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Abstract—Since relational database management systems 

(DBMSs) are ill-suited to cloud computing environments, 

multiple efforts are now underway to offer a viable alternative 

to relational DBMSs. These efforts have led to the rise of a new 

kind of DBMSs called NoSQL. One of the most visible 

products in this rise is Cassandra. Cassandra is a NoSQL 

DBMS, which can also be used as a clustered file system. 

Cassandra was claimed to be particularly well suited for cloud 

computing environments. Our goal in this paper was to 

confirm or deny that claim. Towards this goal, we conducted 

tests on Cassandra to determine what levels of consistency, 

availability and partition tolerance can be achieved and if these 

can be achieved without sacrificing performance.  

Keywords—Cloud computing, Cassandra, consistency, 

availability, partition tolerance, experiments. 

I.  INTRODUCTION  

Consistency, availability and partition tolerance are of 
great importance to cloud computing environments. These 
can be achieved by using relational or NoSQL database 
management systems (DBMSs). Since NoSQL DBMSs are 
still a new research area, various definitions exist that may 
even contradict each other. For this paper, we have chosen 
the following definition: NoSQL is a movement grouping all 
efforts, which intend to provide a viable alternative to (SQL-
based) relational databases for storing and processing data 
[1]. 

Relational DBMSs [3] are 30 years old. They have been 
the dominant storage technology behind websites. The past 
few years have seen the emergence of cloud computing 
environments, which are going to be an increasingly 
common backbone for websites. But cloud computing 
environments and relational DBMSs do not fit well together 
[10]. In particular, relational databases can scale, but usually 
only when this scaling happens on a single node (i.e., vertical 
scaling). When the capacity of that single node is reached, 
relational databases need to scale horizontally and be 

distributed across multiple nodes over a network. This is 
when the suitability of relational DBMSs for cloud 
computing environments is reduced. 

A. Consistency 

Consistency guarantees that every node in the cluster has 
the same view on data. So once one node has written some 
data, all other nodes in the cluster will see those data. 

The importance of consistency for cloud computing 
environments is perhaps best explained by example. 
Consider an airline company that provides a booking 
website. Assume that the airline company’s database is 
distributed over a network, so data can be accessed from 
different nodes. Consistency is endangered now because one 
node may change data without knowing about the changes 
have been made by other nodes. In particular, assume that a 
customer opens a session on the booking website and a last 
available seat for the selected flight is displayed to the 
customer. This seat has already been booked, but the node 
serving the customer’s session does not know about it yet. 
The result is that the customer can still book the last seat. 
Next time when the nodes synchronize each other, 
inconsistency shows up as there will be two bookings for one 
and the same seat. 

To avoid a situation like the above, NoSQL DBMSs 
should provide consistency. Relational DBMSs typically use 
ACID (Atomicity Consistency Isolation Durability) 
transactions for this purpose. But ACID transactions are not 
distributed-system friendly. Therefore, NoSQL DBMSs 
typically either skip them entirely or comply with BASE 
(Basically Available Soft-state Eventual Consistency). 

Compliance with BASE means that the latest version of 
data on one node might not match that on other nodes; so 
every node in the cluster is only guaranteed to see writes 
eventually.  As a result, NoSQL DBMSs might not handle 
long running business processes [6] like booking flights, 
where the current state of data, e.g., seats availability on the 
plane, should be shown to all other customers while one 
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customer, who is booking a flight, has not finished the 
booking yet. 

B. Availability 

Availability guarantees that if one node fails, there will 
still be some copies of data on other nodes in the cluster, so 
the availability of the whole cluster will not be endangered 
by that node failure. 

Continuing the previous example, assume that the node 
serving the customer’s session experiences a failure during 
which the customer cannot book the last seat anymore. 

To avoid a situation like the above, NoSQL DBMSs 
should provide availability. Relational DBMSs typically use 
replication for this purpose. The same technique is used by 
NoSQL DBMSs. 

C. Partition Tolerance 

Partition tolerance guarantees that the cluster remains 
operational even when communication between nodes in the 
cluster is lost. 

Continuing the previous example, assume that the airline 
company’s database is running on multiple nodes across a 
network. Also, assume that a network connection with the 
node serving the customer’s session is lost due to a network 
failure. The database is now partitioned. If the database is 
tolerant of it, then the cluster can still perform read and write 
operations, i.e., the customer can still book the last seat. If 
not, the cluster will be completely inaccessible. 

To avoid a situation like the above, NoSQL DBMSs 
should provide partition tolerance – they typically use 
quorum for this purpose. Being single-node, relational 
databases cannot be partitioned. 

II. CONTRIBUTION 

In this paper, we deal with using NoSQL DBMSs in 
cloud computing environments. Unlike many other papers, 
we do not focus on traditional approaches that use clustered 
file systems like Gluster [2] or relational DBMSs like 
MySQL and Oracle. Rather, we introduce a novel approach 
that uses Cassandra. 

Cassandra [5] was claimed to be particularly well suited 
for cloud computing environments. Our goal was to confirm 
or deny that claim. For this purpose, we experimented with 
Cassandra. In particular, we built a test setup, developed a 
test application and conducted tests on Cassandra using this 
application. 

III. CASSANDRA 

Cassandra is a recently upcoming NoSQL DBMS that 
can also be used as a clustered file system [4]. It was 
originally developed as an open source by Facebook in 2007 
to horizontally scale their internal application; viz. Inbox 
Search. Later in 2009 Facebook released Cassandra to 
Apache. This allowed Cassandra to move forward in the 
direction that is more general to the public than just to 
Facebook’s in-house needs. 

Recently, Cassandra has acquired great popularity and 
showed high potentials for cloud computing. This is because 
Cassandra offers a variety of possibilities to provide the 

desired levels of consistency, availability and partition 
tolerance. 

A. Consistency 

In Cassandra, every operation is assigned a consistency 
level, so that it can be decided whether the consistency 
should be guaranteed among all nodes in the cluster or it is 
acceptable if some node might not contain the latest version 
of data, e.g., in case of a node failure. In particular, 
Cassandra supports the following consistency levels: 

ANY:           W + R > N 

ONE:           W = 1 or R = 1 

QUORUM: W = Q or R = Q 

ALL:             W = N or R = N,  
where R is the number of records to read (i.e., the 

number of reads on a replica), W is the number of records to 
write (i.e., the number of writes on a replica), N is a 
replication factor and Q = N / 2 + 1. 

Even though Cassandra complies with BASE, it is still 
possible to have ACID transactional consistency guarantees 
using ZooKeeper [7], a coordination service for distributed 
systems. For short running business processes, single path 

locking can be used (classes ZkReadLock and 

ZkWriteLock). However, in distributed systems with 
many interactions, the use of single path locking is not 
recommended since it often results in deadlocks. It is better 

to use multi-path locking (a class ZkMultiLock) since this 
class contains methods, which check for deadlocks and 
handle them before they occur. A downside of multi-path 
locking is decreased performance. For simple applications, 
both single and multi-path locking is sufficient to ensure 
consistency. More complex applications, however, require 

the use of a class ZkTransaction. This class works in 

conjunction with ZkMultiLock. It provides a simplified 
Thrift API, which allows for specification of a series of data 
mutation operations to be performed by a transaction. After 

the transaction has been specified, a method commit is 

executed with an instance ZkMultiLock passed it as a 
parameter. At this point, cages will add a reference to a 
transaction node, which is created by ZooKeeper. Next, the 
transaction can read the current values of the data, which are 
to be updated. At this point, the original state will be written 
into the transaction node [8]. Once this has been done, the 
data mutations will be performed. After that, all references to 
the transaction node from within the locks will be removed. 
The transaction node gets deleted and the transaction itself 
has been committed. 

If the node fails during the execution of a sequence of 
individual data mutations, the cages will immediately be 
unlocked. The transaction, which has already been executed, 
will be rolled back to the “written before” state in the 
transaction node. So the state of the database will be 
identical to the original state before the node has performed 
its operations. This guarantees consistency of the database 
and complies with so-called relaxed ACID since changes one 
node makes during a long running business process will be 
seen by other nodes in the cluster [9]. 
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B. Availability 

In Cassandra, availability is achieved through replication. 
Every node in the cluster that needs access to data has its 
own replica, so a failure of one node will not make all 
replicas unavailable at the same time. 

C. Partition Tolerance 

In Cassandra, partition tolerance is achieved through 
quorum (e.g., if one node is separated from the other two 
nodes in the cluster, it stops processing). 

IV. TEST SETUP 

The test setup consisted of a cluster having two nodes: 
primary and secondary. Writes are directed at both nodes, 
while reads are directed to just one of the nodes, which is 
known as the primary node. Because the other node is kept 
updated, it is known as a secondary node. It is always ready 
to take over. If the primary node should fail or become 
inaccessible for any reason, Cassandra will redirect reads to 
the secondary node and processing will continue 
uninterrupted. Before the failed node comes back on line, 
any interim updates will be applied to synchronize it with the 
other node. 

A. Cluster Infrastructure 

To configure the first node, we adjusted some variables 
in the configuration file. In particular, we set both 

ThriftAddress and ListenAddress to the IP address 
of the first node to enable intra-cluster communication and 
data access. (The database was accessed using Thrift API.) 

Also, we set ReplicationFactor to a value that was 
equal to the number of nodes in the cluster (i.e., 2) to ensure 
that a failure of one of the nodes would not make both 
replicas unavailable at the same time. (In general, the cluster 
can be configured with more than two replicas, depending on 
the probability of failures and the requirements for 
availability.) 

For the second node, we set both ThriftAddress and 

ListenAddress to the IP address of the second node. In 

addition, we set Seed to the IP address of the first node so 
that the second node would know to which server it had to 
connect for getting data when it was added to the cluster. 

Finally, we set AutoBootstrap to true. This resulted in 
the second node being added to the cluster automatically. (If 
a new node is added, only seed nodes in the cluster need to 
be configured, instead of adjusting all node configurations.) 

After the cluster configuration had been completed, we 
checked if the two nodes would connect to each other. We 

did it by using a command ring, which returned a list of all 
available nodes. Although this check showed that the two 
nodes were available in the cluster, we analyzed entries in 
the log file generated by Cassandra to see if the cluster 
remained operational over some period of time. 

The following listing shows an excerpt from the resulting 
log file:  

 
INFO  16:50:25,966  Starting up server gossip 
INFO  16:50:26,045  Binding thrift service to 192.168.5.132:9160 

INFO  16:50:26,050  Cassandra starting up ... 
DEBUG 16:50:26,132  attempting to connect to 192.168.5.134 
INFO  16:50:26,160  Node 192.168.5.134 is now part of the 
  cluster 
DEBUG 16:50:26,161  Resetting pool for 192.168.5.134 
DEBUG 16:50:26,793  attempting to connect to 192.168.5.134 
INFO  16:50:26,798   InetAddress 192.168.5.134 is now UP 
INFO  16:50:26,800   Started hinted handoff for endpoint 
  192.168.5.134 
INFO  16:50:26,811  Finished hinted handoff of 0 rows to 
  endpoint 192.168.5.134 
 

As can be seen, the second node (192.168.5.134) was 
added to the cluster, and a synchronization process called 

hinted handoff was started and finished.  

B. Test Database Schema 

Cassandra supports a data model that is based on column 
families. A column family is a container for columns, 
analogous to a table in relational DBMSs; it holds the 
columns as an ordered list (a column family row), which can 
be referenced by the column name. There are two kinds of 
column families: simple and super. Simple column families 
consist of columns, which are grouped. Super column 
families can be viewed as a column family within another 
column family. 

In Cassandra, a database is a distributed multi-
dimensional map, which is indexed by a key. The top 
dimension is referred to as a key space and under this key 
space, column families follow. The key space is divided up 
by a cluster into ranges delimited by tokens. 

In Cassandra, a database schema is flexible, meaning that 
we do not have to decide what columns we need in the 
records ahead of time. Rather, we can just add or delete 
columns on the fly. This is by contrast to relational DBMSs, 
where a database schema is fixed and pre-defined. 

In the test setup, we used a simple database schema 

Address. There was only one key space Keyspace1 

containing a column family Standard2, which in its turn 

contained the following columns: firstname, 

lastname, street, housenumber, zip, city, and 

country. To populate the column family with data sets, we 
used the following statements: 

 
setKeyspace1.Standard2["1"]["firstname"]="MyFirstname" 
setKeyspace1.Standard2["1"]["lastname"]="MyLastname" 
setKeyspace1.Standard2["1"]["street"]="MyStreet" 
setKeyspace1.Standard2["1"]["housenumber"]="MyHouseNumber
" 
setKeyspace1.Standard2["1"]["zip"]="MyZip" 
setKeyspace1.Standard2["1"]["city"]="MyCity" 
setKeyspace1.Standard2["1"]["country"]="MyCountry" 

 
In this listing, the key value was set to 1. However, for 

any next data sets, this value was increased by one in order 
to differentiate the data sets from each other.  
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V. TEST APPLICATION 

To experiment with Cassandra, we developed a test 
application in Java. This application took the following 
arguments as input: a node IP, a Cassandra port, a command 

to be performed (viz., put, delete or get), data for the 
command and optionally a key ID of the data. The test 
application consisted of the following classes. 

A. SelectClient 

This class was used to determine the time periods for 
every method execution. 

B. CassandraClient 

This class was used to open and close a connection to the 
database. 

C. PutCassandraData 

This class was used to insert data into the database. The 

class had a method putDataIntoCassandra, which 
defines the column names, generates new records and adds 
them to the database. The record generation was performed 
by a random generator, which combines data from the 
specified lists, and could be repeated any number of times 
using a loop. 

D. GetCassandraData 

This class was used to retrieve records from the database. 
Retrieving records was performed by the following methods: 

 getKeyList, which sets a range for the specified 
key space and gets a key range from Cassandra. 

 getData, which reads all records in the specified 
key range and returns the result. 

 getDataByKey, which defines a slice range, reads 
one specific record identified by its key ID and 
returns the result. 

 printData, which displays on the shell all records 
in the specified maximum range. 

 printDataByKey, which displays on the shell 
one specific record identified by its key ID. 

E. DeleteCassandraData 

This class was used to remove records from the database. 
Removing records was performed by the following methods: 

 deleteCassandraData, which creates a key 
range and deletes all records in the specified key 
range. 

 deleteCassandraDataByKey, which deletes 
one specific record identified by its key ID. 

VI. EXPERIMENTS 

After setting up the cluster infrastructure, we performed 
the following test cases using the test application. After each 
test case, we analyzed the log file entries generated by 
Cassandra. 

A. Test Case 1: Putting Data to Database 

In this test case, we checked if records could be inserted 
into the database. For this purpose, we tried to add data to the 
first node. 

The following listing shows an excerpt from the resulting 
log file for the first node:  

 
DEBUG 16:52:47,373 insert 
DEBUG 16:52:47,381 insert writing local key 1 
DEBUG 16:52:47,383 insert writing key1 to 432@192.168.5.134 
DEBUG 16:52:47,391 Processing response on a callback from 
  432@192.168.5.134 
 

At first, an insert was executed, following by a local 
write. Then a remote write was executed, following by a 
response from the second node (192.168.5.134) to check if 
this node had received the data. 

B. Test Case 2: Getting Data from Database 

In this test case, we checked if records could be removed 
from the database. For this purpose, we tried to read data 
from the first node. 

The following listing shows an excerpt from the resulting 
log file for the first node:  

 
DEBUG 16:53:42,116 range slice 
DEBUG 16:53:42,117 RangeSliceCommand{keyspace 
 =’Keyspace1’, columnfamily=’Standard2’, 
 supercolumn=null, predicate=SlicePredicate( 
 columnnames:[[B@1b7c76]), 
 range=[0,0], maxkeys=1}<somerangesliceoutput> 
DEBUG 16:53:42,191 get slice <somegetsliceoutput> 
DEBUG 16:53:42,203 Reading consistency digest for 1 
 from 606@[192.168.5.134,192.168.5.132] 
 

At first, a range slice was executed; it set the key space, 
the column family and the range. It was followed by a get 

slice, which collected the requested data. An entry reading 

consistency digest in the log file indicated that the 
database was checked for consistency. 

C. Test Case 3: Deleting Data from Database 

In this test case, we checked if records could be removed 
from the database. For this purpose, we tried to delete data 
from the first node. 

The following listing shows an excerpt from the resulting 
log file for the first node:  

 
DEBUG 16:54:04,475 remove 
DEBUG 16:54:04,476 insert writing local key 1 
DEBUG 16:54:04,477 insert writing key 1 to 676@192.168.5.134 
DEBUG 16:54:04,480 Processing response on a callback 
  from 676@192.168.5.134 
 

At first, a remove was executed, following by a local 
write, which set the data values to null. Then a remote write 
was executed, following by a response from the second node 
(192.168.5.134) to check if this node set the data to null. 
Thus, deleting data was somehow similar to adding data. 
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D. Test Case 4: Consistency 

In this test case, we checked if all nodes in the cluster had 
the same view on data even in the presence of updates. For 
this purpose, we added some data to the first node and tried 
to read the data back from the second node. 

The following listing shows an excerpt from the resulting 
log file for the first node: 

 
DEBUG 18:09:55,489 Adding hint for 192.168.5.134  
 <some row mutation operation which adds new data on 
  the first node>  
DEBUG 18:11:29,284 Node 192.168.5.134 state normal, token 

115100908670755235738753006493737225538 
INFO 18:11:29,284 Node 192.168.5.134  state jump to normal 
INFO 18:11:29,284 Will not change my token ownership to 
 192.168.5.134 
INFO 18:11:29,284 Started hinted handoff for endpoint 
 192.168.5.134 <some data mutation operation> 
INFO 18:11:29,385 Finished hinted handoff of 2 rows to 
  endpoint 192.168.5.134 
 

At first, some data mutation was performed. Then a token 
was sent to the second node, following by starting and 
finishing a synchronization process with the second node 
(192.168.5.134) as the endpoint. 

The following listing shows an excerpt from the resulting 
log file for the second node: 

 
DEBUG 16:58:13,064 Node 192.168.5.132 state normal, token 

115100908670755235738753006493737225538 
 <some row mutation operation which adds the changed 
  data of the first node> 
INFO 16:58:13,344 Started hinted handoff for endpoint 

192.168.5.132 
INFO 16:58:13,351 Finished hinted handoff of 0 rows to  
 endpoint 192.168.5.132 
 

At first, the token was received from the first node. Then 
some data mutation was performed, following by starting 
and finishing another synchronization process with the first 
node (192.168.5.132) as the endpoint. After the 
synchronization process had finished, the data on the second 
node were one and the same as on the first node, thus 
indicating that the database was in a consistent state. 

It should be noted that since we wrote data with a 

consistency level of ONE and wanted to get the same data 
back while reading, we read the data with a consistency level 

of ALL.  

E. Test Case 5: Availability 

In this test case, we checked if the database was available 
even in the presence of node failures. For this purpose, we 
disconnected the first node to simulate its failure and tried to 
read data from the second node to see if some copy of the 
data was still available. 

Since data were replicated within a single cluster, they 
were available even after the first node had been 
disconnected. The performance for a read operation became 

half as fast as before. But this was fine for a two-node 
cluster. 

F. Test Case 6: Partition Tolerance 

In this test case, we checked if the database was tolerant 
to partitions in the presence of network failures. For this 
purpose, we disconnected the second node to simulate a loss 
of a network connection between the two nodes and tried to 

write data with a consistency level of ONE to the first node to 
see if that node could still process the write (even knowing 
that data on the second node could not be updated 
immediately). 

The following listing shows an excerpt from the resulting 
log file for the first node: 

 
DEBUG 18:11:29,116 range slice 
DEBUG 18:11:29,117 RangeSliceCommand{keyspace 
 =’Keyspace1’, columnfamily=’Standard2’, 
 supercolumn=null, predicate=SlicePredicate( 
 columnnames:[[B@1b7c76]), 
 range=[0,0], maxkeys=1}<somerangesliceoutput> 
DEBUG 18:11:29,191 get slice <somegetsliceoutput> 
DEBUG 18:11:29,460 Processing response on an async result 
  from 5678@192.168.5.134 
 

As can be seen, the first node performed a write 
operation, thus favoring availability over consistency. An 

entry async result in the log file indicated that the 
second node would not know about interim updates until the 
network connection was restored.  

In our next step, we repeated the same test but with a 

consistency level of QUORUM. Since the first node could not 
communicate with the second node to inform it about interim 
updates, the first node stopped processing the write, thus 
favoring consistency over availability. The cluster became 
read-only. 

G. Test Case 7: Performance 

In this test case, we checked if consistency could be 
achieved without sacrificing performance. For this purpose, 
we ran Test Case 1, Test Case 2 and Test Case 3 with 100, 
1000, 10000 and 100000 data iterations. 

We also experimented with different consistency levels 
to gain extra speed for read or write operations. For example, 
when we ran the tests with 10000 and 100000 data iterations, 
we were more concerned about write performance than read 
performance. Therefore, we wrote data with a consistency 

level of ONE (W=1) and read data with a consistency level of 

ALL (R=N). As a result, each read had to access all copies of 
data to determine which of them contained the latest version 
of data, whereas each write had to update only one copy of 
data. This time when we ran the tests with 100 and 1000 data 
iterations, we were more concerned about read performance 
than write performance. Therefore, we wrote data with a 

consistency level of ALL (W=N) and read data with a 

consistency level of ONE (R=1). 
Figure 1 shows the result of our tests. As can be seen, 

consistency was achieved at expense of performance because 
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of the need for starting and finishing a synchronization 
process every time when the database was updated. 

 

 

 
Figure 1. Performance test results. 

VII. CONCLUSION 

During many years clustered file systems like Gluster 
and (SQL-based) relational DBMSs like MySQL and Oracle 
have been the dominant technologies for providing an 
efficient and reliable data store in cloud computing 
environments. However, with the trend towards cloud 
computing, these systems get new competitors – NoSQL 
DBMSs. One of them is Cassandra, which was evaluated in 
this paper. 

Cassandra was claimed to be particularly well suited for 
cloud computing environments. Our goal was to confirm or 
deny that claim. Towards this goal, we experimented with 
Cassandra. Our experiments showed that Cassandra did offer 
an efficient and reliable data store in cloud computing 
environments, either while favoring availability and partition 
tolerance over consistency or while favoring consistency and 
partition tolerance over availability. 

The result of our experiments was in agreement with the 
CAP (Consistency, Availability and Partition tolerance) 
theorem [11]. This theorem simply states that out of 
consistency, availability and partition tolerance, a distributed 
system can choose to provide two but never three at the same 
time, as shown in Figure 2. For example, relational DBMSs 
typically provide both consistency and availability, but not 
partition tolerance. By contrast, NoSQL DBMSs typically 
provide both availability and partition tolerance, but not 
consistency. 

 

 
Figure 2. CAP theorem [12]. 

 

VIII. FUTURE WORK 

In the future, we are going to increase a number of nodes 
in the cluster. Eventually applying the results of our tests to 
real-world applications is also part of our future work. 
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