaluation of DCSM,  we have to 

know exactly the overheads caused by the VMEXITs of the 
quanta for synchronization. In our virtual environment,  we 
ran the SPLACH2 benchmark suite [17] to evaluate the 
design of parallel processors. For some applications, we 
chose input parameters to make them run for around 60 
seconds so that the actual workload can be distinguished. 
The tests we ran were fmm, ocean, water-spatial, lu and 
radix. The modified virtual machine monitor KVM ran on a 
machine with a dual Intel Core (TM) 2 64-bit processor (2 
cores total) clocked at 2.93 GHz, with 4GB of memory 
running linux 2.6.38.5. 

Figure 7 shows the overheads of a two processor KVM 
guest that ran the tests in it. In the experiment, the guest’s 
processors didn’t re-execute their quanta even the quanta 
visited the same page. And we didn’t record anything to a 
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log file. Therefore, the result mainly does not include the 
overheads caused by the re-execution of the quanta, nor can 
the record size be gained.  The results of different quantum 
sizes as 8K, 32K, 128K were compared with that of the 
normal execution of the guest. 

The results show that a larger quantum can reduce the 
VMEXITs and page faults’ frequency. With a quantum size 
larger than 32K, the overheads are less than 3x. So a larger 
quantum can have a better performance in the experiment. 
But if quanta’s re-execution is taken into account, a larger 
quantum will generate a longer re-execution time. In this 
case, the quantum size must be chosen carefully. 

 
Figure 7.  Overhead of DCSM for a two processor KVM guest without 

quanta’s re-execution. 

V. DISCUSSION 
In the cloud, virtual machine monitors like KVM can 

provide users with some virtual resources based on the vast 
physical resources. Many servers are developed as parallel 
programs and can run in a virtual machine in the cloud. They 
may encounter an intrusion or a bug when providing service. 
Our solution can be applied to replay the execution and help 
developers fix those problems. 

Our solution is quite similar to dOS [8], while dOS is 
implemented in an operating system and our dVMM can 
enforce the whole guest operating system. Based on our 
virtual private memory model, many other scheduling 
algorithms can also be applied. All evaluation experiments of 
dOS are done on 8-core 2.8GHz Intel Xeon E5462 machines 
with 10GB of RAM. Without recording the internal non-
determinism due to interleaving of threads, dOS produces 
about 1000 times smaller logs than SMP-ReVirt [7]. The log 
size of dVMM depends on the communication between the 
virtual machine and external environment. When dealing 
with the entire system, dVMM can eliminate much more 
logs due to the interleaving of CPUs. So dVMM can have a 
smaller log size than SMP-ReVirt. Since dVMM have to 
deal with all the processes in an operating system, it will 
produce more logs than dOS if more processes communicate 
with external environment. 

However, the main overhead of dVMM is due to the 
communication between quanta, the same as dOS. According 
to the evaluation of dOS, the overhead of Chromium with a 

scripted user session opening 5 tabs and 12 urls is about 1.7x 
on average. The main factors causing the overhead are the 
quantum size, single-stepping and the communication 
between quanta. Due to the cost of VMExit of each quantum 
for synchronization, the slowdown of dVMM is no more 
than 7x in our tests. But it will become much smaller if the 
multithreaded program has a good locality of or only a few 
memory accesses, as well as a suitable quantum size chosen. 

There are also many optimizations that can be used to 
improve dVMM’s performance. First, to reduce the 
probability of re-execution of a quantum, some methods like 
forward in DMP [4] can also be applied. Second, some 
binary translation technologies can be used to pre-process the 
instructions and pre-allocate some shadow pages for the 
vcpus to reduce more page faults and VMExits in future 
execution. Other optimizations can also be applied to 
improve dVMM’s performance. 

VI. RELATED WORK 
At language level, parallel languages such as SHIM [10] 

and DPJ [9, 11] can enforce determinism, but require 
rewriting the code. Determinator [1] is implemented on a 
microkernel and proposes a new programming model. The 
whole new programming type may not be suitable for some 
common used applications and it is only implemented on a 
microkernel now. dOS [8] proposes Deterministic Process 
Groups (DPG) to ensure the concurrency determinism and a 
shim layer to replay DPG, which is a solution only 
implemented in linux. But our solution does not need a 
whole new programming model and supports different 
multithreaded programs in different operating systems.  

Some hardware-based system such as DMP [4] and 
Calvin [5] can obtain a good performance, but require 
custom hardware support. DMP provides different methods 
to gain determinism. Some of the methods utilize the 
transactional memory, which is similar to our solution. 
However, their implementations need custom hardware 
support, which may not be suitable for the community 
hardware in the cloud. Some technologies like RCDC [12] 
and CoreDet [6] use a combination of hardware and software 
support. They not only use custom hardware, but also need 
software support like compliers, which forces an application 
to be recompiled before running. On the contrary, dVMM is 
a software only solution and can support arbitrary, 
unmodified software. 

There are also many technologies focused on record and 
replay of a multithreaded program. Like dVMM, SMP-
ReVirt [7] can replay the whole system which encapsulates 
multithreaded programs and their environments. 
Unfortunately, it has high overheads and large space costs, 
which is largely owing to the recording of the execution 
interleaving. However, DCSM does not have to record the 
interleaving of CPUs compared with SMP-ReVirt. PRES [13] 
and ODR [14] log a subset of shared memory interactions, 
reduce the log size, but have increased costs in replay when 
doing the search of the execution space. dVMM utilizes the 
hardware VT technology and enforces the deterministic 
execution with very few controls. Therefore, without logging 
shared memory interactions, dVMM can have much smaller 
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log size than SMP-ReVirt. Without searching the execution 
space, dVMM can perform better in replay than PRES and 
ODR. 

VII. CONCLUSION 
This paper proposed a virtual private memory model. 

Based on this model, DMP-VPM algorithm is introduced to 
control the deterministic execution of the multiprocessor 
virtual machine. This controlled virtual machine is called 
deterministic concurrency state machine. And a record-and-
replay scheme for this DCSM is designed. With the internal 
determinism and the record of external non-determinism, the 
repeatability of the whole system can be ensured, providing 
support for debugging, intrusion analysis, etc. Without 
quanta’s re-execution and quantum size no less than 32K, the 
DCSM generates overheads less than 3x. With a carefully 
chosen quantum size, the DCSM is supposed to have 
acceptable overheads. 
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