
A Linear Programming Approach for Optimizing Workload Distribution in a Cloud

Vadym Borovskiy, Johannes Wust, Christian Schwarz, Alexander Zeier
Hasso-Plattner-Institut, Potsdam, Germany

{vadym.borovskiy, johannes.wust, christian.schwarz, alexander.zeier}@hpi.uni-potsdam.de

Wolfgang Koch
SAP AG, Walldorf, Germany

wolfgang.koch@sap.com

Abstract—Cloud computing’s usage-based pricing model
creates an incentive for subscribers to optimize the utilization
of the rented resources. The goal of the current work is to
devise a formal approach for distributing workload among a
minimum number of servers. The paper models this problem
as a set partitioning problem and describes two solution
approaches. The first one generates a set of candidate blocks
and then composes an optimal partition by solving an integer
programming problem. The second approach solves the set
partitioning problem with column generation technique. Both
methods were implemented and evaluated. The experiment
results led to a conclusion that the second approach delivers
the best results.

Keywords-Workload distribution; Set partitioning; Column
generation

I. INTRODUCTION

Cloud computing continues to gain momentum due to
its ability to provide on-demand computing resources in
both an economically and computationally efficient manner.
The economic benefit of cloud computing from a provider’s
point of view comes from economies of scale [1]. The
more resources a data center has, the lower the cost of
individual resource. From a resource consumer’s point of
view, the benefit derives from converting the fixed cost
of owning and maintaining on-premise infrastructure into
the variable cost of renting it on demand. On average, on-
premise infrastructure is underutilized, because its capacity
is driven by the system’s peak load. But peak loads only
account for a small part of a systems’ operating time.
Companies make large investments in their infrastructure
only to find it idle for a majority of the time. By subscribing
to cloud services companies pay only for the resources they
actually use, whereas with on-premise hardware, the amount
of resources they pay for is driven by peak workload [2].

Cloud computing’s usage-based pricing model creates an
incentive for subscribers to optimize the utilization of the
rented resources. This is especially relevant for multi-module
systems, because of many possible deployment options.
Selecting a particular number of servers and the distribution
of the system’s modules among the servers produces visible
effects. If few modules are installed on each server, the
overall number of servers is bigger than absolutely neces-
sary, which implies extra cost. On the other hand, when
too many modules are deployed on each server, bottlenecks
appear, which implies lower throughput and lower quality of

service. Thus, by choosing a proper deployment configura-
tion subscribers can [1]: (i) avoid resource over-provisioning;
(ii) maintain the desired quality of service in the face of
increasing workload by provisioning on-the-fly additional
resources.

The paper is structured as follows. Section III presents a
formal model of the workload distribution problem. Section
IV describes a straightforward solution procedure based on
the suggested model. Section V describes how a column
generation technique can improve the solution procedure.
Section VI presents computational results of the suggested
algorithms. Section VII concludes the paper.

II. RELATED WORK

Even though load balancing has received much attention
in the research community [3], [4], [5], [6], no conven-
tional techniques can be applied to the discussed problem.
A fundamental obstacle limiting the applicability of the
conventional techniques is the violation of the requirement
that any server in a cluster can handle any request coming
from any client (i.e., the servers must be interchangeable).
In our case servers are not interchangeble, because they
perform different tasks (i.e., run different modules). The
lack of existing approaches motivated us to apply knowledge
from other areas. In particular, our work has been inspired
by research in airline crew scheduling [7], [8], where the
set partitioning approach has been successfully applied for
resource allocation problems. With regards, to column gen-
eration as a method of dealing with large linear programs,
many researchers have observed that it is a very powerful
technique for solving a wide range of industrial problems
to an optimum or to a near optimum. Ford and Fulkerson,
for example, suggested column generation in the context
of a multi-commodity network flow problem [9]. Gilmore
and Gomory then demonstrated its effectiveness in a cutting
stock problem [10]. More recently, vehicle routing, crew
scheduling, and other integer-constrained problems were
successfully solved with column generation [11].

III. MATHEMATICAL MODEL OF THE PROBLEM

The goal of the current work is to devise a formal
approach for distributing modules of a system among a
number of servers. Given the workload of each module, we
want to assign it to one of the available servers with given

127

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

capacity. The workload of a module and the capacity of a
server must be measured in the same units that represent the
amount of a resource consumed or provided. The resource
can be, for example, CPU time, memory, storage or network
bandwidth. Measuring the exact workload of a module may
be impossible, due to its dynamic nature. However, we
believe that with the help of profiling tools, a reasonably
precise workload estimate is feasible to obtain.

A simpler way of figuring out the workload of a module
is to measure it relatively to the capacity of a server. For
that, install multiple instances of a module on the same
server as long as the service level of each module satisfies
requirements. If a server can handle four instances of a
module, then the module’s workload is 25% of the server’s
capacity. Assuming server capacity is 100, the workload
of an item is 25. If the workload of modules changes
significantly over time, then no distribution can be optimal
for a long time. In this case the workload distribution
procedure must be carried out more frequently.

In set theory terms the workload distribution problem is
stated as follows: divide a set into one or more disjoint
subsets called blocks. This problem is called set partitioning
and is well-known in computer science [12]. Through parti-
tioning a set of workload items and assigning each block of
a partition to one processing unit the workload distribution
is carried out. The following example demonstrates the
idea. Suppose there are four workload items, denoted as
wi, i = 1..4. In order to distribute them among processing
units, a partition of the set W = {w1, w2, w3, w4} must be
generated. The set W can be partitioned in 15 different ways.

w1w2w3w4, w1w2w3|w4, w1w2w4|w3,

w1w2|w3w4, w1w2|w3|w4, w1w3w4|w2,

w1w3|w2w4, w1w3|w2|w4, w1w4|w2w3,

w1|w2w3w4, w1|w2w3|w4, w1w4|w2|w3,

w1|w2w4|w3, w1|w2|w3w4, w1|w2|w3|w4

(1)

Each of the partitions represents a possible workload
distribution. The seventh partition, for instance, consists of
two blocks: w1w3 and w2w4. Therefore, the corresponding
distribution will require two processing units (one per block).
Multiple ways of partitioning a set create the possibility of
choice and the task of finding the best partition. This leads
to an optimization formulation: Given a set of workload
items find its feasible partition that has minimum number of
blocks. A partition is called feasible if the workload created
by any of its blocks is less than or equal to the capacity
of a processing unit. For simplicity reasons we assume all
processing units have the same capacity.

The next step is the formalization of the above statement.
As with any optimization problem, the set partitioning
problem must have three parts: (i) Decision variables: the
representation of possible partitions; (ii) Objective function:
a criterion of evaluating the ”quality” of a partition; (iii)

Constraints: feasibility restrictions on possible partitions.
In the current work, we use the classic integer pro-

gramming formulation of the set partitioning problem. The
formulation assumes a two-step solution procedure:

1) Generation of a set B = {bj : j = 1..N} of feasible
candidate blocks bj = {wl : l ∈ 1..n}, where n is the
number of workload items and N is the number of
candidate blocks.

2) Construction of an optimal partition out of the previ-
ously generated blocks with the help of the following
integer program:

N∑
j=1

xj → min (2)

N∑
j=1

aij · xj = 1 i = 1..n (3)

xj ∈ {0,1} j = 1..N (4)

where a decision variable xj equals 1 if the jth block
is included in the optimal partition and 0 otherwise;
aij is an element of matrix A of size n × N and
calculated as:

aij =

{
1 if wi ∈ bj
0 if otherwise

(5)

The objective function (2) favors partitions with the
smallest number of blocks. The constraints (3) force each
workload item wi to appear only in one block of the optimal
partition. For convenience these constraints can be expressed
in matrix form:

A · x = 11 (6)

where A is defined by the expression (5), x is the vector
with N decision variables and 11 is a vector of size n with
all elements equal 1.

The reason for choosing the two-step procedure and the
formulation (2) – (5) of the set partitioning problem is their
wide and successful application in other areas, in particular
airline crew pairing and stock cutting. Research results from
these areas form a solid foundation for our own effort.
Subsequent sections of the paper discuss different aspects
of the solution procedure that influence its computational
characteristics and the quality of the solution it produces.

To illustrate the usage of this set partition problem formu-
lation, we apply it to the example mentioned earlier. Suppose
the feasible candidate blocks are

w1, w2, w3, w4, w1w2, w3w4,

w1w3, w2w4, w1w4, w2w3

(7)

while the rest of the blocks present in (1) are deemed
infeasible. Hence, n = 4 (the number of workload items)
N = 10 (the number of blocks to be considered). Given

128

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

the feasible blocks, the following integer program can be
constructed:

10∑
j=1

xj → min
1 0 0 0 1 0 1 0 1 0
0 1 0 0 1 0 0 1 0 1
0 0 1 0 0 1 1 0 0 1
0 0 0 1 0 1 0 1 1 0

×

x1
x2
. .
x10

 =


1
1
.
1


xj ∈ {0, 1} j = 1..10

(8)
The solution of the problem corresponds to the optimal

partition (that has the smallest number of blocks). Given the
small size of the problem, it is not difficult to see the three
optimal solutions:

x1opt = {0, 0, 0, 0, 1, 1, 0, 0, 0, 0} ⇒ {w1w2}, {w3w4}
x2opt = {0, 0, 0, 0, 0, 0, 1, 1, 0, 0} ⇒ {w1w3}, {w2w4}
x3opt = {0, 0, 0, 0, 0, 0, 0, 0, 1, 1} ⇒ {w1w4}, {w2w3}

Note that there may be both multiple optimal solutions or
no solution at all, in the case that there is at least one item
with workload higher than the capacity of a processing unit.

IV. THE ”FULL SET” APPROACH

As presented in the previous section the solution process
starts with the generation of feasible candidate blocks. In
our work we use two different methods to generate these
blocks. The first one is a brute-force method that generates
all possible combinations of workload items (i.e., all possible
blocks). After that, the blocks must be validated against
the feasibility constraints, that is, the workload of a block
must not exceed the capacity of a processing unit. The total
number of blocks to be considered will always be less than
the number of all possible combinations of workload items:

N ≤
n∑

i=1

Ci
n =

n∑
i=1

n!

i!(n− i)!
(9)

Having generated the candidate blocks, the integer pro-
gram is composed and solved. We call this method the basic
version of the ”full set” approach, because we explicitly
consider all possible solutions. Section VI shows that this
version is applicable only for a very small number of
workload items. The reason is obvious: N , defined by the
expression (9) grows very fast and the set of candidate
blocks (B) quickly becomes unmanageable (either exceeds
the amount of RAM or takes too much time to be processed).
Nevertheless, considering all feasible combinations guaran-
tees the best possible result. The example from Section III
is solved by the ”full set” approach.

In order to achieve better performance of the candidate
generation, more appropriate limits for i in the expression

(9) can be found. Experimenting with the ”full set” approach
we found that considering the blocks with too few or too
many workload items is useless. Such blocks never appear
in optimal partitions. Intuitively, big-size blocks are most
probably infeasible, while small-size blocks increase the
number of required processing units, which is not favored
by criterion (2) and is therefore rejected. By considering
only medium-size blocks the performance of the ”full set”
approach can be significantly improved. Restricting the set
of candidate partitions is a very common approach used
to improve the solution of the set partitioning problem.
Experiments showed that in comparison with brute-forcing,
the following limits produce better computational character-
istics (e.g., lower memory consumption and faster processing
time) without deteriorating the quality of the solution.

N =

upper∑
i=lower

Ci
n =

upper∑
i=lower

n!

i!(n− i)!

lower = d1
2
navge, upper = b

3

2
navgc

navg =
Capacity

wavg
=
Capacity · n∑n

i=1 wi

(10)

Here navg is the average number of items in a block, wavg

is the average workload of an item and Capacity is the
capacity of processing units. We call this modification ”size-
restricted” modification of the ”full set” approach.

As one can see the expression (10) takes into account
only the number of items in a block. This, however, is
not the only factor that can reduce the size of the set B.
Another tendency was revealed by observing the results of
the conducted experiments: the workload is distributed in
such a way that every processing unit is utilized to the
highest possible extent. In other words, every processing
unit is packed with workload items as much as possible.
Based on this observation, we suggest a second way of
generating set B. By sequentially iterating through the set
of workload items, we select items as long as the total
selected workload is less than or equal to the capacity
of the processing units. We call this version of the ”full
set” approach load-restricted. The listing below presents the
details of the algorithm.
generate (items, eps, capacity) {
iter = items.begin();
while (items.size() > 0) {
s1 = s2 = count = 0;
//select items to a new block
while (count < items.size() && items.size() > 0) {
s2 = s1 + iter->value;
if (s2 < capacity - eps) {
//add the workload item to the block and continue
s1 = s2; count = 0;
block.add(iter.value);
items.remove(iter); iter++;

}
else if (s2 <= capacity) {
//add the item and stop selecting more items
block.add(iter.value);
items.remove(iter); iter++;
if (iter == items.end())

129

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

iter = items.begin();
break;

}
else {
//skip the item and continue
count++;
item++;

}
if (iter == items.end())
iter = items.begin();

}
B.add(block);
block.clear();

}
return B;

}

At the end of the procedure, the set B contains a number
of blocks constituting a feasible partition of a given set. By
running the generate procedure multiple times and shuffling
the set of items before each run a required number of
candidate blocks (i.e., the set B) can be generated.

The run-time complexity of the both versions of the ”full
set” algorithm is determined by the algorithm used for
solving the integer problem (2)-(4). We used the branch-
and-bound algorithm. Its complexity is exponential [13].
Hence, the complexity of the ”full set” algorithms is also
exponential, O(2N), where N is the number of candidate
blocks.

V. THE ”COLUMN GENERATION” APPROACH

Two factors make the ”full set” approach impractical. The
first one is the size of N , which can be enormous, even when
n is still reasonable (say, less than 10000). The second factor
is the integrality constraint (4). Solving large-scale integer
programming problems is not a trivial exercise, and requires
more a complex solution procedure in comparison to linear
programming problems. These two factors significantly limit
the applicability of the approach.

This section shows how these difficulties can be overcome
by a method suggested in [14]. The main idea is to enhance
the ”pricing out” stage of the simplex method. At this stage,
Danzig and Wolfe [14] suggest generating a useful column
by solving an auxiliary integer programming problem in-
stead of looking over a vast existing collection of columns
to pick out a useful one.

Put simply, column generation means beginning with a
manageable part of a linear optimization problem, solving
that subproblem, and then discovering the way of improving
the solution by extending the subproblem with the parts
of the original problem. This process is repeated until a
satisfactory solution to the original problem is achieved
[15]. In formal terms, column generation is a modification
to the simplex method that adds columns corresponding to
constrained variables during the pricing phase [13].

Column generation relies on the fact that in the simplex
method, the solver does not need access all the variables
of the problem simultaneously. In fact, a solver can begin
working with only the basis (a particular subset of the

constrained variables) and then use reduced cost to decide
which other variables are needed [16].

To solve a set partition problem by column generation we
start with a subproblem, called the master problem. That is,
we choose several feasible blocks and solve the problem (2)
– (5) for them. This will surely work in that it produces
some answer (a feasible solution) to the problem, but it
will not necessarily produce a satisfactory answer. To move
closer to a satisfactory solution, we can then generate other
columns. Other decision variables (other xj) will be chosen
to add to the model. Those decision variables are chosen
on the basis of their favorable reduced cost with the help
of a subproblem. This subproblem is defined to identify the
coefficients of a new column of the master problem with
minimal reduced cost.

Let π be the vector of the dual variables of the current
solution to the master problem. The subproblem is then
defined as follows:

1−
n∑

i=1

πici → min (11)

n∑
i=1

wici ≤ capacity (12)

ci ∈ {0,1} i = 1..n (13)

The solution to the problem (11) – (13), vector copt,
represents the coefficients of a new column of the constraint
matrix A of the master problem. Adding a new decision
variable (i.e., a new candidate block) to the master problem
with the constraints coefficients copt will result in the best
possible improvement of its solution. In this way, instead
of explicitly considering a fixed set of columns (candidate
blocks), we generate and add new ones to the master
problem only if they improve its solution. This avoids the
need of explicitly enumerating candidate blocks.

Having discussed all necessary aspects of column gener-
ation we present the basic five-step algorithm of solving the
set partitioning problem with column generation.

S1 Compose the master problem (2) – (5) for a lim-
ited set of candidate blocks. The simplest way to
generate this set is to place each of the n workload
items to a separate block. In this case the matrix A
is a diagonal matrix: elements of the main diagonal
equal 1, while non-diagonal ones 0.

S2 Solve the master problem.
S3 Given the optimal dual solution of the master

problem, compose the auxiliary column generation
problem (11) – (13).

S4 Generate a new column (i.e., a new candidate
block) by solving the auxiliary problem.

S5 Add the new column to the master problem and
return to the step S2. Repeat the procedure until
the improvement of the master problem solution
becomes negligible.

130

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

Having experimented with the algorithm, we observed
an even stronger tendency to pack blocks with as many
items as possible. In comparison to the blocks generated
by the ”full set” algorithms, column generation produced
blocks with workload closer to the capacity of a processing
unit. This tendency is true for every n, large or small. This
fact, in turn, created a hypothesis that if the correlation
between the block fulfillment and n is weak, we can split
a sufficiently large set of workload items into a number of
smaller subsets of the size k, k ≤ n, and run the algorithm
on each subset independently without deterioration of the
quality of the overall solution. The prime reason for this
is decreasing the execution time. In linear and integer
programming the solution time increases non-linearly with
the size of a problem. This implies that solving two problems
with 50 variables takes less time than solving one problem
with 100 variables. In order to check this hypothesis, we
modified the basic column generation algorithm accordingly.
The resulting version of the algorithm is called parallel.
As one can see from the experiment results, the hypothesis
proved to be true and allowed a very efficient algorithm.

The run-time complexity of both versions of the ”column
generation” algorithm is determined by the complexity of
the simplex method, which is exponential [13]. Thus, the
complexity of the basic version is O(2N), where N is
the number of considered blocks and corresponds to the
number of generated columns. The complexity of the parallel
version slightly differs and is n·O(2k)

k , where n is the number
workload items to be distributed and k is described above.
In our experiments, we took k = 50. One can now clearly
see that the expected speed-up of the parallel version equals
to O(2N)− n·O(2k)

k .

VI. COMPUTATION RESULTS

This work contributes, in total, five workload distribution
algorithms: three versions of the ”full set” algorithm, and
two versions of the column generation algorithm. In order
to validate them a number of experiments were conducted.
This section describes the set up of the experiments and
reports their results.

All suggested algorithms were implemented in C++ and
used the IBM ILOG CPLEX V12.1 optimization engine
in order to solve the linear programming problems. All
algorithms were run on a Quad-core Intel Xeon E5450
3.00GHz machine with 8 GB of RAM. The experiments
were conducted as follows. First, n workload items were
obtained with a random number generator. In the experi-
ments we used random number equally distributed in the
range from 12 to 40. The capacity of a processing unit has
been fixed at 100 in all experiments. Second, each of the
five algorithms was run on the generated set of workload
items and the execution time was measured. Table I contains
the results of the conducted experiments. In addition to
the execution time, the obtained solution (the number of

required processing units) is presented. For the ”full set”
algorithms we also report N - the number of candidate
blocks considered. For the column generation algorithms
the number of generated columns is reported. Because basic
and size-restricted versions of the ”full set” algorithm fail
to distribute more than 15 items, the statistics on them are
not included in the table.

For example, during the ninth experiment 600 workload
items were generated. The basic and size-restricted versions
of the ”full set” algorithm failed due to size of the set
B. The load-restricted version distributed the items among
162 processing units, but took 4 minutes to complete, and
processed 86390 candidate blocks. The basic version of the
column generation algorithm distributed the same workload
items among 155 processing units. The algorithm generated
1541 columns and took 6 minutes while the parallel version
of the algorithm was able to achieve the same result in only
24 seconds.

VII. CONCLUSION

Cloud computing’s pricing model creates an incentive
for subscribers to minimize the consumption of rented
resources. In the case of modularized software, multiple
deployment options may exist, creating different possibible
distributions of workload and resource consumption. The
current research aims to developing a formal approach of
distributing multiple workload items among a minimum
number of processing units.

We designed and evaluated five algorithms that, given a set
of workload items, distribute them among processing units
of specified capacity. The algorithms can be classified into
two different types: those that explicitly consider a fixed set
of candidate options (the ”full set” algorithms) and those that
gradually improve the solution by considering dynamically
generated options (column generation algorithms).

The combinatorial nature of the workload distribution
problem makes any algorithm based on explicit enumeration
of possible alternatives intractable. That is, even for reason-
ably sized input, the algorithms fail due to the overwhelming
number of alternatives to be processed. The experimental
results clearly demonstrated this phenomenon.

The results also showed that the basic version of the
column generation algorithm produces the best solution. The
solution found by the parallel version of the column gener-
ation algorithm is worse by approximately 1%. However,
the speed of parallel version is much better. For this reason,
we conclude that the best results are achieved with parallel
version of the column generation algorithm.

ACKNOWLEDGMENTS

The authors want to express special thanks to Nick
Lanham for the numerous improvements he contributed to
this paper.

131

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

Table I
EXPERIMENT RESULTS

Full Set Column Generation
Load-restr. Basic Parallel

No n Sol. N Time Sol. Cols. Time Sol. Cols. Time
1 10 3 100 1 sec 3 15 1 sec 3 15 1 sec
2 15 4 137 1 sec 4 23 1 sec 4 23 1 sec
3 30 9 300 1 sec 8 25 1 sec 8 25 1 sec
4 50 14 473 2 sec 13 121 2 sec 13 121 2 sec
5 100 28 793 3 sec 26 233 6 sec 26 243 3 sec
6 150 40 2870 15 sec 39 322 21 sec 39 348 5 sec
7 250 71 8800 36 sec 69 672 45 sec 70 1523 11 sec
8 400 108 20000 1 min 104 912 3 min 104 938 17 sec
9 600 162 86390 4 min 155 1541 6 min 156 1523 24 sec
10 1000 275 133000 7 min 262 2637 22 min 263 2654 40 sec
11 1300 349 219240 19 min 330 3674 42 min 333 3243 60 sec
12 1500 405 303750 27 min 389 3853 93 min 390 3789 75 sec
13 2000 536 549000 31 min 514 5201 168 min 516 5017 84 sec
14 2500 670 846250 39 min 651 6435 274 min 654 6337 95 sec
15 3000 807 1200000 45 min - - - 774 7519 112 sec
16 5000 1342 3365000 74 min - - - 1296 12595 200 sec
17 10000 2698 12146396 193 min - - - 2598 25170 378 sec

Full Set
Basic Size-restr.

No n Sol. N Time Sol. N Time
1 10 3 35673 5 sec 3 27990 3 sec
2 15 4 3012765 12 min 4 2366910 9 min
3 30 - - - - - -

REFERENCES

[1] P. Murray, “Enterprise grade cloud computing,” in Proceed-
ings of the Third Workshop on Dependable Distributed Data
Management, European Conference on Computer Systems,
2009, pp. 1–1.

[2] R. L. Grossman, “The case for cloud computing,” IT Profes-
sional, pp. 23–27, March 2008.

[3] W. Tang and M. W. Mutka, “Load distribution via static
scheduling and client redirection for replicated web servers,”
in International Conference on Parallel Processing, 2000.

[4] N. Nehra, R. B. Patel, and V. K. Bhat, “A framework for
distributed dynamic load balancing in heterogeneous cluster,”
2007.

[5] D. Grosu and A. T. Chronopoulos, “A game-theoretic model
and algorithm for load balancing in distributed systems,”
in 16th International Parallel and Distributed Processing
Symposium, 2002, pp. 146–153.

[6] S. Iqbal and G. F. Carey, “Performance analysis of dynamic
load balancing algorithms with variable number of proces-
sors,” Journal of Parallel and Distributed Computing, vol. 65,
pp. 934–948, 2005.

[7] J. Arabeyre, J. Fearnley, F. Steiger, and W. Teather, “The
airline crew scheduling problem: A survey.” Transportation
Science, vol. 3, no. 2, p. 140, 1969.

[8] R. E. Marsten and F. Shepardson, “Exact solution of crew
scheduling problems using the set partitioning model: Recent
successful applications,” Networks, vol. 11, no. 2, pp. 165–
177, 1981.

[9] J. Ford, L. R. and D. R. Fulkerson, “A suggested computation
for maximal multi-commodity network flows,” MANAGE-
MENT SCIENCE, vol. 5, no. 1, pp. 97–101, 1958.

[10] P. C. Gilmore and R. E. Gomory, “A linear programming
approach to the cutting-stock problem,” Operations Research,
vol. 9, no. 6, pp. 849–859, 1961.

[11] M. Minoux, “Column generation techniques in combinatorial
optimization: A new approach to the crew pairing problems,”
in 24th AGIFORS Symposium, 1984, pp. 15–29.

[12] D. Knuth, The Art of Computer Programming, Volume 4,
Fascicle 3. Addison-Wesley, 2005.

[13] G. Desaulniers, J. Desrosiers, and M. M. Solomon, Column
generation. Springer, 2005.

[14] G. B. Dantzig and P. Wolfe, “Decomposition principle for
linear programs,” OPERATIONS RESEARCH, vol. 8, no. 1,
pp. 101–111, 1960.

[15] M. E. Lübbecke and J. Desrosiers, “Selected topics in column
generation,” Operations Research, vol. 53, pp. 1007–1023,
November 2005.

[16] D. Feillet, “A tutorial on column generation and branch-
and-price for vehicle routing problems,” 4OR: A Quarterly
Journal of Operations Research, vol. 8, pp. 407–424, 2010.

132

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

