
  

 

Abstract—The increasing amount of data collected in the 
fields of physics and bio-informatics allows researchers to build 
realistic, and therefore accurate, models/simulations and gain a 
deeper understanding of complex systems. This analysis is often 
at the cost of greatly increased processing requirements. Cloud 
computing, which provides on demand resources, can offset 
increased analysis requirements. While beneficial to 
researchers, adaption of clouds has been slow due to network 
and performance uncertainties. We compare the performance 
of cloud computers to clusters to make clear the advantages 
and limitations of clouds. Focus has been put on understanding 
how virtualization and the underlying network effects 
performance of High Performance Computing (HPC) 
applications. Collected results indicate that performance 
comparable to high performance clusters is achievable on cloud 
computers depending on the type of application run.  
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I. INTRODUCTION 

Cloud computing provides on demand computational 
resources of the Internet through use of virtualization, 
services and a pay-per-use paradigm. There has been interest 
in applying this computing technology to solve large 
scientific and industrial problems. By drawing resources 
from the cloud, even small research groups can solve these 
problems without investing in large amounts of computer 
infrastructure. However, cloud computing is still a 
developing technology and there have been many concerns 
about the overhead of virtualization and communication 
latency.  

Virtual machines are used in Infrastructure as a Service 
(IaaS) clouds to provide users with dedicated systems which 
share underlying physical hardware. However there is a cost 
to create and maintain these isolated systems, a 
virtualization overhead, which is constantly subtracted from 
a user’s allocated virtual resources [1]. Inconsistent network 
traffic flow also exists in clouds, which is problematic when 
running communication heavy applications [2]. It is in 
response to these issues, that some cloud providers have 
provided compute nodes which utilize hardware found in 
high performance computer clusters [3]. It is claimed that 
these High Performance Computing (HPC) enabled cloud 
nodes are optimized for running HPC applications yet it has 
not been proven in a practical manner. 

This paper shows results of both the investigation of the 

feasibility of running HPC applications on clouds through 
benchmarking and the comparison of these results to cluster 
results. Two practical applications, an embarrassingly 
parallel bio-informatics visualization and communication 
bound N-body physics simulation, were chosen to represent 
classes of parallelization, data and functional parallelization. 
Using these applications HPC enabled clouds, standard IaaS 
clouds and a HPC cluster have been tested and compared. 
Of interest are the effects of virtualization and network 
latency, which have been documented to be the main 
performance issues [1][2].  

The rest of this paper is as follows; Section II describes 
previous cloud benchmarks, their results and short fallings. 
Section III introduces the applications used during the 
benchmark; this is followed by a section introducing each 
computing platform and their specifications. Section V 
describes the methodology taken to setup each machine. 
Section VI presents performance results from the 
benchmarking, which is followed by a section investigating 
execution cost of the Amazon Elastic Compute Cloud (EC2) 
[13]. Finally, a conclusion and future work section is 
presented. 

II. STATE OF THE ART 

There are many advantages in using cloud computing for 
scientific research. For bio-informatics, running sequence 
alignment on the cloud (on a once per experiment basis) 
represents significant savings. Despite the increased range of 
cloud compatible bio-informatics software [4], adoption of 
on demand computing has been slow. Reasons for this slow 
adoption include usability and performance uncertainties [5]. 

A number of recent studies have investigated the 
performance of cloud computers. A solution by Napper and 
Bientinesi [6] runs LINPACK on Amazon Extra-Large 
instances (in both the Standard and High-CPU categories). 
Results indicate that these Amazon instances are not yet 
mature enough for HPC computations. Suggestions are 
made to offer better interconnects or nodes provisioned with 
more physical memory.  

A study done by Indiana University measures the 
virtualization overhead of Xen and Eucalyptus through three 
practical applications (matrix multiplication, k-means 
clustering and the concurrent wave equation solver) Results 
showed a moderate-to-high virtualization overhead when 
running Message Passing Interface (MPI) applications [1].  
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A recent study by W. Guohui and T. S. E. Ng [2] 
investigated the network interconnect of EC2. An 
application called CPUtest was used to measure processor 
sharing, Round-trip Delay Time, Transmission Control 
Protocol (TCP)/User Datagram Protocol (UDP) throughput 
and packet loss. Observed results show abnormally large 
packet delay variations between cloud instances. Unstable 
TCP/UDP throughput was also seen, caused by end host 
virtualization. 

The main criticisms of these studies were addressed by 
Amazon’s recent addition of HPC cluster instances. These 
instances have 10 Gb Ethernet interconnect and more 
physical memory. Limited performance results exist for this 
machine, the most relevant is a LINPACK study run on a 
cluster of Amazon’s EC2 Cluster Compute instances 
(consisting of 7040 cores). Results ranked the Amazon EC2 
cluster 231 on the TOP500 super computer list [7]. 

As seen in the above examples, previous performance 
studies made use of scientific applications, profiling tools or 
LINPACK. Results from these studies indicate there are 
problems when running communication bound applications 
on the cloud. While the LINPACK result from the Amazon 
EC2 cluster instances indicates these problems are resolved, 
the EC2 HPC offering has not been studied through practical 
applications. In addition, cloud setup and cost of running 
scientific applications on the cloud has not been addressed. 

It is because of these short fallings that a cloud 
benchmark is presented. Focus has been put on investigating 
the effects of network speed and virtualization on HPC 
optimized clouds. The financial cost of executing 
applications on the cloud is also examined. By basing this 
study on solving common scientific problems in bio-
informatics and physics, a realistic case can be made for or 
against the use of cloud computing for scientific research. 
Comparisons are made between clouds and the currently 
used high performance clusters in order to quantify results. 

III. APPLICATIONS 

Scientific computing is a source of large scale problems. 
The amount of data collected in the fields of bio-informatics 
and physics has been exceptional, and data analysis can 
exceed the available computational time and storage. Cloud 
computing could be used to support large data analysis and 
solve large problems. A common application from each 
scientific field was chosen; in this way the measurements 
could be applicable to real life problems. This section 
describes the operation of applications used during the 
benchmarking study. 

A. Bio-informatics Application 

A patient’s genome can be screened for cancers before any 
visible symptoms appear, and finding the inflicted subtype 
of cancer can lead to personalized cancer treatments. To 
facilitate these personalized treatments of cancer, signatures 
of cancer subtypes need to be collected. A common bio-
informatics workflow used to find these subtypes involves 
building system models [8]. System models show the 
interaction of genes in a biological system, and are built by 

correlating genes together. Building a system model is an N 
× N problem, given a list of N genes; N correlations are 
required for each gene. This workflow consists of many 
steps including; normalization and filtering of data, 
statistically correlating genes and then visualizing these 
results in a network diagram. 

The system network workflow presented in Fig. 1 makes 
use of data representing the amount of activated genes, also 
known as gene expression, in a biological sample. In order 
to find accurate relationships between genes, collecting both 
trait exhibiting and control expression datasets is necessary. 
Collecting this gene expression data involves multiple 
observations of genes in the biological system of interest. 
During this observation process human error can be 
introduced through uneven handling or scanning of samples. 
Normalization removes this bias by removing background 
noise from signal intensities and standardizing data so that 
distribution remains the same. Normalized data is then 
filtered, reducing the problem set by selecting genes that 
contain large variation. Correlation algorithms are then used 
to find the relationships between genes; commonly used 
correlation algorithms include Pearson’s coefficient and 
Spearman’s rho [9]. 

B. Physics Application 

Data collected by particle accelerators such as 
synchrotrons and the Large Hadron Collider generate 
terabytes of data. By comparing simulations to collected 
results, it is possible to gain a better understanding of the 
laws that govern the universe [10]. We run a simulation of 
two disk galaxies colliding using an astrophysics application 
called GADGET [11]. This application is designed to 
simulate collision-less simulations and smoothed particle 
hydrodynamics on massively parallel computers. GADGET 
uses a combination of a physical mesh and tree based 
algorithms to simulate large range and small range particle 
interactions. 

Before each simulation step, physical mesh data 
decomposition is used to break the simulation area into 

Fig. 2.  3D Representations of the Peano–Hilbert Curve. 

 
Fig. 1.  A Common System Network Workflow. 
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pieces. To achieve equal load balancing, GADGET makes 
use of the Peano–Hilbert curve to map 3D space onto a one 
dimensional curve. The Peano–Hilbert curve (see Fig. 2) is a 
space-filling curve variant which visits every point of a 
square grid. Once calculated, this curve is cut into pieces 
that define the individual domains. After the problem state 
has been reduced, it is distributed to multiple processors. 
Because this decomposition step occurs after every 
simulation step, load on processors are balanced. 

In order to simulate the movement of galaxies the 
gravitational forces operating on close range particles need 
to be calculated. Calculation of force can be simplified by 
treating groups of similar particles as a single entity. In this 
way it is possible to summarize gravitational interactions 
between particles using a single force value. This force is 
calculated by adding together the mass of all particles in an 
area. While this method is quick, it is only accurate when 
particles are far away and will not work when particles are 
close. The accuracy of this method is improved through sub-
division of the starting area. 

IV. INTRODUCTION TO BENCHMARKED PLATFORMS 

One physical machine and three cloud systems were used 
during this benchmarking. Naming conventions of the 
machines are as follows; the cluster is hereby referred to as 
the InfiniBand Cluster, while each cloud is referred to by the 
cloud management interface (vSphere [12], Amazon [13], 
HPCynergy [14] [15]). The vSphere and HPCynergy clouds 
are private clouds whereas Amazon is a public cloud. In 
terms of hardware, these computer platforms were chosen to 
be as similar as possible to each other, when possible 
utilizing the same pool of hardware. Of the four machines 
described below, HPCynergy, the vSphere and InfiniBand 

Cluster use the same hardware; the Amazon machines use 
their own individual hardware. 

Despite the large effort taken to minimize hardware 
differences, some Amazon instances differ in the amount of 
cores per processor. Because of this variation, each process 
was mapped to a single core and when possible a single 
node. To validate the mapping process CPU usage was 
monitored during data collection, for example a duel core 
system with a single process would be using 50% capacity. 
This methodology was chosen as it is similar to that used by 
the cloud computers, in that virtual machines are mapped to 
physical hardware. 

Three Amazon instance types [3] were tested; Small, 
Large and Cluster. It has been documented that Amazon 
uses a modified version Xen as the hypervisor. In each case 
the Amazon Elastic Block Store (an Amazon service which 
provides persistence storage of virtual hard-drive) was used 
to store the state of the deployed virtual machines. Amazon 
measures the performance of CPU’s in Amazon Compute 
Units (ACUs); this is equivalent to an Intel Xeon chip. Each 
Amazon Small Compute instance contained 1 ACU and 1.7 
GB RAM. Large instances contain four ACU and 7.5 GB of 
RAM. The Amazon Cluster Compute instances contain two 
Intel “Nehalem” quad-core CPU running at 2.98 GHz and 
26 GB of RAM. 

The second cloud used in this benchmarking was based 
on VMware virtualization technology. This private cloud 
made use of the same physical machines as the InfiniBand 
Cluster. A ten node virtual cluster was deployed through this 
VMware cloud, each with duel core processors running at 
2.33 GHz. A 10 GB InfiniBand network was used to provide 
inter-node communication. VMware vSphere is used as the 
management software providing the ability to create, deploy 
and access virtual machines.  

TABLE I 
LIST OF BENCHMARKED COMPUTER PLATFORMS 

Names Nodes Hypervisor Platform Hard Drive CPU RAM Network Interface 

Amazon 
(Cluster) 

8 Modified Xen: 
HVM 

64-bit 
CentOS 

Elastic Block 
Store 

2 x Intel 
quad-core Nehalem 

(2.93 GHz) 

23 GB 10Gb 
Ethernet 

Web-based 
console. 
SSH. 

Amazon 
(Large) 

17 Modified Xen: 
Paravirtual 

64-bit 
Ubuntu 9.10 

Elastic Block 
Store 

2 x  Xeon equivalent  
(2.2 GHz) 

7.5 GB High I/O Web-based 
console. 
SSH. 

Amazon 
(Small) 

17 Modified Xen: 
Paravirtual 

64-bit 
Ubuntu 9.10 

Elastic Block 
Store 

2007 Xeon 
equivalent 
 (1.6 GHz) 

1.7 GB Low I/O Web-based 
console 
SSH. 

vSphere 
Cloud 

10 VMware 64-bit 
Ubuntu 9.10 

Separate 
Drives 

2.33 Ghz 
Intel Duel Core 

2 GB InfiniBand 
10Gb 

Web-based 
console,  
SSH. 
Remote Display. 

InfiniBand 
Cluster 

10 None 64-bit 
CentOS 

Shared 
Drives 

2.33 GHz 
Intel Quad Core 

Duo 

8 GB InfiniBand 
10Gb 

SSH. 

HPCynergy 20 VMware 64-bit 
CentOS 

Shared 
Drives 

Virtual: Hexa-cores 
(2.33 GHz) 

 
Physical: Dual 

Quad Cores 

8 GB InfiniBand 
10Gb 

Web Interface. 
Web Service. 
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The third cloud used in this benchmarking was 
HPCynergy [14]. HPCynergy is a HPC cloud solution 
developed at Deakin University which incorporates a 
publishing service and broker. This cloud platform exposed 
VMware virtualized nodes running on the InfiniBand 
Cluster. A total of seventeen compute nodes were utilized 
through HPCynergy, each node containing a hexa-core 
processor running at 2.33 Ghz. A 10Gb InfiniBand network 
provided inter-node communication. 

The InfiniBand Cluster used in this benchmarking is a 
bare-metal system consisting of 10 nodes each with an Intel 
Quad Core Duo processor running at 2.33 GHz. Each node 
utilizes 8 GB of RAM and runs a 64-bit version of CentOS 
to take advantage of this amount of RAM. As a machine 
dedicated to HPC, nodes are connected using 10 GB 
InfiniBand and a mounted network drive allows users to 
easily setup MPI applications. In terms of CPU speed and 
RAM size, this machine is equivalent to the documented 
specification of the Large Amazon instance. This machine 
differs from the Amazon instance having a faster network 
interconnect. Specifications of all platforms used in the 
following benchmarking are summarized in Table I. 

V. SETTING UP THE CLOUD: METHODOLOGY 

Setting up computer resources for High Performance 
Computing is both a time consuming task, and one that 
serves as an interruption to research. While the InfiniBand 
Cluster used in these benchmarking could be used once code 
had been compiled, the Amazon and vSphere clouds 
required modification to enable HPC. The HPCynergy cloud 
solution aims to reduce setup time by exposing systems 
which have middleware already setup. 

Amazon and vSphere clouds required a number of steps 
including; transferring source code, configuring the 
compiler’s dynamic linker, compiling the source code and 
any dependencies, configuring the sshd client, generating 
public and private keys, passing public keys to all nodes and 
creating a machineFile for MPI. The above steps were not 
required when setting up HPCynergy due to its unique 
interface. Like other clouds, HPCynergy monitors and acts 
as a broker to linked (physical and virtual) hardware. 
However instead of hiding the state and specification of 
hardware from the users, the opposite approach is taken. 
Users are informed of the software and underling (virtual) 
hardware specifications of each machine. This allows jobs to 
be optimized to the CPU architecture as well as minimizing 
the need to install specific libraries. 

Some clouds had limitations which required additional 
setup time. The vSphere system did not contain any VM 
templates thus installation of the Ubuntu OS was required 
before operation. While all Amazon EC2 instances used in 
these benchmarks did not have common utilities such as the 
g++ compiler, the g77 compiler, vim or zip. Software 
compilation was more time consuming on the cloud systems. 
Missing library dependencies and compiler specific code 
meant that software would often fail during compilation. 

Once each system was setup, input data and generated 
results had to be transferred from the user terminal to the 

cloud. Table II shows the total input/output transfer time and 
data size for each benchmarked system. For each 
benchmark, a total of 300 Mb was transferred between 
computers. Private clouds completed upload and download 
within seconds, however public Amazon clouds took many 
minutes. Results indicate that the time taken for data transfer 
is not just dependent on data size and network speed. Xen 
virtualization and differences in cloud interconnects can 
explain the variation between Amazon transfer times [3]. 

VI. BENCHMARKING 

Comparisons made between collected results highlight the 
effects of virtualization and network latency of specific 
cloud platforms for high performance scientific computing. 
HPCynergy and Amazon’s Cluster compute claim to address 
many of these weaknesses [3], [14]. HPCynergy is a 
software based solution while Amazon makes use of faster 
hardware. Benchmarking is used to prove that these HPC 
cloud platforms are feasible in regards to performance. To 
test performance, the system biology pipeline (Section III.A) 
and GADGET application (Section III.B) were run on a 
number of commercial cloud solutions, dedicated clusters, as 
well as virtual nodes discovered and used via HPCynergy. 
To ensure optimal performance, before analysis, input data 
was transferred to the local file system of each machine. 

A. Bio-informatics Benchmarking 

Performance of the system biology pipeline (described in 
Section III.A) was recorded from five machines, the Small 
and Large Amazon virtual clusters, the private vSphere 
cloud, the HPCynergy cloud and the InfiniBand Cluster. 
Results for each machine were measured up to four nodes; 
each test was run three times in order to ensure the validity 
of results. 

As seen in Fig. 3, results show an almost linear increase of 
performance to available resources; this is expected as most 
of the system network workflow is embarrassingly parallel. 
When compared to physical hardware, the VMware based 
cloud shows a noticeable increase in required computational 

TABLE II 
TOTAL DATA TRANSFER TIME 

Computer 
Platforms 

Input 
(Min) 

Input  
Data Size 

Output 
(Min) 

Output 
Data Size 

Amazon 
(Cluster) 

 

3.8 85.2 Mb 4.3 231.2 Mb 

Amazon 
(Large) 

 

5.5 85.2 Mb 5.8 231.2 Mb 

Amazon 
(Small) 

 

6.8 85.2 Mb 23.8 231.2 Mb 

vSphere 
Cloud 

 

0.2 85.2 Mb 0.4 231.2 Mb 

InfiniBand 
Cluster 

 

0.2 85.2 Mb 0.4 231.2 Mb 

HPCynergy 
 

0.2 85.2 Mb 0.4 231.2 Mb 
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time. It is likely that this increase is due to virtualization 
overhead, in which part of the CPU is constantly being 
delegated to simulate the specified environment. Additional 
cloud services may also be responsible for decreased 
performance; this is seen in the HPCynergy platform which 
makes use of the same resource pool as the VMware cloud. 
When compared to the vSphere cloud, average performance 
is improved by 16%. The simple interface of HPCynergy 
allows for this improved performance, but it is not 
streamlined enough to match the physical hardware. 

Additionally, collected results show an interesting 
relationship where the quicker a job runs the closer cloud 
performance matches physical hardware. This is due to 
virtualization overhead being distributed over many nodes. 
In the system biology pipeline, once job execution time 
became less than 35 minutes, virtualization overhead of 
clouds were indistinguishable from clusters. 

In conclusion, different hypervisors and cloud service 
implementations have varying effects on performance. 
Amazon which uses a modified Xen hypervisor is very close 
to physical hardware, while the vSphere cloud which makes 
use of VMware virtualization suffered the most overhead. 
This virtualization overhead is minimised as jobs are spread 
across nodes. 

B. Physics Benchmarking 

The Small, Large and Cluster Amazon EC2 clouds, the 
private vSphere and HPCynergy clouds and an InfiniBand 
Cluster (see Section IV for extended specification details) 
were also utilized for the physics benchmarking. 
Benchmarking made use of full machine capacity, tests 
running up to 17 nodes. Each point was run three times in 
order to ensure the validity of results.  

The results from this benchmarking can be seen in Fig. 4. 
As seen in the physical hardware results, the ideal 
performance of this GADGET benchmarking is a constant 

decrease as more compute nodes are added. The vSphere 
cloud, which runs on the same hardware, shows this shape 
with a similar offset seen in the bio-informatics study 
(Section A). Despite utilizing the same pool of resources and 
hypervisor, the HPCynergy solution sees an average 
performance improvement of 16% compared to the vSphere 
cloud. It is this simple interface of HPCynergy that allows 
for the improved performance results, but it is not 
streamlined enough to match the performance of the 
physical hardware. 

Performance of the Amazon EC2 cloud varies depending 
on the instance type chosen. Performance of the Amazon 
Small instance shows a sharp computational increase at 2 
nodes before performance becomes optimal at 3 nodes. The 
Amazon Large instance with higher I/O shows a similar 
early computational spike before optimizing at 5 nodes. 
Both the Small and Large Amazon EC2 cloud instances 
show an increase in computation time as more nodes are 
added past this optimal performance threshold. This 
relationship is an indication of a communication bottleneck, 
where each node is spending more time communicating then 
processing. Amazon’s recently added Cluster Compute 
instance [13] has been optimized for running computation 
heavy applications. The performance of this instance shows 
a decrease in execution time mirroring other high speed 
clusters. This optimal performance is only guaranteed when 
allocating cluster instances at the same time. Because of this 
requirement the user loses one of the biggest draws to the 
cloud, the ability to elastically scale their applications. 

Unlike the system biology problem presented in Section 
III.A, this N-body algorithm requires communication 
between nodes. Collected results from Amazon show that 
performance is not necessarily linked to amount of machines 
used. When running communication based applications, it is 
important that load is balanced between nodes and that 

 
Fig. 3.  IaaS Cloud Performance Comparison: Biological System Networks. 
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communication is minimized. If each node is 
communicating more than it is processing, the computation 
time will increase as resources are added. Cloud computers 
resources are highly distributed and performance of 
communication heavy applications can vary depending on 
the network architecture and the location of machines that 
have been allocated to the user. 

VII. COST INVESTIGATION 

One of the big draws to the cloud is hardware scalability. 
Running a single machine for 5 hours costs the same as 
running 5 machines for 1 hour. Theoretically, this means the 
cost running an application should be the same regardless of 
time. This however may not be the case. Fig. 5 presents the 
cost per execution time of the Amazon instances run during 
the benchmark. 

In terms of cost, the embarrassingly parallel bio-
informatics application was the most efficient. While 
originally under-performing, the expected cost stabilization 
does occur in both the Small and Large Amazon instances at 
5 nodes. Results from the physics benchmark did not show 
this trend. Running GADGET on the Small Amazon 
instance was wasteful, performance decreasing with each 
dollar spent. The large and cluster instances showed 
performance improvements with cost, the cluster instance 
scaling more consistently. 

In conclusion, embarrassingly parallel applications are 
well suited to the pay on demand cloud model. Results show 
that execution time can decrease while maintaining the same 
total cost. Communication bound applications are not as cost 
efficient. Collected results show inconsistent performance 
per node and inconsistent cost-performance ratios. The main 
problem when utilizing the cloud for communication bound 
HPC applications is this performance unpredictability. Even 
the cluster instance, which showed the most consistent 

improvements did not show any hint of eventual cost 
stabilization.  

VIII. CONCLUSION AND FUTURE WORK 

The results presented in this paper show that even 
standard public and even more private clouds can achieve 
performance similar to that of dedicated HPC clusters 
depending on the class of problem. When running 
embarrassingly parallel applications a near linear speed up is 
achievable and the results are comparable to those achieved 
on a cluster.  

Clearly the effects of virtualization vary with the type of 
hypervisor used; Xen seems to have minimal performance 
effect on computation while VMware is noticeable. When 
running communication bound applications performance 
results vary. On the clouds with slow network speeds the N-
body application achieved maximum performance at 5 nodes 
and then required compute time steadily increased due to 
communication overhead. The two clouds with HPC 
hardware (Amazon Cluster Compute instance, HPCynergy 
and VMware) showed the same decreasing performance 
trend as the InfiniBand Cluster. These performance results 
indicate that communication bound applications should be 
run only on clouds which provide high speed interconnect. 

While some performance issues have been resolved, cloud 
setup is difficult and time consuming. A user must construct 
a virtual cluster and install analysis software. This setup 
process often starts through modifying of a pre-existing 
template. Templates can be difficult to utilize as they are 
often not documented, missing common dependencies 
(compilers, text editors, etc.) and may have a range of 
security access setups. 

Benchmarking showed that transferring data to public 
clouds was a major issue. Compared to local clouds and 
clusters, public clouds increased data transfer requirements 

 
Fig. 4.  IaaS Cloud Performance Comparison: N-body Simulations. 
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by a factor of 25. This is problematic as the scientific 
applications described in this paper can make use and 
generate gigabytes of experimental data. At first glance the 
large transfer times are merely an artefact of the physical 
distance between cloud storage and user terminal. However 
collected data transfer results show significant variation 
between Amazon Cloud instances. This indicates that 
differences in cloud interconnects is also a concern, cloud 
storage and cloud instances often being separated. It is 
hoped that the adoption of faster broadband technologies 
should remove much of this data transfer delay. 

Future work is planned to investigate the performance of 
clouds when running a wide range of applications. Of 
interest are other bio-informatics applications including; 
protein simulation and sequence alignment. With increased 
data, these applications will have profound effects in the 
fields of medicine and drug discovery. 

It is also important to devise algorithms that take 
advantage of the cloud platform. To obtain maximum 
benefit from clouds, these algorithms must scale to large 
amounts of data and compute nodes while integrating 
solutions to minimise data transfer. It is possible to reduce 
the amount of input data by devising analysis methods 
which use compressed data. Another possibility is to devise 
cloud workflows which utilize the power of the user’s 
desktop computer to perform data filtering and pre-
processing. Currently we are investigating ways to stream 
data to the cloud; this allows faster processing turn-around 
(by minimizing idle compute time). 
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