
A Service-Level Agreement Approach Towards Termination Analysis of
Service-Oriented Systems

Mandy Weißbach and Wolf Zimmermann
Institute of Computer Science, University of Halle

06120 Halle (Saale), Germany
Email: {weissbach, zimmermann}@informatik.uni-halle.de

Abstract—Classical approaches for program analysis as,
e.g., termination analysis usually do not take into account
modern software approaches such as service-oriented systems
or cloud computing. Instead, they have a monolithic view on
the software system as a single completely available program.
As first step to enable such analyses also in a service-
oriented or cloud computing context, respectively, this paper
considers termination. Since termination is a service quality
attribute, we consider a service-level agreement approach
that allows dynamic bindings to software services. In contrast
to many other service-level agreements, termination is a
binary attribute that cannot be measured quantitatively (as,
e.g., reliability or response time). The proposed approach
shows how clients of services can verify the information
provided by the services.

Keywords-Termination; Software Services; Service Level
Agreement; Verification.

I. INTRODUCTION AND MOTIVATION

The vision of cloud computing is (among others) that
there are numerous software services in the cloud that
can be used by clients to fullfil their functionality. These
services are functionally equivalent in the sense of the
context of the client. However, they might differ in their
non-functional properties. Thus clients may negotiate ser-
vice level agreements on non-functional properties such
as, e.g., reliability, availability, response times, etc. The
literature on service-oriented computing and cloud com-
puting offers already numerous techniques that clients
may monitor these quality attributes, see, e.g., [1] for
an overview. However, there are other service quality
attributes such as, e.g., termination of the services and/or
the client, robustness (i.e., neither the service nor the client
aborts due to uncaught exceptions), or absence of dead-
locks. In contrast to the above mentioned service quality
attributes, these attributes have a binary character: either
the services or clients satisfy the quality attribute or not.
In this work, we consider in particular the termination of
software services and the clients using software services.
Petri-Net based approaches towards deadlock analysis are
usually based on termination of the services [2]–[4].

Remark: At first glance, it seems that there is no
need for a termination analysis in service-oriented systems
(except possibly for deadlock analysis) because one might
think that after a certain time the client might switch
to another, functionally equivalent, service in the cloud.
However, there are situations where this approach cannot
be applied. First, the approach doesn’t work if none of
the functionally equivalent services has (for the client)

satisfactory quality attributes. In this case the chosen
service becomes the single candidate and its termination
is an important property for the client. A second reason
is the choice of the time period: If the period is fixed to
just a few seconds or minutes, this might be a reasonable
approach. It might work well in business applications.
However, in scientific computing or bioinformatics there
are computation intensive applications and if these are
offered as services they might run for hours or days.
Fixing the time period to a few seconds or minutes implies
that any functionally equivalent service fails to be finished
within this time. On the other hand, it doesn’t make sense
to switch after a few hours or days to another service
that possibly requires even more execution time than the
originally chosen service. Thus, in these situations it is
better to know that the service terminates and will deliver
an answer. Third, a termination proof for clients may
require information on the effect on results of services
being called, e.g., their size. This size change information
must also be included in the analysis and has a rather
different character than simple termination. �

The techniques that enable the clients to check whether
service-level agreements are obeyed cannot be applied
in the context of binary quality attributes. Consider for
example termination: if a client has not yet a response
from a service, the client cannot conclude that the service
doesn’t terminate. The service might respond within the
next second. On the other hand, the client cannot reason
on its own termination behaviour without provision of
adequate information from the services. This information
must be correct. Thus, the challenge is how the client
can verify that the requested information is correct. The
situation becomes even more difficult if a client uses a
service A and the service A uses a service B, etc. In this
case termination of the client may indirectly depend on
service B and service A needs to request information on
termination of B as well as additional information to prove
its termination.

In this paper, we assume that there are no recursive call-
backs, i.e., recursion over service boundaries are excluded.
Furthermore, in order to use well-known termination anal-
ysis approaches, we exclude service-internal parallelism
since this is still an open issue in classical termination
analysis. Thus, we tackle in this paper termination analysis
of service-oriented systems in dynamically changing envi-
ronments where recursive call-backs and service-internal
parallelism is being excluded.

26

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

The paper is organized as follows: Section II intro-
duces into classical termination analysis. The following
Section III shows how this approach can be extended in a
service-oriented or cloud computing context, respectively,
using a service-level agreement approach. In Section IV,
we show how clients can verify the results by combining
the approach of Section III with approaches used for
verification of Web pages. Section V discusses related
work and Section VI concludes this work.

II. TERMINATION ANALYSIS

Although termination of programs is undecidable
(known as halting problem), there is a lot of work on
conservative analysis of program termination. A conser-
vative termination analysis guaruantees termination in the
case of a positive answer. However, a negative answer may
be false. It should be interpreted as termination cannot be
proven. Thus, termination analysis does not implement the
halting problem but it only provides a one-sided solution
(similar to model checking) . The following discussion
shows that there are a number of works (it just mentions
the most important ones) on termination analysis. Each of
them is conservative and assume that the whole program
to be analyzed is available to them.

The first works on termination analysis or the related
field of automatic complexity analysis go back to [5] for
pureLisp programs. This was generalized to first-order
functional languages [6] and to object-oriented imperative
programs [7], [8]. Works on automatic complexity analysis
as well as on termination analysis are based on the notion
of a termination function. This is a function from program
states to natural numbers that strictly decreases when
executing the body of loop or when a procedure is called
recursively. Since there is no infinite descending chain
in the natural numbers, a termination function ensures
loop or recursion termination, respectively. More recent
work on termination analysis focuses on automatic deriva-
tion of termination functions, which is often called the
size-change principle, cf. [9]–[12]. Instead introducing
into these methods, we informally demonstrate termina-
tion analysis by the example in Figure 1. In a service-
oriented architecture the four classes will be considered
as services (implemented by web services, cf. Figure 2.
Calendar contains to public procedures first() and
next(Month month) which together can be used to
iterate over all 12 months of a year. The class List
is a classical list implementation with a sentinel empty.
MSales has access to a customer database. The procedure
sales(Month month, Year year) uses this cus-
tomer database to calculate the sales of month month in
year year. Procedure sales(Year year) calculates
the sales of year year by summing up the sales of all
months of year.

Suppose the termination of procedure YSales.sales
has to be analyzed. Note that all the steps (except possibly
the provision of terminations functions which have to
annotated) can be performed automatically according to
the above mentioned works.

class YSales {
private Msales msales;
public int sales(Year year) {
Month month=Calendar.first();
int sum=0;
while (month!=Month.complete) {

int amount=msales.sales(month,year);
sum += amount;
month=Calendar.next(month);

}
return sum;

}
}
class Calendar {

public Month first() { return Month.jan; }
public Month next(Month m) {
if (m==Month.jan) return Month.feb;
· · ·
if (m==Month.dec) return Month.complete

}
}
class MSales {
private static CustomerDatabase db;
public int sales(Month month,Year year) {

List cl=db.getCustomers(month,year);
int sum=0;
while (cl!=List.empty) {
int amount=cl.hd();
sum += amount;
cl=cl.tl();

}
return sum;

}
}
class List {
private int head;
private List tail;
static List empty=new List();
public int hd() { return head; }
public List tl() {
return (tail==NULL?empty:tail);

}
}

Figure 1. Sales-Example

Step 1 Analyze each non-recursively called procedure for
termination:

Since this procedure calls procedures MSales.sales,
Calendar.first, and Calendar.next, these pro-
cedures have to be analyzed for termination.
Step 2 Analyze each loop and each recursively called pro-
cedure for termination by deriving/introducing an adequate
termination function:

The loop termination of the loop in YSales.sales
apparantly depends on the variable month. The termina-
tion function ϕ defined by

ϕ(month) , 13− sz (month) (1)

where sz (month) is the number of the month (i.e.,
sz (Jan) = 1, sz (Feb = 2), etc. and sz (complete) =
13) proves termination. This is because

ϕ(next(month))) = ϕ(month)− 1 (2)

(2) can be derived by determining a size change func-
tion for next with the notion of size defined by
(1), i.e., a function ϕ next : N → N such that
ϕ next(ϕ(month)) = ϕ(next(month))).
Step 3 Determine the necessary size change functions for
procedures:

By a simple case analysis it can be determined that
ϕ next is defined by ϕ next(n) = n − 1 thereby
proving that the termination function ϕ decreases by 1
during loop termination.

27

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

������

sum =sum+amount

reply sales,sum()

= getCustomerscl
sum=0

invoke

MSALES

receive

cl= invoke

sales sales

first

first

next

next

receive
reply(

receive

if)

CALDR

YSALES

receive
reply(

LIST

hd tl

hd tl

if
receive
tl==nil

else

(sales,month,year)

(month,year)

(LIST,)hd,clamount=

)tl,cl(LIST,

while cl !=empty

hd,cl.amount
hd,cl()

)

(tl,cl)
then cl=empty

cl=cl.tail
tl,clreply()

receive
=month

=0sum

sum=invoke
= +amountsum

month
sum
=invoke

(sales,year)
(CALDR,invoke first)

(MSALES,sales,month,year)

(CALDR,next,month)

while month !=complete

reply(sales,sum)

first()
first,

next,month(

Jan)

)
if month== Jan then reply (next,Feb)

month== Decthen reply (next,complete

Figure 2. A Service-Oriented Architecture for the Sales Example

The termination of Calendar.first and
Calendar.next can be derived directly as they
neither contain a loop nor a procedure call. The
termination analysis for MSales.sales must follow
the same approach as mentioned above:
Step 1: The procedure MSales.sales calls procedure
CustumerDatabase.getCustomers, List.hd,
and List.tl. The latter two terminate since they
neither call a procedure nor contain a loop. The former
terminates since it executes a database query (not shown
in Figure 1).
Step 2: The termination of the loop in MSales.sales
depends on the length of the list cl, i.e., the termination
function is recursively defined by

ψ(cl) ,

{
0 if cl = NULL

1 + ψ(cl.tail) otherwise
(3)

This termination function requires the determination of the
size change function ψ tl : N→ N such that

ψ tl(ψ(cl)) = ψ(tl(cl)) (4)

Step 3: The analysis yields that ψ tl(n) = n − 1
which completes the proof of termination of the loop in
MSales.sales

In a nutshell, the termination argument for
YSales.sales is as follows:

• YSales.sales terminates because each procedure
called in the body terminates and the loop terminates

• The loop terminates because (1) is a termination
function

• ϕ is a termination function because of (2) which
proves that ϕ strictly decreases after executing the
loop body

The steps presented in this section can be formalized as
proof rules (see [14] for a short summary). These rules are

usually the formal basis for the correctness of termination
analysis. If the proof succeeds the program terminates.
However, a program may terminate althoug a termination
analysis cannot find a proof.

III. AN SLA APPROACH FOR TERMINATION ANALYSIS

The goal of this section is to apply the approach of Sec-
tion II in a service-oriented context. It is demonstrated by
the service-oriented architecture shown in Figure 2 which
corresponds to the example in Figure 1 and is implemented
by three web services MSALES (with interface sales),
LIST (with interfaces hd and tl), CALDR (with interfaces
first and next), and a client YSALES.

Note that the implementations of the web services are
not known to their clients. Thus, a termination anal-
ysis cannot directly follow the approach as described
in Section II. In particular, Step 1 cannot analyze the
termination of services being called but it must rely
on the information of the termination provided by the
called service. For example the invocation of the services
CALDR.first , CALDR.next , and MSALES.sales require
termination, and the providing web services must know
this information. Note that the client YSALES is not aware
of the fact that the termination of MSALES.sales depends
on the termination of LIST.hd and LIST.tl . Furthermore,
in order to proof termination of the loop in YSALES, the
service CALDR must provide a strictly decreasing size
change function for next . The decision whether it must be
decreasing or increasing, or how fast it must be decreasing
or increasing for proving termination depends on the loop
body.

Thus, in a service-oriented setting, a client needs to have
the following infomation when it analyzes its termination:

• The information on the termination of each service
called

28

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

public key:
private key: s

k

analyze

Certified

Program Analysis

PA

info

f

WS

Client Web Service

Figure 3. Verifiable Program Analysis Information

• Adequate context-dependent size change functions
for those services whose calls influence termination
of loops or recursive calls.

While the first information can be provided by the web
service providing a called service, the latter must be
individually requested by the client while analyzing the
termination behaviour of the client. In both cases, the
client relies on the correctness of the information provided
by the web service.

IV. CERTIFICATION OF INFORMATIONS PROVIDED BY
SOFTWARE SERVICES

A problem with the approach in Section III is the
validity of the information on termination of services
as well as the validity of the size change function. In
contrast to quantitative properties such as, e.g., reliability,
availability, or response time, the client has no possibility
to check a service level such as termination or the validity
of size change functions. We first present an approach that
considers basic web services, i.e., they don’t use other Web
Services. Then, we extend the approach to web services
using other Web Services where the use-relation is acyclic.

A. Basic Web Services

Figure 3 shows an approach that may solve this prob-
lem. First, a certified program analysis service PA is
needed for the analysis of the web service. Second, a
public-key infrastructure is needed for enabling the client
to verify the results of the analysis. The program analysis
service PA must be known to the client as a certified anal-
ysis tool. With this infrastructure, a termination/program
analysis as discussed in Section III can be implemented
such that the client can verify the results from the web
service WS:
Step 1: The client requests from web service WS via the
service info information on the termination or size change
of f (as discussed in Section III).
Step 2: Web service WS encrypts its source text with the
public key of the certified program analysis service PA
and sends it via the interface analyze together with the
requested analysis to PA.

Step 3: The certified program analysis service PA decrypts
the source text of WS with its private key s, performs the
requested program analysis, signs the result with its private
key s, and returns the signed result to WS.
Step 4: Web service WS returns the signed result to
the client together with the public key k of the certified
program analysis service PA.
Step 5: The client can decrypt the information with the
key k and since the key k is unambiguous, it can verify
that the information is obtained by the certified program
analysis service PA.

With this approach, the client can verify that the
certified program analysis performed its analysis. The
encryption in Step 2 is needed because implementers of
web services don’t want to publish their implementation.
With the encryption, the source text is only available to
the certified program analysis service PA.

For this approach, the trusted base is certainly the
certified program analysis service PA. However, it is not
guaranteed that PA really analyzes the source text of WS.
A malicious web service WS might send another source
text whose analysis results errorneously indicate the client
termination or provides an adequate size change function.
Currently, we are not aware of a technology that ensures
that the WS sends the correct source text to PA.

However, it is possible to make it more difficult for WS
to be malicious by keeping the analysis request secret to
WS. This can be achieved changing the protocol of the
SLA: The client first notifies WS that it wants to perform
a program analysis. Then WS returns a public key k of a
certified program analysis service PA. The client can use k
to verify that PA is indeed certified. Finally, the analysis
request is encrypted with k. The above implementation
needs only to be changed at Step 3 where the analysis
request must be decrypted. If we trust PA and the public
key infrastructure, then it is impossible for WS to decrypt
the analysis request.

B. Composed Web Services

The approach in Section IV-A doesn’t consider the
situation as shown in Figure 4. Web service WS1 uses as a
client web service WS2 and the client is not aware of this
usage. Thus, the termination analysis (or other program
analyzes) of WS1 requires the analysis of WS2 (including
possibly the analysis of size change functions).

For the termination analysis or the analysis of size
change functions of WS1’s service, web service WS1 acts
as a client of web service WS2. Hence WS1 negotiates
termination and size change functions with WS2 as de-
scribed in Section IV-A. However, this information is
needed by the certified program analysis. For example,
if the program analysis requires for the termination of
f information on the termination of g or a size change
function for g where g is an external service call of
WS1, then this information is passed to WS1 via the
interface painfo (encrypted with the public key k1 of WS1

for security reasons). Service WS1 decrypts the analysis
request and passes it as described in Section IV-A to WS2.

29

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

public key:
private key: s

k

Certified

Program Analysis

PA

info

f

Client Web Service
WS2

public key:
private key:

k1

s1

Web Service
WS1

analyze

info

g

painfo

Figure 4. Program Analysis on Composed Web Services

Then, WS2 returns the information on termination of g or
the requested size change function for g, respectively. In
contrast to the approach in Section IV-A, the result is not
decrypted and verified by WS1. Instead it is passed to
the certified program analysis (as the return value of the
service info of WS2) and the certified program analysis
verifies whether the analysis results for g can be trusted.
Note, that this approach does not require that WS2 uses
the same program analysis service as WS1.

Apparently, with this approach WS2 may use a web
service WS3, etc. However, the approach is limited to
acyclic architectures. Otherwise, the termination analysis
itsself would run into an infinite loop which practically
would have the same effect as a Denial-Of-Service attack
to the services.

V. RELATED WORK

There is a need for program analysis of service-oriented
systems. Canfora, et al. [13] states it as a key chal-
lenge for software reverse engineering. Currently, there
are not many works on program analysis of service-
oriented systems – in particular we are not aware of any
work on termination analysis of service-oriented systems
except [14]. This work is based on interface descriptions
of web services containing termination information and
size change function. Furthermore, it doesn’t verify the
information provided by the interface descriptions.

One of the few works considering program analysis
is [15], [16]. They consider response time in terms of
some notion of input size. Information on response time
is provided by the web service interfaces. Their approach
generalizes the approach of [17] for the analysis of soft-
ware complexity of BPEL processes towards response
time. For invocations of other services [15], [16] use
the information provided by the corresponding service
descriptions. However, they don’t verify this information
and it seems that size change functions play no role in
their approach.

For functional verification of web service contracts,
[18] discusses a similar approach using a public key
infrastructure. Apparently, contracts should be part of web
service interface descriptions and are not part of service-
level agreements. In contrast to our approach, they require
that the analyzers are located on the same machine as the
service implementations, respectively. This one-platform

approach allows to take into account the operating system
and the compiler.

VI. CONCLUSION AND FUTURE WORK

This paper has presented a termination analysis of
service-oriented systems in a dynamic changing environ-
ment. This goal was achieved by using an SLA approach.
It was shown that the service has to provide two kinds
of informations: its termination and size change functions
requested by the client which enables the client to prove
its termination. In contrast to quantitative service qual-
ities, these informations cannot be verified by the client.
Therefore, a certification process similar to the verification
of web pages has been added in order to ensure that the
information has been derived from certified tools.

One property of the approach is the violation of the
black-box paradigm of services because they must offer
their source to a program analysis service. However, we
consider such program analysis services as a trusted in-
stitutions (analogous to institutions certifying web pages).
In any case, the clients never see implementation details
of the used services.

Our approach may be used for the analysis of other
binary quality attributes which can be verified by pro-
gram analyses or model checking approaches. Currently,
it excludes cycles in the architecture, i.e., there are no
recursive call-backs. Such cycles would lead to an infinite
loop while negotiating the service-level agreement. We
also assume that the services have no internal parallelism.
The next steps will be to drop these assumptions and to
consider other binary quality attributes.

Another challenge is to prevent malicious analysis re-
sults from the web service to be analyzed. As pointed out
in Section IV, a web service may send the wrong source
text to the program analysis service. We have presented
an approach that keeps the requested analysis secret to the
web service but this only makes it more difficult to the web
service to cheat. A secure approach must enable the client
to verify that the source text given to the program analysis
service is identical to the source text of the web service.
A possible solution might be that the web service signs
its source text with its digital signature when sending it
to the program analysis. In this case, at least liability is
possible if the wrong source text was sent.

ACKNOWLEDGMENT

The authors would like to thank the anonymous review-
ers for their helpful comments.

REFERENCES

[1] K. Candan, W. Li, T. Phan, and M. Zhou, “Frontiers in
Information and Software as Services,” in IEEE Interna-
tional Conference on Data Engineering. IEEE, 2009, pp.
1761–1768.

[2] W. M. P. van der Aalst, “The application of Petri nets to
workflow management,” The Journal of Circuits, Systems
and Computers, vol. 8, no. 1, pp. 21–66, 1998.

30

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

[3] W. M. P. van der Aalst, A. P. Barros, A. H. M. ter Hofstede,
and B. Kiepuszewski, “Advanced workflow patterns,” in
CooplS ’02: Proceedings of the 7th International Confer-
ence on Cooperative Information Systems. London, UK:
Springer-Verlag, 2000, pp. 18–29.

[4] W. Reisig, “Modeling- and analysis techniques for web
services and business processes,” in In FMOODS, 2005,
pp. 243–258.

[5] B. Wegbreit, “Mechanical program analysis,” Communica-
tions of the ACM, vol. 18, no. 9, pp. 528 – 539, 1975.

[6] W. Zimmermann, Automatische Komplexitätsanalyse
funktionaler Programme, ser. Informatik-Fachberichte.
Springer, 1990.

[7] H. Schmidt and W. Zimmermann, “Reasoning about com-
plexity of object-oriented programs,” in Programming Con-
cepts, Methods and Calculi, ser. IFIP Transactions, E.-R.
Olderog, Ed., vol. A–56, 1994, pp. 553–572.

[8] H. Schmidt and W. Zimmermann, “A complexity calculus
for object-oriented programs,” Journal of Object-Oriented
Systems, vol. 1, no. 2, pp. 117–147, 1994.

[9] A. M. Ben-Amram and C. S. Lee, “Program termination
analysis in polynomial time,” ACM Transactions on Pro-
gramming Languages and Systems, vol. 29, pp. 5:1–5:37,
January 2007.

[10] A. M. Ben-Amram, “Size-change termination, monotonic-
ity constraints and ranking functions,” in Proceedings of the
21st International Conference on Computer Aided Verifica-
tion, ser. CAV ’09. Berlin, Heidelberg: Springer-Verlag,
2009, pp. 109–123.

[11] M. Codish, C. Fuhs, J. Giesl, and P. Schneider-Kamp,
“Lazy abstraction for size-change termination,” in Pro-
ceedings of the 17th international conference on Logic
for programming, artificial intelligence, and reasoning, ser.
LPAR’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp.
217–232.

[12] F. Spoto, F. Mesnard, and E. Payet, “A termination analyzer
for java bytecode based on path-length,” ACM Transactions
on Programming Languages and Systems, vol. 32, pp. 8:1–
8:70, March 2010.

[13] G. Canfora, M. Di Penta, and L. Cerulo, “Achievements
and challenges in software reverse engineering,” Commun.
ACM, vol. 54, pp. 142–151, April 2011.

[14] M. Weißbach and W. Zimmermann, “Termination analysis
of business process workflows,” in Proceedings of the 5th
International Workshop on Enhanced Web Service Tech-
nologies, ser. WEWST ’10. New York, NY, USA: ACM,
2010, pp. 18–25.

[15] D. Ivanovic, M. Carro, and M. Hermenegildo, “An initial
proposal for data-aware resource analysis of orchestrations
with applications to predictive monitoring,” in Proceed-
ings of the 2nd Workshop on Monitoring, Adaptation and
Beyond (MONA+), Lecture Notes in Computer Science.
Springer, 2010.

[16] D. Ivanovic, M. Carro, and M. Hermenegildo, “Towards
Data-Aware QoS-driven Adaptation for Service Orches-
trations,” in 2010 IEEE International Conference on Web
Services. IEEE, 2010, pp. 107–114.

[17] J. Cardoso, “Complexity analysis of BPEL web processes,”
Software Process Improvement and Practice, vol. 12, no. 1,
pp. 35–49, 2007.

[18] J. Lyle, “Trustable remote verification of web services,”
Trusted Computing, pp. 153–168, 2009.

31

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

