
Distributed Storage Support in Private Clouds Based on Static Scheduling
Algorithms

Dariusz Król
Academic Computer Center CYFRONET AGH

Cracow, Poland
dkrol@agh.edu.pl

Jacek Kitowski
Academic Computer Center CYFRONET AGH, and

Institute of Computer Science, AGH
Cracow, Poland
kito@agh.edu.pl

Abstract—This paper is focused on an extension to an open
source Infrastructure as a Service Cloud called Eucalytpus for
supporting distributed storage according to a defined storage
strategy. As a proof of concept, three algorithms known from
the scheduling theory were implemented, namely MonteCarlo,
Round Robin and Weighted Queuing. To evaluate the
extension, a set of tests were performed on a sample Cloud
installation using a modified version of the Eucalyptus cloud.
The paper ends up with a discussion on choosing the most
eficient static algorithm for data storing based on the obtained
results.

Keywords - cloud computing; storage management;
Eucalyptus; scheduling.

I. INTRODUCTION

Gartner has identified the Cloud computing as one of the
top 10 strategic technologies in 2011 [1]. Today, most of the
big Information Technology (IT) companies offer some of
their products within public clouds already. These suppliers
applied the Cloud paradigm to provide a wide set of
applications in an easily accessible manner, starting with e-
mail clients, through office suites to content resource
management systems. Although, each of those applications
provides different functionality, they have a few things in
common, e.g., they can be accessed via a web browser, and
they are provided using the pay-as-you-go manner.

Besides examples in the industry, many scientific
facilities started adapting the Cloud computing. This is
possible due to the existence of several open-source projects
which implement the Cloud computing paradigm with open
standards. While the adaption of clouds in the industry is
often focused on applications, the scientific centers rather
aims at providing infrastructure-level services which
facilitate access to compute and storage resources.

A similar approach to resource provisioning is well
known from many previous works concerning Grid
environments [2]. While Clouds are business-oriented from
the beginning, Grids are science oriented. From the user
point of view, the main difference is the orientation on
different usage modes [3]. While Clouds expose a small but
well-defined interface set, Grids provides a wide-set of
functions regarding similar functionality.

Existing clouds can be divided into three different groups
with regard to the visibility and availability of a cloud from
the users point of view. The most available are public clouds
that can be used by everyone without any constraints. This
category includes Amazon Elastic Compute Cloud (Amazon

EC2) [4], Microsoft Azure [5], Google AppEngine [6] and
many others. The opposite of public clouds are private
clouds. In most cases, they are limited to the resources of a
single organization and can be accessed only from within the
organization's network and by an organization member. The
third group concerns private clouds whose computation
power and storage capacity can be extended by resources of
public clouds. This group includes also hybrid clouds.

Another taxonomy of clouds concerns styles in which the
customer uses Cloud. This taxonomy includes:

• Infrastructure as a Service (IaaS) Clouds which
provide access to virtualized pool of resources
using which customers assemble virtual machines,

• Platform as a Service (PaaS) Clouds which provide
access to a well defined runtime environments and
programming services which are used to develop
applications without troubling with virtual
machines,

• Software as a Service (SaaS) Clouds which deliver
concrete applications which are deployed at the
providers infrastructure.

Finally, clouds can be divided base on the type of
resources which are provided. Today, this taxonomy includes
two elements: compute clouds and storage clouds. The first
group comprises clouds which provide access to
computational power by running virtual machines or
applications on a specified virtualized hardware, e.g., a
virtual machine with a single, normalized, virtual CPU, 512
MB of RAM and 10 GB of hard drive capacity. On the other
hand, the storage clouds enable users to store data sets in a
number of ways, i.e., in files, (non-)relational databases or
block devices. In theory, the storage clouds can provide an
infinity storage capacity on demand.

In this paper, we focus on private, storage clouds. They
can be used as an convenient way for storing users data, e.g.,
application results on storage resources of a single
organization by organization members. It can be also used to
virtualize different types of storage systems, e.g., disk arrays,
local disks etc., to be visible as a single storage system from
the end user point of view, thus it can increase the simplicity
of sharing data between different users and applications. A
storage cloud can be used to store different types of data,
starting with text files and ending with binary files. As long
as data can be written to a file, they can be stored in the
Cloud.

To build a private, storage cloud in an effective way, a
cloud implementation has to provide support for
heterogeneous storage resources and different data
distribution algorithms.

141

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

The former functionality provides a capability of
connecting existing storage devices into a single system. The
latter functionality is used to increase the performance of the
cloud, e.g., read and write transfer rate.

In this paper, we intend to describe an extension for an
existing, open-source Cloud which aims at providing a data
distribution functionality based on static scheduling
algorithms. Although, the developed extension is
independent from a concrete data distribution algorithm, this
paper focuses only on a few popular algorithms known from
the queuing theory.

The rest of the paper is organized as follows. In Section
2, we describe a number of existing Cloud solutions as well
as a few data management systems. Then, in Section 3, the
Eucalyptus project is described in more details. In Section 4,
a design of the extension of the Eucalyptus system which
provides support for distributed storage is presented. Next, in
Section 5 an implementation of our extension is presented. In
Section 6, we come to an experimental evaluation of the
presented extension. The paper is concluded in Section 7.

II. RELATED WORKS

OpenNebula [7] is an open-source toolkit for building
compute-oriented private, public or hybrid clouds. The
toolkit provides an abstraction layer on top of physical
resources of a data center using the virtualization
mechanism. It is oriented on deploying multitier services as
virtual machines on distributed infrastructure. OpenNebula
aims to overcome shortcomings of existing virtual
infrastructure solutions, i.e., inability to scale to external
clouds, a limited choice of interfaces with the existing
storage and network management solutions, few
preconfigured placement policies or the lack of support for
scheduling, deploying and configuring groups of virtual
machines. OpenNebula is fully open source and its source
code can be freely checkout from a public repository. It
supports different hypervisors, i.e., Xen [8], Kernel-based
Virtual Machine (KVM) [9], VMware [10], for running
virtual machines. In terms of storage mechanisms, it is
limited to a repository of Virtual Machine (VM) images
only. The repository can be shared between available nodes
with the Network File System (NFS). It is also possible to
take advantage of block devices, e.g., Logical Volume
Manager (LVM) to create snapshots of images in order to
decrease time needed to run a new instance of image. Due to
this limitation, it is not a suitable tool for building storage
clouds.

Another open-source solution for building different types
of clouds is OpenStack. It is a joint effort of NASA and
RackSpace. NASA contributed to the project by releasing its
middleware, called Nebula [11], for managing virtual
machines at physical infrastructure. RackSpace contributed
with its storage solution known as Cloud Files [12].
OpenStack [13] is a collection of tools for managing data
centers resources to build a virtual infrastructure. In terms of
computations, OpenStack provides OpenStack Compute
(Nova) solution which is responsible for managing instances
of virtual machines. In terms of storage, OpenStack provides
OpenStack Object Storage (Swift) which is an object storage
solution with built-in redundancy and failover mechanisms.
There is also a separate subsystem, called OpenStack

Imaging Service, which can be used to lookup and retrieving
virtual machine images. Since the first release of OpenStack
was in October 2010, there are no articles about production
deployments of the toolkit in either industry or scientific area
yet. Thus, there is no information about the performance and
stability of OpenStack. Also, OpenStack lacks of an interface
that would be compatible with the Amazon clouds which is a
de facto standard in the Cloud ecosystem.

Eucalyptus system [14] is an example of an open source
project which became very popular outside the scientific
community and is exploited by many commercial companies
to create their own private clouds. It was started as a research
project in the Computer Science Department at the
University of California, Santa Barbara in 2007 and today is
often treated as a model solution for providing infrastructure
as a service. Eucalyptus aims at providing an open source
counterpart of the Amazon EC2 and Simple Storage Service
(Amazon S3) [15] clouds in terms of interfaces and available
functionality.

There are two versions of the Eucalyptus Cloud:
Community and Enterprise. The Community edition will be
described in the next section in more details. The Enterprise
Eucalyptus provides direct integration with Storage Area
Networks (SANs) [16], e.g., Dell Equallogic or NetApp.
However, to our best knowledge, this integration does not
allow to combine different types of storage systems within a
single Cloud installation. Also, a Cloud administrator can`t
provide policy for data distribution among available storage
resources.

Another commercial product is EMC2 Atmos which is a
complete Cloud Storage-as-a-Service solution [17]. It
provides massive scalability by allowing to manage and
attach new storage resources from a single control center.
Atmos delivers policy-based information management
feature which allows to define bussiness level policies how
the stored information should be distributed between
available resources. It also reduces required effort for
administration by implementing auto-configuring, auto-
managing and auto-healing capabilities. Although, Atmos
provides many interesting features and capabilities, it does
not provide integrations with existing Clouds to our best
knowledge. It is rather a separate solution oriented on the
storage only which operates besides a computing Cloud.

DCache [18] is a data management system which
implements all the requirements for a Storage Element in the
Grid. It was developed at CERN to fulfil the requirements of
the Large Hadron Collider for data storage. One of its main
features is the separation of the logical namespace of its data
repository from the actual physical location of the data.
DCache exposes a coherent namespace built from files
stored on different physical devices. Moreover, dCache
autonomously distributes data among available devices
according to the currently available space on devices,
workload and the Least Recently Used algorithms to free
space for the incoming data. Although dCache distributes
data in an autonomic way, there are settings which can be
configured to tune the dCache installation to specific
requirements of a concrete user. This parameter set contains
rules which can take as an input a directory location within
the dCache file system and storage information of the
connected Storage Systems as well as the IP address of the
client and as an output such a rule returns a destination

142

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

where the data should be sent. DCache is a Grid-oriented
tool by design, thus it is not compatible with existing Cloud
solutions. DCache provides a programming interface similar
to a filesystem interface which is at a lower level of
abstraction comparing to the storage cloud interface.
However, dCache could be used as a storage system which is
used by a storage cloud rather than being a complete storage
cloud solution.

III. EUCALYPTUS – OPEN SOURCE PRIVATE CLOUD

As describe above, Eucalyptus is one of the existing
solutions for building private, public or hybrid clouds. It
supports both compute and storage clouds. The most
characteristic feature of Eucalyptus is the fact that it is fully
compatible with the Amazon EC2 and S3 clouds at the
interface layer. Therefore, it can be used interchangeably
with the Amazon clouds without any modification of the
users application.

Every Eucalyptus installation consists of a few loosely
coupled components, each being able to run on a separate
physical machine to increase scalability. The front end of
such a cloud is “Cloud controller” which is an access point to
the features related to virtual machines management. While
“Cloud controller” is responsible for computation, the
“Walrus” component is responsible for data storage. Each
virtual machine runs on a physical host which is controlled
by the “Node controller” element. A group of nodes can be
gathered into a cluster which exposes a single access point,
namely “Cluster controller” from the virtual machine
management side and “Storage controller” from the virtual
machine images repository side.

A. Data storage functionality

In terms of data storage, Eucalyptus provides two means
for persisting the data generated by applications running in
the Cloud: Object Storage and Elastic Block Storage (EBS).

The former one allows for storing virtual machine images
along with any other files which are divided into a flat
hierarchy of buckets and can be treated as the Amazon
Simple Storage Service (S3) counterpart in the Eucalyptus
system. Amazon S3 is a Cloud storage service which allows
storing any type of data in form of files in a number of
buckets (each with a unique name within a bucket) using a
simple programming interface, i.e., put, get, list and del. The
Eucalyptus Object Storage provides exactly the same set of
functions which can be executed using a Representational

State Transfer (REST) based interface. There are also several
tools available which wrap the interface, e.g., a simple
command line tool or programming language bindings.

The latter mechanism, i.e., Elastic Block Storage allows
for providing virtual machines with block devices which are
attached to virtual machines at runtime. However, unlike a
virtual machine local disk, such an attached block device is
not erased after the VM shutdown.

B. Data storage implementation

A part of the current implementation of storing an object
within the Eucalyptus cloud is depicted in Figure 2. Due to
high complexity, only one part of the “storing data” use case
is presented, namely the one related to actual writing data to
physical devices. The first part of the use case is related to
handle HTTP requests which contain raw data that is going
to be stored. Eucalyptus uses queues to handle incoming
requests. Then, the WalrusManager object retrieves all the
message objects from these queues, opens a file which is
accessible with standard IO functions, and finally writes the
data to the file.

The most important part of the sequence diagram which
concerns data distribution is the preparingForWrite() call. In
the current version of Eucalyptus this method returns an
object which uses the Java FileChannel class to write data.
Moreover, a mapping between Eucalyptus objects and
filesystem files implies that all the data has to be stored in a
single directory. Moreover, this directory can be located only
on a Walrus local disk or a volume that is attached to the
Walrus machine, e.g., a disk array via Internet Small
Computer System Interface (iSCSI) or a Network Attached
Storage via NFS.

However, this means there is only one option to
distribute the cloud data, i.e., using a distributed file system
on an disk array attached to the Walrus machine which
encompasses a number of storage resources. This limitation
prevents from exploiting heterogeneous storage systems to
build consistent storage cloud from the end user point of
view. Moreover, even if heterogeneity is not an issue,
distributed file systems do not provide a capability of
defining storage strategies for data distribution. In most

Figure 1: A sequence diagram of the “data storage”
operation.

Figure 2: A sequence diagram of the modified storing data
use case.

143

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

cases, distributed file systems aim at either balancing the
workload between storage devices or balancing the free
space of storage devices. However, if clouds are in our
scope, such a basic functionality is not sufficient.

IV. DATA DISTRIBUTION WITH STATIC SCHEDULING
ALGORITHMS

In this section, we describe our solution to the problem of
data distribution among several, possibly heterogeneous,
storage resources. Starting with our motivation, an extension
to the Eucalyptus cloud is next presented along with a
sample storage strategies which are based on well-known
scheduling algorithms.

A. Motivation

As described in the previous section, data distribution is
poorly supported in the current version of the Eucalyptus
cloud. Low-level mechanisms, i.e., distributed file systems,
lack of flexibility in defining the storage strategies that
exploit information about the Cloud in particular.

Just to mention a few possible applications of such
strategies, let us imagine a situation where we have several
disk arrays in our data center which can be used to provide
storage capacity for our Cloud. However, we cannot use
them all because they are shared between a number of other
different projects and users thus their configuration, e.g.,
filesystem, cannot be modified. In such a situation, we could
use only one of the available disk arrays which would
probably not meet our needs because Eucalyptus does not
provide means for connecting several disk arrays together
into a single cloud storage.

Another possible situation is when we would like to
separate users' data, based on groups a particular user
belongs to. Such a users' group can be bound to a Service
Level Agreement between the user and the Cloud provider.
From the Cloud provider point of view, each users' group
could be handled by a different physical device, i.e., the
users who pay more are treated with more reliable and
efficient resources.

Also many other situations can be described where
support for distributed storage is crucial to succeed but the
importance of this functionality should be clearly visible in
advance.

B. Design and implementation

When designing an extension to Eucalyptus that provides
support for distributed storage, we focused on making it as
non-intrusive as possible. Thus, we decided to replace an
existing implementation of the StorageManager Java
interface, namely an instance of the
FileSystemStorageManager class (depicted in Figure 1) with
its another implementation which is aware of the distributed
storage. By doing so, we can activate this functionality with
only two modifications to the Eucalyptus source code, i.e., in
the places where the StorageManager variables are
instantiated. Even these modifications can be eliminated by
using the Dependency Injection pattern [19] and one of its
Java implementation, e.g., the Spring framework [20].

A modified version of the “data storage” use case is
shown in Figure 2. Due to being part of the Eucalyptus
cloud, this extension has access to the whole information

about cloud users, user data, etc. Therefore, it can implement
a storage strategy on a higher level of abstraction than a
distributed file system.

The implemented prototype of this extension enables a
Cloud administrator to decide which storage strategy should
be used by only modifying one configuration file that besides
information about the storage strategy, contains information
about available storage resources.

C. Implemented data distribution strategies

Although, the described extension is versatile, i.e.,
various storage strategies can be implemented and used at
runtime, we implemented three strategies as a proof of
concept. We exploited algorithms known from the
scheduling theory:

• MonteCarlo strategy which randomly (with a
uniform distribution) chooses a place to store the
given data.

• RoundRobin strategy which stores the given data
alternately on each of the available resources.

• WeightedQueue strategy which divides the
available bandwidth to a number of channels whose
“width” is proportional to weights assigned to
storage resources. In the basic version of this
algorithm, the weights are assigned to each device
arbitrarily by the administrator.

The proposed strategies represent a group of so called
static scheduling algorithms. As opposed to dynamic
scheduling algorithms, they do not change the scheduling
scheme, i.e., the order of storage resources, as a response to
changes in the environment, e.g., infrastructure workload.

Although, the static scheduling algorithms can be less
efficient than the dynamic ones, they are more predictable
and straightforward. Thus, they are more suitable for testing
the described functionality comparing the currently available
Eucalyptus version. Also, they are more suitable than
business-level algorithms because they allow to focus to
performance analysis rather than on functional requirements,

Figure 3: A map of a testing environment.

144

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

e.g., distributing data of different users groups to different
storage resources.

V. EXPERIMENTAL EVALUATION

In order to evaluate the implemented extension, a proper
testing infrastructure has been composed and a number of
tests were performed. The evaluation aimed at finding which
storage strategy provides the highest throughput of the Cloud
infrastructure. In addition, we would like to find out whether
a cloud storage can be built based on commodity hardware,
e.g., standard hard drives connected with a commodity
ethernet network, instead of expensive disk arrays connected
with a special network such as Storage Area Network (SAN)
based on FibreChannel, with maintaining the Cloud
performance at the same level.

A. Testing environment

Testing environment is a very important aspect of the
experimental evaluation. Thus, we prepared a sample
configuration for building a small Cloud installation based
on a blade-class cluster nodes and a disk array. As a base
server for an extended version of the Eucalyptus cloud we
use a worker node with the following parameters:

• 2x Intel Xeon CPU L5420 @ 2.50GHz (4 cores
each)

• 16 GB RAM
• 120 GB hard drive (5400 RPM)
• Ubuntu Linux 10.04.1 LTS.

Apart from the Cloud front end where the Cloud
controller and Walrus components were installed, we also
have three similar nodes for running virtual machines
connected with the front end by Gigabit Ethernet.

However, a more interesting part of the environment
concerns the storage. As a main storage for our cloud
installation we used a part of a disk array accessible via
iSCSI protocol, with 6 TB of storage capacity. Such a disk
array, however, with a greater storage capacity available,
could be used in a production cloud. As an additional
storage, we decided to use hard drives from the additional
worker nodes which are exposed via the NFS protocol.

To summarize, we depicted a map of the testing
environment in Figure 4. In our opinion, the presented
environment can be effectively used to evaluate different
storage strategies because it contains heterogeneous storage
resources such as hard drives and disk array distributed
among a few machines all connected with open protocols
and commodity network fabric.

B. Testing scenario

In the presented case, we proposed a scenario in which a
number of users stores files in the Cloud simultaneously.
Such a scenario is parametrized with the following elements:

• number of users running in parallel – 10
• file size – 128, 256, 512, 1024, 2048 MB
• storage strategy – MonteCarlo, RoundRobin,

WeightedQueue (with a number of different weight
vectors)

Each test scenario was perfomed 5 times and the mean
value was computed. The performance evaluation metric

used in the presented tests is the Cloud write throughput. The
metric represents the total rate of writing data by the Cloud
to its storage resources. This metric allows to compute the
overhead generated by Eucalyptus to the storing data
operation. Moreover, we can analyze the utilization rate of
the storage resources with respect to different storage
strategies.

C. Results and discussion

Firstly, the results coming from the tests performed with
a single storage resource and with storage resources
accessible via NFS are depicted in Figure 4. The results
show a huge difference between the performance of the
Cloud which uses a disk array and the Cloud which uses a
common hard drive connected via NFS. The difference
increases with the file size. This is expected due to the cache
mechanism. When the file size is greater then the system
cache then the performance of the Cloud gets stable. A
second thing to notice is the performance of the Cloud which
uses three connected hard drives via NFS. The mean
performance of this configuration is smaller than in the
configuration with a disk array but they are comparable.
Also we can notice a slight performance gain when the
RoundRobin strategy has been used. Also, we should notice a
large diversity of measurement values in the storage
configuration with a single NFS disk. The smallest diveristy
of measurement values was obtained with a configuration of
the disk array.

The second part of the results which contains the
measured throughput with regard to the selected storage
strategy is depicted in Figure 5. This test was performed with
a Cloud installation which includes a disk array and three
hard drives, exposed via NFS.

The results show that the MonteCarlo strategy is the
worst one. For 1024 MB files the Cloud throughput for the
MonteCarlo is less by 1/5 than the Cloud throughput for the
RoundRobin strategy. The performance achieved in other
strategies are similar and are close to 95 MB/s. Since the
theoretical network performance is about 125 MB/s the
achieved throughput is about 76% of the theoretical value
and slightly more then 80 % in the best case.

Comparing the distributed storage to non-distributed
storage, the results show about 10% of performance gain.
Such a small gain is probably due to the limited network
bandwidth rather than storage resources throughput

Figure 4: The Cloud throughput depending on a file size
with 10 clients run in parallel.

145

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

limitations. Thus, it is highly probable that, if there would be
more than one physical network interface (as in our testing
environment) coming from the Cloud front end, the Cloud
throughput would scale better with the additional resources.

Table 1: Statistical parameters (in MB/s) for the throughput
measurement for different storage strategies.

Storage Strategy Mean Variance Confidence interval (α=0.05)

Round Robin 96.98 10.07 [93.96; 100.01]

Monte Carlo 90.50 110.43 [80.48; 100.52]

WQ-32111 96.71 6.91 [94.21; 99.22]

WQ-21111 95.33 0.21 [94.88; 95.77]

WQ-31111 96.37 1.26 [95.29; 97.44]

In Table 1, we gathered important statistical parameters
which describe data from the second test case. Although the
RR storage strategy leads to the largest mean throughput, the
narrowest confidential interval can be obtained with the
weighted queue strategy. The MC strategy is the most
unpredictable.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we aimed at emphasizing the necessity of
supporting distributed storage in building storage clouds.
Upon having compared several open-source toolkits for
building private clouds we decided to use Eucalyptus due to
its compatibility at the interface level with the de facto
standard in Cloud ecosystem, i.e., the Amazon clouds. As
described in Section III, the current version of Eucalyptus
does not provide sufficient functionality regarding data
management. A non-intrusive extension to Eucalyptus has
been proposed and implemented. The results from a number
of performed tests show that a distributed storage can
improve the Cloud throughput comparing the original
implementation even if commodity hardware is used.
Moreover, when using a distributed storage, the Cloud
performance gets stable near the theoretical value of the
network bandwidth.

The future work concerns improving the stability of the
proposed extension. Also some new storage strategies,
similar to those described in Section 4, are going to be
provided.

ACKNOWLEDGMENT

This research is supported partly by the European
Regional Development Fund program no. POIG.02.03.00-
00-007/08-00 as part of the PL-Grid Project . The authors are
grateful to Dr. Dr. Łukasz Dutka, Renata Słota and
Włodzimierz Funika for valuable discussions.

REFERENCES

[1] Gartners report about the Top 10 Strategic Technologies for
2011, [online: http://www.gartner.com/it/page.jsp?
id=1454221, as of April 16, 2011].

[2] The iRODS project website: [on-line: https://www.irods.org,
as of April 16, 2011].

[3] S. Jha, A. Merzky, and G. Fox, “Using clouds to provide grids
with higher levels of abstraction and explicit support for
usage modes”, Journal Concurrency and Computation:
Practice & Experience, vol. 21 (8), pp. 1087-1108, June 2009.

[4] Amazon Elastic Compute Cloud website [on-line:
http://aws.amazon.com/ec2, as of April 16, 2011].

[5] Microsoft Windows Azure Platform website [on-line:
http://www.microsoft.com/windowsazure/, as of April 16,
2011].

[6] Google AppEngine website [on-line:
http://code.google.com/appengine/, as of April 16, 2011]

[7] D. Milojičić, I. Llorente, and R. Montero, "OpenNebula: A
Cloud Management Tool," IEEE Internet Computing, vol.
15(2), pp. 11-14, Mar./Apr. 2011, doi:10.1109/MIC.2011.44.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, and A.
Warfield, "Xen and the art of virtualization," in SOSP '03:
Proceedings of the nineteenth ACM symposium on Operating
systems principles. NY, USA: ACM, 2003, pp. 164-177.

[9] Kernel-based Virtual Machine project wiki. [on-line:
http://www.linux-kvm.org, as of April 16, 2011].

[10] VMware website. [on-line: http://www.vmware.com, as of
April 16, 2011].

[11] NASA Nebula website. [on-line: http://nebula.nasa.gov/, as of
April 16, 2011].

[12] RackSpace CloudFiles solution website. [on-line:
http://www.rackspace.com/cloud/cloud_hosting_products/file
s/, as of April 16, 2011].

[13] OpenStack project website. [on-line: http://www.openstack.org,
as of April 16, 2011].

[14] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.
Soman, L. Youseff, and D. Zagorodnov, “The Eucalyptus
Open-Source Cloud-Computing System”, CCGRID '09
Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, IEEE
Computer Society Washington, DC, USA 2009.

[15] Amazon Simple Storage Service project website, [on-line:
http://aws.amazon.com/s3/, as of April 16, 2011].

[16] Introduction to Storage Area Networks, IBM redbook, [on-
line: http://www.redbooks.ibm.com/abstracts/sg245470.html?
Open, as of April 16, 2011].

[17] EMC2 Atmos product web site, [on-line:
http://www.emc.com/storage/atmos/atmos.htm, as of April
16, 2011].

[18] G. Behrmann, P. Fuhrmann, M. Gronager, and J. Kleist, “A
distributed storage system with dCache”, in G .Behrmann et
al Journal of Physics: Conference Series, 2008.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design
Patterns: Elements of Reusable Object-Oriented Software”,
1995, ISBN: 0-201-63361-2.

[20] Spring Framework website. [on-line:
http://www.springsource.org/, as of April 16, 2011].

Figure 5: The Cloud throughput depending on a storage
strategy.

146

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

http://www.gartner.com/it/page.jsp?id=1454221
http://www.gartner.com/it/page.jsp?id=1454221
http://en.wikipedia.org/wiki/Special:BookSources/0-201-63361-2
http://www.springsource.org/
http://www.emc.com/storage/atmos/atmos.htm#!
http://www.redbooks.ibm.com/abstracts/sg245470.html?Open
http://www.redbooks.ibm.com/abstracts/sg245470.html?Open
http://aws.amazon.com/s3/
http://www.openstack.org/
http://nebula.nasa.gov/
http://www.vmware.com/
http://www.linux-kvm.org/page/Main_Page
http://code.google.com/intl/pl-PL/appengine/
http://www.microsoft.com/windowsazure/
http://aws.amazon.com/ec2

	I. Introduction
	II. Related works
	III. Eucalyptus – open source private cloud
	A. Data storage functionality
	B. Data storage implementation

	IV. Data distribution with static scheduling algorithms
	A. Motivation
	B. Design and implementation
	C. Implemented data distribution strategies

	V. Experimental evaluation
	A. Testing environment
	B. Testing scenario
	C. Results and discussion

	VI. Conclusions and future work

