
Chaavi: A Privacy Preserving architecture for Webmail Systems

Karthick Ramachandran, Hanan Lutfiyya and Mark Perry

Department of Computer Science
University of Western Ontario

London, Ontario, Canada
Email: {kramach, hanan, markp}@csd.uwo.ca

Abstract—The last two decades have seen major innovations
in the Internet and transformation of the way people do
business, communicate and live. Concomitant with the Internet
bringing the advantages of new services, is a growing awareness
of threats to Privacy that the Internet can enable. When
considered in this context, the Cloud Computing paradigm
requires users forgive disturbing levels of trust by users in the
servers that hold their information. There is a pressing need
for innovative architectures to allow the user to rely on the
server with little or no need for trust in the service provider.
In this work, we give an introduction of privacy issues in
Cloud Computing and discuss the state of art in the privacy
enhancing technologies that can be used for Cloud Computing.
We focus on webmail services and propose a privacy preserving
architecture in which users can retain their mail in the servers
of their service providers in a cloud without compromising
functionality or privacy. We benchmark our system and present
the results showing that it is feasible to architect a privacy
preserving solution for webmail systems.

Keywords-privacy-preserving; webmail; encrypted search.

I. INTRODUCTION

Cloud Computing is a model of computing in which the
users can rent infrastructure, platform or software services
from other vendors without requiring the physical access
to the rented service [18]. There are three main types of
cloud offerings: Infrastructure as a Service (IaaS), Platform
as a Service (PaaS) and Software as a Service (SaaS).
IaaS offers virtualized instances of bare machines leaving
the installation and customization of softwares including
the Operating System to cloud computing customers. In
PaaS, an application framework is provided to the cus-
tomers for developers to develop their software with. A
SaaS provider offers a particular application as a web
service, which customers can customize to their needs. The
Cloud Service Provider (CSP) focuses on infrastructure and
software expertise and aims to optimize their utility by
providing centralized services for one or many clients. The
benefit to the cloud service client (CSC) is that the cost
associated with the underlying infrastructure and software
services needed to support the CSC’s application is reduced.
There are two reasons for the cost reduction. One reason
is that the underlying infrastructure and software services
are shared among CSCs. The second reason is that since a
CSP manages data, it can use creative business models like

Contextual Advertising Model [16] for generating revenue
by delivering advertisements to users based on the data.
For example, webmail services such as Google can provide
Gmail for free. As a result, Cloud Computing has been
widely adopted. MarketsandMarkets [17] estimates that the
cloud computing global market will increase from $12.1
billion (US) to $37.8 billion (US) in 2015 at a compound
annual growth rate of 26.2 percent.

In spite of this widespread adoption, organizations are still
wary of storing their sensitive data with a CSP. Privacy risk
remains a major concern in the cloud computing environ-
ment [11].

The definition of privacy that we use was defined by
Warren et al. [23] in 1890. Warren et al. described privacy
as the ”right to be let alone” with the focus on protect-
ing individuals and is recognized in Convention for the
Protection of Human Rights and Fundamental Freedoms.
There are a variety of ways that the privacy of data can
be compromised in a cloud service environment [4]. This
includes the following:

1) Sharing of data with an unauthorized party: The
Cloud provider could compromise the confidentiality of the
data by sharing the data that it stores with unauthorized
parties. This can go against the terms and conditions of the
service and will qualify as a breach of security and contract.
The end user may never be aware of such a breach.

2) Corruption of data stored: The Cloud Computing
provider’s root access to physical machines allows the Cloud
Provider to have access that allows the Cloud Provider to
modify/delete data. The Cloud Provider could tamper with
the data making the data non-usable or modify the data in a
way that system cannot detect the modification. This poses
a serious threat to the integrity of the application.

3) Malicious Internal Users: The employee of a Cloud
Computing Provider who has root access to these physical
machines, could access the data and use it for their own
advantage.

4) Data Loss or Leakage: When a virtual machine is used
in an infrastructure, it poses a variety of security issues [10]
which could lead to a compromise of the data. Moreover,
when the facility that hosts the user’s data is subjected to a
natural calamity, it could risk the loss of the user’s data.

133

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

5) Account or Service Hijacking: Another risk for the
Cloud Computing provider is, if the service is hijacked, or
the computer is hacked into by an intruder, the hacker will
have access to data.

This work focuses on the following threats: (a) Sharing
with an unauthorized party, b) Malicious internal users,
and c) Account or service hijacking. Our work applies to
the class of cloud services that stores data and provide
searching as its primary functionality. This includes services
such as webmail, collaborative document authoring (Google
documents) and private blogs. The example used throughout
this paper is webmail.

We proposed Chaavi, a webmail infrastructure that builds
on the public/private key model to encrypt email with a
custom implementation of encrypted indices for keyword
searches using the server’s infrastructure. Chaavi is the first
system that addresses the above threats in a real working
environment.

The rest of paper is organized as following. A motivating
example of webmail services is described in Section II.
Section III presents some of state of the art in preserving
privacy for cloud computing services. Section IV reviews
background and related work for searching on encrypted
data. Section V presents the architecture of Chaavi system.
The implementation details are discussed in Section VI.
Section VII presents the experiments conducted to study
the system and we conclude by stating our contribution and
future work in Section VIII.

II. MOTIVATING EXAMPLE: WEBMAIL SERVICES

Webmail services offer user convenience. With a user-
name, password, and Internet access users, are not tied to any
particular equipment or location. Webmail services primarily
offer the following functionality:

1) Mail Storage
2) Organization of mail
3) Keyword Searching
For (1) and (2), the service provider need not know the

exact content of the mail. However, for performing a plain-
text keyword search on email the user needs the service
provider to know the content of the mail, so that the cloud
provider’s infrastructure can be used to index the mail
content, which can in turn be used for the search process.

The usage of webmail services, has the following short-
comings:

1) The need to trust the service provider (e.g., Google,
Yahoo, or Microsoft) as the mail is stored as plain-text
in the service providers’ servers (or using single key
encryption). The mail is then prone to insider attacks
(anyone with the access control will be able to read
the mails).

2) There is an assumption that the provider is honest, and
the security level is sufficient.

3) When the mail is transferred from one domain to
another, it is transmitted through SMTP [19]. SMTP as

a protocol does not support encryption. Technologies
like Transport Layer Security [9] are used to transfer
mail to other domains. However, the data is still
protected only up to the layer at which it reaches
the target mail server. Once it reaches the target mail
server, the mail is again prone to insider attacks in the
new domain.

To address such problems, various client encryption sys-
tems, such as Pretty Good Privacy (PGP) [26], have been
developed. However, encryption using PGP make the mail
non-searchable in the web server.

III. RELATED WORK

Privacy Enhancing Technologies (PET) can be used by
the developers of the application to enhance the individuals
privacy in an application development environment. In this
section, we survey state of the art in PET.

Homomorphic Functions: Homomorphic encryption
schemes refer to asymmetric encryption techniques, where
algebraic operations on plain text can be performed directly
on a respective cipher text. This was first introduced by
Goldwasser et al. [12], where the authors performed modular
addition of two bits using multiplication of ciphertexts
(Quadratic Residuosity Problem). The best result so far is
a scheme by Boneh et al. [7], where additions are freely
performed on encrypted domain. This still remains in the
theoretical realm as more advanced abstractions need to
be created for using homomorphic functions in practical
applications.

Privacy By Secure Computation: The objective of
secure computation is to evaluate a function f that takes
inputs from two parties A and B without revealing the exact
inputs to each other. The Yaos protocol [25] provides some
of the basic techniques to perform a computation in a secure
way without revealing the inputs. The Yaos protocol forces
the expression of a computation problem in terms of logical
circuit using gates. The input of each gate is randomly
encrypted and then the final resulting output is decrypted
to get the exact answer of the computation. The encryption
and the decryption is done at the client’s end. The expression
of a simple problem using the Yaos protocol is found to be
complex. Applications that typically reside in the cloud (e.g.,
mail) are too complex for this.

Privacy By Using Secure CoProcessors: Secure co-
processors are currently the only realistic way to perform
general-computing even when an adversary has direct phys-
ical access to the server. In our case the adversary could be
the cloud service provider itself. It is a very limited computer
with ROM, RAM and battery backup for persistent storage
and an ethernet card. When installed in a computer, co-
processors can be seen as a secure area inside a computer,
which even the main processor cannot access. Privacy as
a Service [13] recognizes these factors and proposes a
system architecture in which a coprocessor is installed in
every Cloud Computing system. The data loaded into the

134

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

cloud is classified based on its significance and security by
the cloud user (No Privacy, Privacy with Trusted Provider,
Privacy with Non-Trusted Provider). The data tagged with
Privacy with Non-Trusted Provider level is processed by the
secure co processor. Secure co-processors needs a separate
hardware installation in each server. Also co-processors are
expensive and are not yet economical to be used in a cloud
computing environment.

Privacy By Encryption: Privacy can be enforced by
encrypting all the data that is stored in the cloud. The main
issue is that the cloud can be only used for storage of the
data. As the data will be unrecognizable to the cloud service
provider, it will not be possible for the cloud service provider
to process the data nor to perform some number crunching
tasks. Searchable encryption uses an algorithm which allows
users to encrypt the data and then provides the server with
trapdoor information [6], so that the server can search for
a given string through the searchable encryption algorithm.
This part is discussed in detail in Section IV-C.

Privacy-Preserving Multi-keyword Ranked Search over
Encrypted Cloud Data [8] proposes a new encryption scheme
for keyword search over encrypted data in cloud computing
environment with privacy and performance requirements.

In our work we achieve privacy by encryption by using
searchable encryption scheme for a webmail software. Our
focus is to study how this the encryption schemes can be
engineered in a real working environment.

IV. BACKGROUND

In this section, we review the basic elements common to
webmail infrastructures. We also present an introduction to
PGP and searchable encryption.

A. Mail Architecture

The webmail infrastructure is responsible for end to end
delivery of email. Figure 1 presents architectural components
and protocols typically used to support webmail applica-
tions.

bob@a.com
Mail User

Agent

alice@a.com
Mail User Agent

Mail
Transfer

Agent

Mail
Transfer

Agentalice@a.com
Mail User

Agent

Internet

bob@b.com
Mail User

Agent

alice@a.com
Mail User Agent

alice@b.com
Mail User

Agent

SMTP POP
/IMAP

Figure 1. Email Architecture

1) Components: This subsection describes the architec-
tural components.

Mail User Agent: The Mail User Agent (MUA) is
used to manage a user’s email. It acts on behalf of the
user to send and receive mail from the Mail Transfer Agent
(MTA). Popular MUAs include Microsoft Outlook, Mozilla
Thunderbird, Apple Mail. In a webmail system, the MUA
runs in the server and the pages are rendered as HTML pages
for the browser.

Mail Transfer Agent: The Mail Transfer Agent (MTA)
transfers messages from one server to another. It receives
email either from another MTA or MUA. The transmission
of email follows standardized protocols for message trans-
fers.

2) Protocols: This subsection describes commonly used
protocols.

Simple Mail Transfer Protocol (SMTP): SMTP refers
to the standard for the transfer of messages from one server
to another. It is used by MUA to relay mail through MTA
and it is also used by MTA to send and receive mail between
other MTAs. SMTP as a standard does not encrypt messages
(unless Transport Layer Security encryption is used).

Post Office Protocol (POP) / Internet Mail Access
Protocol (IMAP): POP/IMAP are email retrieval protocols
that specify standards for downloading messages from the
MTA for MUA. Examples of use is found with support for
POP version 3 and IMAP as provided by Gmail.

3) Privacy Threats: In webmail systems, there is a server
for webmail introduced into the standard mail system (Fig-
ure 1). It acts as the Mail User Agent for a number of users
and manages email for all the users. The MUA, unlike the
standard model (Figure 1), is centralized at the server. The
webmail server uses POP/IMAP to download messages from
MTA.

There are several privacy concerns with respect to email
systems. If the connection to the webmail server is not
secured using Hypertext Transfer Protocol Secure (HTTPS)
all the data between a user’s browser and the server will
be in plain text. SMTP, unless used with Transport Layer
Security (TLS) layer, is insecure. Even if the TLS layer is
used, the mail will still be accessible by the owner of the
MTA, through which the mail is routed. This is because
TLS is designed to protect data in an insecure network (like
Internet) and not from the communicating parties. Some of
the security threats involved in email systems are identified
by Kangas et al. [14], and Kaufman et al. [15]. These are
detailed below.

Eavesdropping: When email is unencrypted, potential
hackers who have access to network packets flowing through
the network will be able to read the email sent. This can
be achieved by enabling the promiscuous mode on ethernet
cards.

Identity Theft: If the user’s username and password
is obtained, then hackers have full access to all the email
content. Such password information can be obtained by
eavesdropping on the network.

135

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

Invasion of Privacy: The recipient of the mail is able to
get more information from the email header information than
what the sender intends to reveal. For example, the header
will reveal the sender’s SMTP IP address and subject of the
email sent.

Message Modification: Anyone who has administrator
access to the webmail server can modify the messages stored
in the server. It is not always possible for a recipient to
determine that email has been tampered with.

False Messages: It is relatively easy to create false
messages and send it as if it is from any person (as evidenced
by spam).

Message Replay: Akin to message modification, the
message created by user can be saved and sent again and
again.

Unprotected Backups: Messages are stored in plain-text
on SMTP servers, and backups will also contain complete
copies of the messages. Even when the user deletes a
message from the server, the backup will still hold the
content.

Repudiation: As email messages can be forged (for
example see your spam box), there is no way of validating
that the email has been in-fact sent by a particular person.
This has serious implications in business communications,
electronic commerce.

B. Pretty Good Privacy
PGP was created by Zimmermann et al. [26], in 1991

to address the security issues with email. PGP encryption
uses a serial combination of hashing, data compression,
symmetric-key cryptography, and public-key cryptography.
Each public-key is bound to an email address. It serves
as the verification mechanism for the origin of the email.
As the email is encrypted using the private key of the
user and the encrypted version is sent into the network, it
addresses many security issues of the email infrastructure.
For webmail systems, software such FireGPG [1] provide
a browser extension that implements PGP. As PGP support
enhances the security of the email system by encrypting the
mails, the mail becomes unreadable by server. Hence the
server cannot perform keyword searches on the mail.

C. Searchable Encrypted Data
Public Key Encryption with Keyword Search (PEKS) [6]

is one of the seminal works in the area of making encrypted
data searchable. The authors of PEKS propose to encrypt the
message using the Public-Private key infrastructure. Along
with this cipher text a Public-Key Encryption with Keyword
Search (PEKS) of each keyword (the words that make up
the message) is appended to the final message. To send a
message M with keywords W1, W2, ... Wm the following
information is transmitted to the server:

EApub
(M) GPEKS(Apub,W1) G... GPEKS(Apub,Wm)

where Apub is the public key of the user, EApub
(M) is the

encrypted message, PEKS is the function that encrypts the

keywords using Apub. To test whether a word W is a part of
the message, a user supplies PEKS(Apub,W) along with
a trapdoor function Tw to the server, that can test whether
W = W ′ (W ′ being the keywords that are stored in the
encrypted form in the server). If W 6= W ′ the server learns
nothing more about W ′.

Public Key Encryption with Keyword Search Revisited
[5] identifies some of the issues with the original PEKS and
proposed a provably secure algorithm. The authors argue
that if in PEKS the server starts learning the trapdoor then
there can be a categorization of mail formed just based on
the learned trapdoor information. The trapdoor information
is the extra information sent to the server along with the
encrypted keyword for the server to test for the existence of
a keyword.

The authors also identify that in PEKS there is an assump-
tion that the communication channel between the sender
and the server is secure. To enable secure communication
through insecure channels the authors propose a Secure
Channel Free Public Key Encryption with Keyword Search
(SCF-PEKS), that uses a server’s public-private key pair for
communication.

V. ARCHITECTURE

This section describes the various components of Chaavi.
Figure 2 gives the overall architecture of the system.

Browser

Browser
Extension

(Encryption
Engine)

Web
Applicat

ion

Web Server

Database

Mail
Server

Encrypted
Mail and

Keywords

Encrypted
Mail

Keywords

Figure 2. Chaavi - Architecture

A. Browser

The browser is responsible for rendering the pages created
by the web application. Its default behavior can be modified
or enhanced by using extensions in the browsers. Modern
browsers such as Mozilla Firefox, Google Chrome provide
functionality to write extensions and install the extensions
locally.

B. Browser Extension

A browser extension is used in Chaavi to encrypt the
secure message sent to the server. It is also used to decrypt
the messages that are sent from the server. Additionally it
has key generation and key management functionality. The
extension is composed of the following modules.

136

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

Public-Private Key Generation: As stated earlier,
Chaavi uses a public/private key model for securely commu-
nicating messages. In a public/private key model, a public-
private key pair is generated when the system is initiated for
the first time, for a particular user. The messages encrypted
by the public key can be decrypted only by use of the private
key. The public key as the name implies is shared in a public
forum.

Keyword Encryption Key Generation: Public-Private
key pair is used for secure message communication. A
symmetric key is also generated to encrypt the individual
keywords present in the mail. A symmetric algorithm (unlike
the Public-Private key) is used here as the keywords need
not be decrypted by anyone else other than the sender of the
message.

Key Management: Key management is performed using
a graphical user interface (GUI). The GUI enables the user
to add or delete the public keys of the recipients with whom
the user wants to communicate through mails.

Encryption: The functionality of the encryption module
is to encrypt the messages that are sent to the server from
the browser. It also extracts and encrypts the individual key-
words in the message. The encryption module is triggered
from the web application when the user submits a mail to
send it to the web server. This module encrypts the message
using the recipients’s public key and the keywords with the
keyword encryption key.

Decryption: When an encrypted message is sent from
the server to the browser, the decryption module decrypts the
messages using the private key of the user that is generated
during system initialization.

C. Web Application
The webmail application provides graphical user inter-

faces for the users to read, send and search messages.
It comprises of both server-side and client-side (browser)
functionality.

When a user sends a message from the web application,
the Encryption module encrypts the message and extracts
and encrypts the keywords. The web application sends the
encrypted message and keywords to the web server. On
receiving the encrypted message and the keywords, at the
server-side the application saves the encrypted message
alongside the encrypted keywords in a database for future
retrieval. The application then transfers the mail to the Mail
Server (SMTP server) for the mail to be be delivered to
recipient.

When the user wants to search for a particular keyword
in their inbox, the encrypted keyword is sent to the server-
side. The web application then searches for the mails cor-
responding to that particular encrypted word and then sends
the encrypted mails back to the user.

D. Database
The mail storage and organizational functionality is al-

ready handled by the web application. One custom ta-

ble, search is added to the database which stores the
< message id, encrypted keyword > pair. This database
is looked up when the user performs a keyword search.

E. Mail Server
The mail server sends and receives email communicated

to it through the Internet. The mail server functionality is not
modified by our system. The web application communicates
with the mail server to send and receive messages.

VI. IMPLEMENTATION

The following software is used to implement the different
components in the system:
• Browser - Google Chrome
• Browser Extension - Google Chrome using Javascript
• RSA encryption/decryption library from hanewin.net

[3]
• AES encryption library [2]
• Web Application - Squirrelmail over PHP and MySQL
• Mail Server - Using the POP3 interface of the

csd.uwo.ca mail server
The implementation details of individual modules of the

system are detailed below.

A. Browser Extension
Public-Private Key Generation: The RSA algorithm

[20] is used for the creation of keys. The key requires two
large prime numbers as the input along with a random seed.
All of these inputs are created by the extension randomly
and provided as input for key generation. The keys are then
stored locally along with the user name, for future retrieval
in the local browser database.

AES Key Generation: The symmetric AES key algo-
rithm is used to encrypt the individual keywords present in
the mail. The AES key generation algorithm takes as input
a random seed which is provided by requesting the user to
move the mouse over the browser window. That generates
some random co-ordinates which is then used to generate
the key.

AES is a natural choice for the symmetric key algorithm
as it has been analyzed extensively and used worldwide [24].
However, unlike PEKS [5], AES algorithm does not support
trapdoor and hence it is susceptible to chosen plaintext
attacks (The attacker has the capability to choose arbitrary
plaintext and the corresponding cipher texts). Moreover
the encryption of the keywords under AES negates the
possibility of performing range searches (e.g., 10 < b <
20) or similarity searches (name staring with ‘ka’).

Key Management: The GUI for key management is
developed using the options functionality provided by the
Chrome extension framework. It is used to insert the public
keys of the recipients with whom the user wants to commu-
nicate. The private key of the user cannot be managed using
this interface (the system automatically generates it when
the user logs in for the first time). The keys are stored in
the local storage database provided by HTML5.

137

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

Encryption: The user is provided with a HTML form
from the web application which contains input fields to
enter the recipient email address, subject and the contents
of the mail. The form submission event (onsubmit event)
is associated with a custom submit event handler, which is
hooked to the encryption module. The encryption module
encrypts the contents of the mail using the user’s public key
and replaces the value in the field (contents of the mail)
with the encrypted message. Along with this, the keywords
in the message are extracted by the keyword extraction
function and each keyword is encrypted using the AES key
and stored in an object. This object is serialized in JSON
(Javascript Object Notation) and sent to the server along
with the encrypted message.

Decryption: When an encrypted message is sent from
the server to the browser the server adds the attribute value
post−deencrypt to attribute class. The extension identifies
these messages and decrypts the messages using the private
key of the user. This decrypted message replaces the original
encrypted message in the html page so that the user can see
the message in the encrypted mail.

B. Web Application

An open source web application (Squirrelmail) is iden-
tified and it is modified for our application. Squirrelmail
is responsible for storage and organization of the mails.
Our custom module is developed in PHP and added to
Squirrelmail to save the encrypted messages alongside the
encrypted keywords and for the retrieval of the messages
based on the given encrypted keyword.

VII. EXPERIMENTS

The performance of algorithms used in Chaavi (Privacy
Preserving Web Mail with Keyword Searches) is studied in
terms of space and time consumed by the algorithm in the
local client system. Even though the performance of the
encryption algorithms has been studied before, we focus
on the performance of our system. The results presented
in this section are intended to provide some insight on the
overhead provided by the algorithms in a browser based
extension environment. Since encryption and decryption is
performed in the client browser system, the encryption and
decryption is independent of the number of users currently
using the system. Hence, we focus on the performance of
the encryption algorithms for a browser-based extension
environment.

All the experiments are executed in a Pentium IV Core 2
Duo processor using Google Chrome 5.0.375.99 beta.

A. Time Complexity

The following algorithms are studied with respect to the
execution time.
• Key Generation
• Encryption and Decryption (RSA Algorithm)
• Keyword Encryption (AES Algorithm)

1) Key Generation: Key generation is expensive since
it involves finding two large random prime numbers and
finding a product of the prime numbers based on the given
random seed. The length of keys (as measured by bits)
can be of sizes: 128, 256, 512, 1024. The higher the
number of bits used, the more difficult it is to break the
key (According to Schneier et al. [21], for breaking AES
with key size greater than or equal to 256-bit through brute
force will require fundamental breakthroughs in physics and
understanding of universe). However, generating larger keys
is time consuming. We present the average time taken for
key generation for different bit sizes in Figure 3.

Figure 3. Key Generation

As can be seen the keyword bit size increases the creation
time exponentially. The 1024 bit key generation takes around
41 seconds. However, as this is a one time activity (when
the user sets up the system) the usability and inconvenience
is minimal.

2) Encryption and Decryption: When the user wants to
send an email the encryption module is executed each time,
and the decryption module is activated when the user wants
to read an email. This is a frequent activity and therefore
more computation time spent on these modules will impact
usability. The encryption and decryption algorithm is run
over random data (which represents an email message)
set using the Javascript library in Chrome browser. The
performance of RSA algorithm is studied here in a browser
environment. The following are the results using a 512 bit
key.

It can be seen that at a relatively larger message size,
around 212 KB, the time taken for encryption and decryption
is less than 2 seconds. However as the message size increases
in the order of megabytes, the time is around 16 seconds. A
67 MB message takes around 16 seconds to encrypt and 9
seconds to decrypt, which is still acceptable for sending such
a large message. Moreover, most webmail systems have a
limit of 10 MB on message sizes.

138

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

Figure 4. Encryption and Decryption

3) Keyword Encryption: In this phase the performance of
AES algorithm is studied. Each word from the message is
extracted and is encrypted using the AES algorithm. There
is no decryption phase here, as the encrypted words are
checked against each other.

Figure 5. Keyword Encryption Time

It can been seen that there is a linear relationship between
the message size and time taken for encrypting keywords. It
has to be also noted that when there are duplicate words the
encryption is not done twice. However, in these experiments
each word was generated at random with a random size (with
maximum as 25 bytes). The probability of the same word
repeating is very low for this case.

B. Space Complexity

In our study of the space complexity, we were interested
in the following:

1) Increase in size of the keyword index
2) Increase in the size of the final mail
1) Impact of increase in size on the keyword index: The

AES algorithm is executed over the generated keywords
and the impact of the size of the encrypted keywords on
execution time is examined. There is close to a 10 times
increase in the generated encrypted keywords compared to
the keyword’s actual size. This can pose a design challenge
at the database level on how to store these keywords for
efficient lookups at the server level.

Figure 6. Keyword Encryption Size

2) Impact of increase on Final Message size: Here we
study the total increase in the email size. The email that is
sent to the server of the recipient will be in this format and
the any increase in size, will increase the overall network
traffic.

Figure 7. Message Size

It can be seen from the graph (Figure 7) that initially,
when the message is transferred, there is not much of an

139

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

increase in the encrypted message size (8 bytes to 186
bytes, 18 bytes to 199 bytes, 404 bytes to 722 bytes).
However as the size increases beyond 4MB there is a steep
increase in the difference between the message size and
encrypted message (4MB to 5MB, 8MB to 11MB, 66MB to
90MB). On average, there is a 3 times increase in size when
encrypted using RSA. This is another major factor that has
to be taken into consideration while using this system.

VIII. CONCLUSION

We proposed a privacy preserving architecture for our
webmail system, that enables secure communication of
messages using a public/private key model and privacy
preserving keyword search functionality using AES key
encryption algorithm.

Our approach requires every client to install an exten-
sion to their browser and the cloud computing provider
to modify their webmail application to support encrypted
keyword search. Even though technically this is a possible
solution, economically a cloud provider might not prefer this
approach. Most of the business models in web application
are built around the contextual advertising model, where
the cloud provider relies on the user’s data to deliver the
relevant advertisements to the user. In our case as the
data is encrypted in the server, the cloud provider will not
have access to the user’s data. Works such as Toubiana
et al. [22], try to address this problem by offloading the
keyword extraction in contextual advertising to the client
browser. Approaches like [22] needs to be modified for our
architecture so that our system remains economically viable.

Unlike in PEKS [5], our system does not use a trapdoor
function. This makes our system more susceptible to chosen
plaintext attacks. If a recipient of a mail is also a potential
attacker, the recipient can eavesdrop the encrypted keyword
information sent from the sender to the server, and make a
guess on what keyword represents the encrypted cipher by
analyzing a number of mails sent to the recipient (attacker)
from the same sender. However, our contribution is the
proposal of the framework. The encryption algorithms used
can be modified to utilize more secure alternatives in our
architecture.

In our performance study, we see a considerable increase
in the size of the message and the keywords after encryption.
This will have a direct effect in the database storage and the
keyword look up time.

We have also not implemented the functionality to add the
incoming messages to the encrypted search database. Future
work should address this. Future work also involves detailed
study on the strength of the encryption, support to range
and similarity searches, improvements to the algorithms used
whilst maintaining performance.

ACKNOWLEDGEMENTS

The authors would like to thank the IBM Center of
Advanced Studies and NSERC for their funding.

REFERENCES

[1] http://getfiregpg.org/s/home. Online at 27th June 2011.
[2] http://www.hanewin.net/encrypt/aes/aes.htm. Online at 27th

July 2011.
[3] http://www.hanewin.net/encrypt/rsa/rsa.htm. Online at 27th

June 2011.
[4] Top threats to cloud computing v1.0. Cloud Security Alliance.
[5] J. Baek, R. Safavi-Naini, and W. Susilo. Public key encryption

with keyword search revisited. Computational Science and Its
Applications–ICCSA 2008, pages 1249–1259, 2008.

[6] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano.
Public key encryption with keyword search. In Advances in
Cryptology-Eurocrypt 2004, pages 506–522. Springer, 2004.

[7] D. Boneh, E. Goh, and K. Nissim. Evaluating 2-DNF
formulas on ciphertexts. Theory of Cryptography, pages 325–
341, 2005.

[8] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou. Privacy-
Preserving Multi-keyword Ranked Search over Encrypted
Cloud Data. In IEEE INFOCOM, 2011.

[9] T. Dierks. The transport layer security (tls) protocol version
1.2. 2008.

[10] T. Garfinkel and M. Rosenblum. When virtual is harder than
real: Security challenges in virtual machine based computing
environments. In Proceedings of the 10th conference on Hot
Topics in Operating Systems-Volume 10, page 20. USENIX
Association, 2005.

[11] R. Gellman. Privacy in the clouds: Risks to privacy and
confidentiality from cloud computing. In World Privacy
Forum, pages 1–26, 2009.

[12] S. Goldwasser and S. Micali. Probabilistic encryption & how
to play mental poker keeping secret all partial information.
In Proceedings of the fourteenth annual ACM symposium on
Theory of computing, STOC ’82, pages 365–377, New York,
NY, USA, 1982. ACM.

[13] W. Itani, A. Kayssi, and A. Chehab. Privacy as a Service:
Privacy-Aware Data Storage and Processing in Cloud Com-
puting Architectures. In 2009 Eighth IEEE International Con-
ference on Dependable, Autonomic and Secure Computing,
pages 711–716. IEEE, 2009.

[14] E. Kangas and L. President. The Case for Email Secu-
rity. Published as a Lux Scientiae Article, available at
http://luxsci. com/extranet/articles/email-security. html (ac-
cessed 1 May 2007), 2004.

[15] L. Kaufman. Data security in the world of cloud computing.
IEEE Security and Privacy, 7(4):61–64, 2009.

[16] D. Kenny and J. Marshall. Contextual marketing–the real
business of the Internet. Harvard Business Review, 78(6):119,
2000.

[17] MarketsandMarkets.com. Cloud computing market - global
forecast (2010 -2015).

[18] P. Mell and T. Grance. The nist definition of cloud computing.
National Institute of Standards and Technology, Information
Technology Laboratory, Version 15, 10-7-09:2, 2009.

[19] J. Postel. RFC821: Simple mail transfer protocol, 1982.
[20] R. Rivest, A. Shamir, and L. Adleman. A method for

obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120–126, 1978.

[21] B. Schneier. Snake oil. crypto-gram newsletter
(http://www.schneier.com/crypto-gram-9902.htmlsnakeoil)
[online on 05th september 2011], February., 1999.

[22] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and
S. Barocas. Adnostic: Privacy preserving targeted advertis-
ing. In 17th Annual Network & Distributed System Security
Symposium, San Diego, CA, USA. Citeseer, 2010.

[23] S. Warren and L. Brandeis. The right to privacy. Harvard
Law Review, pages 193–220, 1890.

[24] H. B. Westlund. Nist reports measurable success of advanced
encryption standard - news briefs - national institute of
standards and technology - brief article. Journal of Research
of the National Institute of Standards and Technology, 2002.

[25] A. Yao. Protocols for secure computations. Proceedings of
the 23rd Annual IEEE Symposium on . . . , Jan 1982.

[26] P. Zimmermann. The official PGP user’s guide. MIT Press,
May 1995.

140

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

