
Deterministic Execution of Multiprocessor Virtual Machines
Junkang Nong, Qingbo Wu, Yusong Tan

 School of Computer, National University of Defense Technology,
 Changsha 410073, Hunan, China

e-mail: {njk.jackson,wu.qingbo2008,yusong.tan}@gmail.com

Abstract—Deterministic execution offers a lot of benefits for
debugging, fault tolerance, security of multiprocessor systems.
Most previous work to address this issue either depends on
custom hardware or needs to recompile the program. Some
others combine the hardware and software technologies. Our
goal in this work is to provide deterministic execution and
repeatability of arbitrary, unmodified, multiprocessor systems
without custom hardware. To this end, we propose a new
abstraction of a multiprocessor virtual machine named
Deterministic Concurrency State Machine (DCSM). With the
virtual private memory model, the multiprocessor virtual
machine can execute deterministically as a DCSM. With the
replay of the DCSM, better debugging methods and intrusion
analysis can be obtained to improve the availability and
security of the whole system, not only a program. We
implemented DCSM on the Kernel-based Virtual Machine
(KVM) and the performance cost can be acceptable if some
parameters and optimization strategies are chosen correctly
based on the preliminary evaluation results.

Keywords-availability; concurrency; deterministic execution;
security

I. INTRODUCTION
Nowadays, cloud computing is accelerating the market

for parallel software development. However, the
concurrency in multithreaded programs brings the problem
of non-determinism. This non-determinism makes a
concurrency system produce different outputs, even given
the same input. Such weak repeatability may not ensure that
a server running in the cloud can rerun to the previous state
right before the physical machine crashed. Then, the wrong
results may be sent to clients.

Determinism is the foundation of replay, debugging, fault
tolerance and auditing. Many intrusion analysis tools assume
that the system can enforce determinism even on malicious
code designed to evade analysis [1]. The replicated state
machine technology [2] is also based on the assumption that
the virtual machine can execute deterministically.

To address the issue of non-determinism, some work that
depends on custom hardware [4-5] can obtain a good
performance. For software-only solutions, some of them
need to recompile the program [6, 12]. When referring to the
non-determinism of the whole system, previous software-
only solutions [7] primarily focus on pure record-and-replay
technology, which incurs high overheads and large space
costs. Other software-only technologies [15-16] are tailored
to specific classes of programs, but they do not notice that
the environment of the program can also induce an

unexpected bug (e.g., one Mozilla bug cannot be triggered
unless another program modifies the same file concurrently
with Mozilla [3]).

In order to provide deterministic execution of arbitrary,
unmodified, multiprocessor systems without custom
hardware support, we propose Deterministic Concurrency
State Machine (DCSM). The deterministic execution of
DCSM is enforced by our modified hypervisor or virtual
machine monitor which we call dVMM. This solution can
ensure the repeatability of the environment-caused bug,
improving the ability of debugging. Given an external input,
this DCSM will make a deterministic state transition based
on current execution state. Therefore, the record-and-replay
technology is used on this DCSM to ensure the repeatability
of the execution of a multiprocessor virtual machine.

This paper makes the following contributions. First, we
propose the virtual private memory model and relative
scheduling algorithm. With this model and algorithm, the
multiprocessor virtual machine that encapsulates
multithreaded programs can execute deterministically. As a
result, the controllability can be obtained. Second, we define
the Deterministic Concurrency State Machine. With this
DCSM, the record-and-replay technology can be used to
improve the repeatability of the whole virtual machine’s
execution. Meanwhile, it eliminates the large space costs due
to recording the interleaving of CPUs.

The outline of this paper is as follows. In Section 2, we
define the DCSM, propose the virtual private memory model
and describe how the dVMM ensures the deterministic
execution with a scheduling algorithm and record-and-replay
technology. Section 3 describes some implementation issues.
Section 4 provides some evaluation results. Section 5
discusses relevant issues. Section 6 outlines related work and
Section 7 concludes.

II. DETERMINISTIC EXECUTION AND REPLAY OF
MULTIPROCESSOR VIRTUAL MACHINES

A. The Problem of Non-determinism
Figure 1 [3] shows a concurrency bug in Mozilla. In this

figure, if thread 2 writes the variable io_pending after thread
1 writes it, there will be an expected correct execution path.
But if thread 1 writes the variable io_pending after thread 2
writes it, the expectation of the program will be violated. By
default, thread 1 should initialize the variable before they
execute concurrently.

This is a common concurrency bug, which makes
contribution to the non-determinism of multithreaded

205

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

programs. If a multiprocessor system is intruded, this non-
determinism will make the replay of the intrusion more
difficult and result in inaccurate intrusion analysis.

Another example is shown in Figure 2, which is
mentioned in DMP [4]. The table inside the figure shows the
frequency of the outcome of 1000 runs on a Intel Core 2 Duo
machine [4].

Figure 1. An order violation bug in Mozilla [3].

The result demonstrates that the underlying parallel
architecture can affect the result of a system. The Symmetric
MultiProcessor (SMP) model is used widely nowadays. But,
Figure 2 shows the case of non-determinism in a SMP
system. The non-determinism in parallel is caused by the
data races of concurrent memory accesses in a SMP system.
Our DCSM solution is a software-only approach to solve
such a system-level issue. In addition to DCSM, external
non-determinism is considered with the record-and-replay
technology, which can improve the repeatability of the whole
system’s execution.

Figure 2. A simple program with a data race between two threads and
runs 1000 times [4].

Next section describes the characteristics of DCSM,

while its building methods are described in two following
sections. The record-and-replay section specifies the method
to deal with external non-determinism outside DSCM.

B. Deterministic Concurrency State Machine
Bocchino Jr. et al. [9] argue that parallel programming

must be deterministic by default. But many programs are
coded serially. They can reach parallel with the support of
other tools such as compiler. Further more, people are used
to thinking serially, which will probably result in buggy
programs. Therefore, some measures must be taken to make
the multithreaded programs execute deterministically. Those
measures must also consider the environments influence on
the programs. To meet these demands, a deterministic
multiprocessor virtual machine is used to encapsulate the
multithreaded programs and their environments. This kind of
virtual machines ensures deterministic execution of the

whole system. And their execution is controlled by dVMM
to ensure a deterministic execution path. Such a deterministic
multiprocessor virtual machine is called a Deterministic
Concurrency State Machine (DCSM).

Figure 3 depicts the behaviors of a DCSM. A DCSM can
be represented by a tuple {(V, M), I, A}, where V is the set
of cpus’ states, M is the set of memory states, I is the set of
inputs, A is the set of actions. Given the initial state (V0, M0)
and certain input, the DCSM will take a subset of actions in
A and reach a deterministic state, thus produce a
deterministic result. During the actions, DCSM will not
receive any external inputs. The actions DCSM takes are the
concurrent instructions; the size of these instructions is
further determined and controlled to realize the DCSM in the
following sections.

Figure 3. State transitions of a DCSM. The DCSM will deterministically
take certain actions to reach state (V1, M1) if given certain input and

certain initial state.

C. Virtual Private Memory Model
In a multiprocessor VM, if one virtual cpu (vcpu) is hung

up after it acquires a lock, then other running vcpus that want
to acquire this lock will waste their time in trying to get the
lock. In that case, it is very difficult to control the
concurrency for deterministic synchronization because of its
complexity. Therefore, the basic scheduling strategy is that
all vcpus in the multiprocessor VM must be running
concurrently on physical cpus. Otherwise, they must be
paused at the same time.

Figure 4 shows the virtual private memory model. There
are two main stages-when virtual memory is created and
when it is merged or synchronized.

This basic scheduling strategy makes the situation
simpler. Based on that strategy, an algorithm can be designed
to ensure a multiprocessor VM’s deterministic execution. To
be deterministic, the concurrent execution must be
synchronized at some critical points. So, our algorithm is
mainly based on the idea of quantum, which is composed of
certain quantity of instructions. These quanta are the actions
that DCSM will take to reach the next deterministic state. At

206

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

system level, data races are happened on the shared memory.
So the virtual private memory model is proposed to provide
each vcpu an illusion that each has its own memory. This
illusion makes each vcpu executes concurrently without
considering the memory interactions. As a result, without the
interference from external non-determinism, an isolation of
the executions of the quanta is provided before the
synchronization stage. So this memory model provides the
concurrent stages to fully execute and the synchronization
stages to make the result of previous executions deterministic.
Algorithms can use these two stages to get fully parallel
execution and make the result deterministic when
synchronizing.

Figure 4. Virtual private memory model.

D. DMP-VPM Algorithm
At the virtualization level, the virtual private memory

model ensures the virtual memory isolation of concurrent
executions. According to the characteristics of virtualization
level, our quantum based algorithm utilizes the virtual
private memory model and privatizes the shared memory.
And it synchronizes the concurrent quanta to make the result
deterministically. This algorithm is called DMP-VPM
(Deterministic Shared Memory Multiprocessing based on
Virtual Private Memory). Figure 5 tells how a vcpu behaves
in DCSM.

Figure 5 describes how the algorithm works. Each vcpu
executes after obtaining its virtual private memory. When the
quantum finishes, it is time to merge the private memory in
order. So for the sake of the sequence guarantee at the
merging or synchronization stage, the idea of token ring is
utilized. The token is passed in a deterministic sequence
among vcpus. A vcpu with the token has the right to merge
its private memory and create a new virtual private memory.
Otherwise, it must wait for its turn. In the algorithm, when a
vcpu with the token wants to merge, it must make sure that
the vcpu has not read the pages merged or written by the
previous vcpus in this memory version. Otherwise it will
create its new virtual memory and re-execute the quantum.
After merging successfully, the vcpu with the token will
create its new virtual memory, pass the token to the next
vcpu and execute its next quantum. Such a deterministic
sequence in accessing or modifying memory will result in a

deterministic memory state. Note that the design of DCSM
does not consider the external non-determinism which will
change the execution sequence of a quantum. Under such a
condition, vcpus can also reach a deterministic state.

Figure 5. Each vcpu’s execution diagram with virtual private memory.

E. The Record and Replay of DCSM
A deterministic executing VM can be regarded as a

deterministic state machine. Because given current state and
some external input, such a VM can produce a deterministic
result, namely make a transition to another deterministic
state. Then this VM can be replayed with the initial state and
the recorded external inputs. This is the main characteristic
of the DCSM. Although the record-and-replay technology
has been used in many fields, the record and replay of the
DCSM is kind of different.

To replay a DCSM, external non-determinism must be
injected during replay at the exactly right time when the
injection will not break the execution sequence of a quantum.
Which vcpu needs the injection must be recorded. Some
information about the non-determinism must also be
recorded. When recording the DCSM, the external injections
are controlled to happen at the beginning of each quantum,
making the replay easier. Such an injecting method further
improves the isolation between the quantum and external
world and makes sure that the DCSM will not receive any
input when taking actions. As a result, the quantum’s result
is deterministic. But some special instructions like RDTSC
must be treated differently. The results of such instructions

207

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

and the exact occurrence time must be recorded for the
replay.

III. IMPLEMENTATION ISSUES BASED ON KVM
The hardware virtual technology VT, which is developed

in some Intel’s cpus, makes the implementation easier and
will be of great help in performance. KVM is a module in
linux and makes the whole operating system a hypervisor
based on VT. It utilizes the kernel’s memory management
mechanism to provide the guest virtual machine with a fake
contiguous guest physical memory. To implement the
DCSM and its record-and-replay, the interface
VMEntry/VMExit is a good place for coding. The
implementation framework is shown in Figure 6. According
to this figure, some implementation issues are described as
follows.

Figure 6. The framework of the dVMM.

A. Implementation of DCSM
When implementing DCSM, we have to take into

account the implementation of the virtual private memory
model. The implementation of that model will be described
along with the DMP-VPM algorithm. The EPT (Extended
Page Table) mechanism in intel’s VT technology can be used
to implement that model. In EPT’s page table, each entry has
several relevant control bits, namely readable bit, writable bit
and executable bit. To provide each vcpu an isolated virtual
private memory, we utilize the copy-on-write technology.

In KVM, each EPT violation will cause a VMExit which
will call the relevant handler handle_ept_violation(). Then
the function kvm_mmu_page_fault() is called to process this
violation. In this function, the key memory process function
tdp_page_fault() is called. Therefore, the process in this
function can be changed to realize our goal. Note that each
vcpu is designed to have its own page table. During the
creation of the EPT page table, lazy allotment strategy is
used. Once the guest accesses a page not present in the EPT
page table, we first identify whether it is a write or a read. If

it is a read, the EPT page is allotted, set as readable and not
writable and the read action on this page is recorded. And if
it is a write, a new host physical page is allocated and the
original page’s data are copied to the new page. Then
dVMM will make the relevant EPT page entry redirect to the
new page, set corresponding control bits and record this
redirection for merging. Again, if it is a write on a page that
has the EPT page present and not writable, it will be checked
whether it is caused for recording. If so, dVMM will do the
same thing for the write. All the records are produced during
the first attempt to read or write for the sequential merging;
these records are not written to the log file. After the first
access to the page, the same subsequent accesses will not be
interposed. So, there are only limited times of the control
actions of dVMM.

B. Implementation of DCSM’s record and replay
To record and replay the DCSM, some external non-

determinism must be treated differently. For instructions like
RDTSC, the exact logical time of the result delivery after the
instruction’s execution must be logged and replayed. For
other external non-determinism, signals are delivered at the
beginning of the quantum.

To record the exact logical time of non-determinism’s
occurrence, a tuple <eip, bc, ecx> is used to represent the
logical time, where eip is the instruction counter, bc is the
performance counter and ecx is a register used for string
operations. As in figure 6, the recorder program in user space
will communicate with KVM by forwarding custom
commands through the ioctl() interface of the kvm device.
With these commands, users can run an assigned VM as a
DCSM and replay it if needed. During recording, the
recorder is wakened to read the records from KVM. Then the
recorder writes the records in the log file. During replay, the
recorder keep extracting the records from the log file and
passing them to KVM with the ioctl() interface. After
receiving enough records, the assigned VM is able to run. If
KVM does not have any records for replay, it will check
whether the recorder has marked that all records have been
sent. If not, the assigned VM will be paused until new
records arrive. Otherwise, the VM continues running.

IV. EVALUATION
To get the performance evaluation of DCSM, we have to

know exactly the overheads caused by the VMEXITs of the
quanta for synchronization. In our virtual environment, we
ran the SPLACH2 benchmark suite [17] to evaluate the
design of parallel processors. For some applications, we
chose input parameters to make them run for around 60
seconds so that the actual workload can be distinguished.
The tests we ran were fmm, ocean, water-spatial, lu and
radix. The modified virtual machine monitor KVM ran on a
machine with a dual Intel Core (TM) 2 64-bit processor (2
cores total) clocked at 2.93 GHz, with 4GB of memory
running linux 2.6.38.5.

Figure 7 shows the overheads of a two processor KVM
guest that ran the tests in it. In the experiment, the guest’s
processors didn’t re-execute their quanta even the quanta
visited the same page. And we didn’t record anything to a

208

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

log file. Therefore, the result mainly does not include the
overheads caused by the re-execution of the quanta, nor can
the record size be gained. The results of different quantum
sizes as 8K, 32K, 128K were compared with that of the
normal execution of the guest.

The results show that a larger quantum can reduce the
VMEXITs and page faults’ frequency. With a quantum size
larger than 32K, the overheads are less than 3x. So a larger
quantum can have a better performance in the experiment.
But if quanta’s re-execution is taken into account, a larger
quantum will generate a longer re-execution time. In this
case, the quantum size must be chosen carefully.

Figure 7. Overhead of DCSM for a two processor KVM guest without

quanta’s re-execution.

V. DISCUSSION
In the cloud, virtual machine monitors like KVM can

provide users with some virtual resources based on the vast
physical resources. Many servers are developed as parallel
programs and can run in a virtual machine in the cloud. They
may encounter an intrusion or a bug when providing service.
Our solution can be applied to replay the execution and help
developers fix those problems.

Our solution is quite similar to dOS [8], while dOS is
implemented in an operating system and our dVMM can
enforce the whole guest operating system. Based on our
virtual private memory model, many other scheduling
algorithms can also be applied. All evaluation experiments of
dOS are done on 8-core 2.8GHz Intel Xeon E5462 machines
with 10GB of RAM. Without recording the internal non-
determinism due to interleaving of threads, dOS produces
about 1000 times smaller logs than SMP-ReVirt [7]. The log
size of dVMM depends on the communication between the
virtual machine and external environment. When dealing
with the entire system, dVMM can eliminate much more
logs due to the interleaving of CPUs. So dVMM can have a
smaller log size than SMP-ReVirt. Since dVMM have to
deal with all the processes in an operating system, it will
produce more logs than dOS if more processes communicate
with external environment.

However, the main overhead of dVMM is due to the
communication between quanta, the same as dOS. According
to the evaluation of dOS, the overhead of Chromium with a

scripted user session opening 5 tabs and 12 urls is about 1.7x
on average. The main factors causing the overhead are the
quantum size, single-stepping and the communication
between quanta. Due to the cost of VMExit of each quantum
for synchronization, the slowdown of dVMM is no more
than 7x in our tests. But it will become much smaller if the
multithreaded program has a good locality of or only a few
memory accesses, as well as a suitable quantum size chosen.

There are also many optimizations that can be used to
improve dVMM’s performance. First, to reduce the
probability of re-execution of a quantum, some methods like
forward in DMP [4] can also be applied. Second, some
binary translation technologies can be used to pre-process the
instructions and pre-allocate some shadow pages for the
vcpus to reduce more page faults and VMExits in future
execution. Other optimizations can also be applied to
improve dVMM’s performance.

VI. RELATED WORK
At language level, parallel languages such as SHIM [10]

and DPJ [9, 11] can enforce determinism, but require
rewriting the code. Determinator [1] is implemented on a
microkernel and proposes a new programming model. The
whole new programming type may not be suitable for some
common used applications and it is only implemented on a
microkernel now. dOS [8] proposes Deterministic Process
Groups (DPG) to ensure the concurrency determinism and a
shim layer to replay DPG, which is a solution only
implemented in linux. But our solution does not need a
whole new programming model and supports different
multithreaded programs in different operating systems.

Some hardware-based system such as DMP [4] and
Calvin [5] can obtain a good performance, but require
custom hardware support. DMP provides different methods
to gain determinism. Some of the methods utilize the
transactional memory, which is similar to our solution.
However, their implementations need custom hardware
support, which may not be suitable for the community
hardware in the cloud. Some technologies like RCDC [12]
and CoreDet [6] use a combination of hardware and software
support. They not only use custom hardware, but also need
software support like compliers, which forces an application
to be recompiled before running. On the contrary, dVMM is
a software only solution and can support arbitrary,
unmodified software.

There are also many technologies focused on record and
replay of a multithreaded program. Like dVMM, SMP-
ReVirt [7] can replay the whole system which encapsulates
multithreaded programs and their environments.
Unfortunately, it has high overheads and large space costs,
which is largely owing to the recording of the execution
interleaving. However, DCSM does not have to record the
interleaving of CPUs compared with SMP-ReVirt. PRES [13]
and ODR [14] log a subset of shared memory interactions,
reduce the log size, but have increased costs in replay when
doing the search of the execution space. dVMM utilizes the
hardware VT technology and enforces the deterministic
execution with very few controls. Therefore, without logging
shared memory interactions, dVMM can have much smaller

209

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

log size than SMP-ReVirt. Without searching the execution
space, dVMM can perform better in replay than PRES and
ODR.

VII. CONCLUSION
This paper proposed a virtual private memory model.

Based on this model, DMP-VPM algorithm is introduced to
control the deterministic execution of the multiprocessor
virtual machine. This controlled virtual machine is called
deterministic concurrency state machine. And a record-and-
replay scheme for this DCSM is designed. With the internal
determinism and the record of external non-determinism, the
repeatability of the whole system can be ensured, providing
support for debugging, intrusion analysis, etc. Without
quanta’s re-execution and quantum size no less than 32K, the
DCSM generates overheads less than 3x. With a carefully
chosen quantum size, the DCSM is supposed to have
acceptable overheads.

REFERENCES

[1] A. Aviram, S. Weng, S. Hu, and B. Ford. Efficient System-
Enforced Deterministic Parallelism. In OSDI. 2010, pp. 193-
206.

[2] J. R. Douceur and J. Howell. Replicated Virtual Machines.
Technical Report MSR TR-2005-119, Microsoft Research,
Sep 2005.

[3] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from Mistakes-
A Comprehensive Study on Real World Concurrency Bug
Characteristics. In ASPLOS. 2008, pp. 329-339.

[4] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP:
Deterministic Shared Memory Multiprocessing. In ASPLOS.
2009, pp. 85-96.

[5] D. Hower, P. Dudnik, D. Wood, and M. Hill. Calvin:
Deterministic or Not? Free Will to Choose. In HPCA. 2011,
pp. 333-334.

[6] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D.
Grossman. CoreDet: A Compiler and Runtime System for
Deterministic Multithreaded Execution. In ASPLOS. 2010, pp.
53-64.

[7] G. W. Dunlap, D. G. Lucchetti, P. M. Chen, and M. A.
Fetterman. Execution Replay for Multiprocessor Virtual
Machines. In VEE. 2008, pp. 121-130.

[8] T. Bergan, N. Hunt, L. Ceze, and S. Gribble. Deterministic
Process Groups in dOS. In OSDI. 2010. pp. 177-191.

[9] R. L. Bocchino Jr., V. S. Adve, S. V. Adve, and M. Snir.
Parallel Programming Must Be Deterministic by Default. In
HotPar. 2009, pp. 4-4.

[10] S. A. Edwards, N. Vasudevan, and O. Tardieu. Programming
shared memory multiprocessors with deterministic message-
passing concurrency: Compiling SHIM to Pthreads. In DATE.
2008, pp. 1498-1503.

[11] R. Bocchino, V. Adve, D. Dig, S. Adve, S. Heumann, R.
Komuravelli, J. Overbey, P. Simmons, H. Sung, and M.
Vakilian. A Type and Effect System for Deterministic Parallel
Java. In OOPSLA. 2009, pp. 97-116.

[12] J. Devietti, J. Nelson, T. Bergan, L. Ceze, and D. Grossman.
RCDC: A Relaxed Consistency Deterministic Computer. in
ASPLOS. 2011, pp. 67-78.

[13] S. Park, W. Xiong, Z. Yin, R. Kaushik, K. Lee, S. Lu, and Y.
Zhou. Do You Have to Reproduce the Bug at the First Replay
Attempt? - PRES: Probabilistic Replay with Execution
Sketching on Multiprocessors. In SOSP. 2009, pp. 177-192.

[14] G. Altekar and I. Stoica. ODR: Output-Deterministic Replay
for Multicore Debugging. In SOSP. 2009, pp. 193-206.

[15] J. Huang, P. Liu, and C. Zhang. LEAP: Lightweight
Deterministic Multi-processor Replay of Concurrent Java
Programs. In FSE. 2010, pp. 385-386.

[16] E. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe
Multithreaded Programming for C/C++.. In OOPSLA. 2009,
pp. 81-96.

[17] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological
Considerations. In ISCA, 1995, pp. 24-36.

210

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

	I. Introduction
	II. deterministic execution and replay of multiprocessor virtual machines
	A. The Problem of Non-determinism
	B. Deterministic Concurrency State Machine
	C. Virtual Private Memory Model
	D. DMP-VPM Algorithm
	E. The Record and Replay of DCSM

	III. implementation issues based on KVM
	A. Implementation of DCSM
	B. Implementation of DCSM’s record and replay

	IV. evaluation
	V. Discussion
	VI. related work
	VII. conclusion
	References

