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Abstract—Cloud Computing builds on the latest achieve-
ments of diverse research areas, such as Grid Computing,
Service-oriented computing, business processes and virtu-
alization. In this paper, we reveal open research issues by
envisaging a federated cloud that aggregates capabilities
of various IaaS cloud providers. We propose a Federated
Cloud Management architecture that acts as an entry point
to cloud federations and incorporates the concepts of meta-
brokering, cloud brokering and on-demand service deploy-
ment. The meta-brokering component provides transparent
service execution for the users by allowing the system to
interconnect the various cloud broker solutions available
in the system. Cloud brokers manage the number and the
location of the utilized virtual machines for the received
service requests. In order to fast track the virtual machine
instantiation, our architecture uses the automatic service
deployment component that is capable of optimizing service
delivery by encapsulating services as virtual appliances
in order to allow their decomposition and replication
among the various IaaS cloud infrastructures. Our solution
is able to cope with highly dynamic service executions
by federating heterogeneous cloud infrastructures in a
transparent and autonomous manner.

Keywords—cloud federation; cloud brokering; IaaS; vir-
tual appliance.

I. INTRODUCTION

Highly dynamic service environments [1] require a
novel infrastructure that can handle the on demand de-
ployment and decommission of service instances. Cloud
Computing [2] offers simple and cost effective outsourc-
ing in dynamic service environments and allows the con-
struction of service-based applications extensible with
the latest achievements of diverse research areas, such as
Grid Computing, Service-oriented computing, business
processes and virtualization. Virtual appliances (VA)
encapsulate metadata (e.g., network requirements) with
a complete software system (e.g., operating system,
software libraries and applications) prepared for exe-
cution in virtual machines (VM). Infrastructure as a
Service (IaaS) cloud systems provide access to remote

computing infrastructures by allowing their users to in-
stantiate virtual appliances on their virtualized resources
as virtual machines.

Nowadays, several public and private IaaS systems
co-exist and to accomplish dynamic service environ-
ments users frequently envisage a federated cloud that
aggregates capabilities of various IaaS cloud providers.
These IaaS systems are either offered by public ser-
vice providers (like Amazon [3] or RackSpace [4]) or
by smaller scale privately managed infrastructures. We
propose an autonomic resource management solution
that serves as an entry point to this cloud federation
by providing transparent service execution for users.
The following challenges are of great importance for
such a mediator solution: varying load of user requests,
enabling virtualized management of applications, estab-
lishing interoperability, minimizing Cloud usage costs
and enhancing provider selection.

This paper proposes a layered architecture that in-
corporates the concepts of meta-brokering, cloud bro-
kers and automated, on-demand service deployment.
The meta-brokering component allows the system to
interconnect the various cloud brokers available in the
system. The cloud broker component is responsible for
managing the virtual machine instances of the particular
virtual appliances hosted on a specific infrastructure as
a service provider. Our architecture organizes the virtual
appliance distribution with the automatic service deploy-
ment component that can decompose virtual appliances
to smaller parts. With the help of the minimal man-
ageable virtual appliances the Virtual Machine Handler
rebuilds these decomposed parts in the IaaS system
chosen by the meta-broker. As a result, the cloud broker
component uses the VM Handler to maintain the number
of virtual machines according to the demand.

Related works have identified several shortcomings
in the current cloud infrastructures [5]: e.g., feder-
ated clouds will face the issue of scalability and self-
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management similarly to Grid systems, or users of the
cloud systems should be in control of their computing
costs. We propose an architecture that aims at both
of these problems by allowing users to utilize meta-
brokering between public and private cloud systems as
a result lowering their operation costs. Our architecture
also handles the issue of scalability by offering the cloud
brokers that manage the virtual machines according to
the actual demands of the user applications.

This paper is organized as follows: first, we introduce
the related research results in Section II. Then, we
discuss an advanced use case in Section III that involves
our proposed architecture and discusses its advantages in
contrast to previous research results. Next, we detail the
operational roles of the brokering components in our ar-
chitecture in Section III-A and Section III-B. Afterwards,
in Section IV, we discuss an optimization approach to
rebuild virtual appliances within the virtual machine
that is used to execute them. Finally, we conclude our
research in Section V.

II. RELATED WORK

Matthias Schmidt et al. [6] investigate different strate-
gies for distributing virtual machine images within a
data center: unicast, multicast, binary tree distribution
and peer-to-peer distribution based on BitTorrent. They
found the multicast method the most efficient, but in
order to be able to distribute images over network
boundaries ("cross-cloud") they choose BitTorrent. They
also propose to use layered virtual machine images
for virtual appliances consisting of three layers: user,
vendor and base. By using the layers and a copy-on-
write method they were able to avoid the retransmission
of images already present at the destination and thus
decrease instantiation time and network utilization. The
authors only investigated distribution methods within the
boundaries of a single data center, going beyond that
remained future work.

There are several related works focusing on providing
dynamic pool of resources. Paul Marshall et al. [7]
describe an approach for developing an "elastic site"
model where batch schedulers, storage and web services
can utilize such resources. They introduce different ba-
sic policies for allocating resources, that can be "on-
demand" meaning resources are allocated when a service
call or task arrives, "steady stream" assumes steady uti-
lization, thus leaves some elastic resources continuously
running, regardless of the (temporary) shortage of tasks,
or "bursts" for fluctuating load. They concentrate on
dynamically increasing and decreasing the number of
resources, but rely on third party logic for balancing load
among the allocated resources. Constantino Vázquez et

al. [8] are building complex grid infrastructures on top
of IaaS cloud systems, that allow them to adjust the
number of grid resources dynamically. They focus on
the capability of using resources from different cloud
providers and on the capability of providing resources for
different grid middleware, but meta-scheduling between
the utilized infrastructures and developing a model, that
considers the different cloud provider characteristics is
not addressed.

In 2009, Amazon Web Services launched Amazon
CloudWatch [9], that is a supplementary service for
Amazon EC2 instances that provides monitoring services
for running virtual machine instances. It allows to gather
information about the different characteristics (traffic
shape, load, disk utilization, etc.) of resources, and based
on that users and services are able to dynamically start
or release instances to match demand as utilization
goes over or below predefined thresholds. The main
shortcoming is that this solution is tied to a specific IaaS
cloud system and introduces a monetary overhead, since
the service charges a fixed hourly rate for each monitored
instance.

Mohsen Amini et al. [10] are focusing on so called
marketing-oriented scheduling policies, that can provi-
sion extra resources when the local cluster resources
are not sufficient to meet the user requirements. Former
scheduling policies used in grids are not working effec-
tively in cloud environments, mainly because Infrastruc-
ture as a Service providers are charging users in a pay-
as-you-go manner in an hourly basis for computational
resources. To find the trade-off between to buy acquired
additional resources from IaaS and reuse existing lo-
cal infrastructure resources he proposes two scheduling
policies (cost and time optimization scheduling policies)
for mixed (commercial and non-commercial) resource
environments. Basically two different approaches were
identified on provisioning commercial resources. The
first approach is offered by the IaaS providers at re-
source provisioning level (user/application constraints
are neglected: deadline, budget, etc.), the other approach
deploys resources focusing at user level (time and/or cost
minimization, estimating the workload in advance, etc.).

III. FEDERATED CLOUD MANAGEMENT
ARCHITECTURE

Figure 1 shows the Federated Cloud Manage-
ment (FCM) architecture and its connections to the
corresponding components that together represent an
interoperable solution for establishing a federated cloud
environment. The FCM targets the problem area outlined
in the Introduction, and provides solutions for most of
the listed open issues. In the following, we exemplify

8

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-153-3



the interaction of the main components of this solution
through a low level use case.

In this scenario we restrict our solution to sup-
port standard stateless web services described with
WSDL [11]. Using this solution, users are able to execute
services deployed on cloud infrastructures transparently,
in an automated way. Virtual appliances for all services
should be stored in a generic repository called FCM
Repository, from that they are automatically replicated
to the native repositories of the different Infrastructure
as a Service cloud providers.

When a user sends a service call to the system,
he/she submits a request to the “Generic Meta-Broker
Service” (GMBS) specifying the requested service with
a WSDL, the operation to be called, and its possible
input parameters. The GMBS checks if the service has
an uploaded VA in the generic repository, then it selects a
suitable CloudBroker for further submission. The match-
making is based on static data gathered from the “FCM
Repository” (e.g., service operations, WSDL), and on
dynamic information of special deployment metrics gath-
ered by the CloudBrokers. Currently we use the average
VA deployment time and the average service execution
time for each VA. VA deployment time assumes that the
native repository already has the requested VA, thus in-
cludes only the service provision time on a specific IaaS
cloud. The role of GMBS is to manage autonomously
the interconnected cloud infrastructures with the help of
the CloudBrokers by forming a federation.

Each “CloudBroker” has an own queue for storing
the incoming service calls (called Q1 and Q2 in Fig-
ure 1), and manages one virtual machine queue for each
VA (V Ax → V MQx). Virtual machine queues represent
the resources that currently can serve a virtual appliance
specific service call. The main goal of the CloudBroker is
to manage the virtual machine queues according to their
respective service demand. The default virtual machine
scheduling is based on the currently available requests
in the queue, their historical execution times, and the
number (n, m, o, p) of running VMs. The secondary task
of the CloudBroker involves the dynamic creation and
destruction of the various V MQs.

Virtual Machine Handler (“VM Handler”) components
are assigned to each virtual machine queue. These
components process the virtual machine creation and
destruction requests placed in the queue. The requests are
translated and forwarded to the corresponding IaaS sys-
tem (Clouda). This component is a cloud infrastructure-
specific one, that uses the public interface of the man-
aged infrastructure.

Independently from the virtual machine scheduling

process the CloudBroker also handles the queue of
the incoming service calls. As a result, these calls are
dispatched to the available VMs created in the previously
discussed manner.

In order to optimize service executions in highly
dynamic service environments, our architecture orga-
nizes the virtual appliance distribution as a background
process with the automatic service deployment compo-
nent that can decompose virtual appliances to smaller
parts. With the help of the minimal manageable virtual
appliances (MMVA – further discussed in Section IV)
the Virtual Machine Handler is able to rebuild these
decomposed parts in the IaaS system on demand, that
results in faster VA deployment and in a reduced storage
requirement in the native repositories.

In the following, subsections we detail how resource
management is carried out in this architecture. At the
top-level, a meta-broker is used to select from the
available cloud providers based on performance metrics,
while at the bottom-level, IaaS-specific CloudBrokers are
used to schedule VA instantiation and deliver the service
calls to the clouds.

A. Top-level Brokering in FCM

As we already mentioned in the scenario discussed in
the previous section, brokering takes place at two levels
in the FCM architecture: the service call is first submitted
to the Generic Meta-Broker Service (GMBS – that is a
revised and extended version of the Grid Meta-Broker
Service described in [12]), where a top-level decision
is made to that cloud infrastructure the call should be
forwarded. Then the service call is placed in the queue
of the selected CloudBroker, where the bottom-level
brokering is carried out to select the VM that performs
the actual service execution. This bottom-level brokering
and the detailed introduction of the architecture of the
CloudBroker is discussed later in Section III-B.

Now, let us turn our attention to the role of GMBS.
An overview of its architecture is shown in Figure 2.
This meta-brokering service has five major components.
The Meta-Broker Core is responsible for managing the
interaction with the other components and handling user
interactions.

The MatchMaker component performs the scheduling
of the calls by selecting a suitable broker. This decision
making is based on aggregated static and dynamic data
stored by the Information Collector (IC) component in
a local database. The Information System (IS) Agent
is implemented as a listener service of GMBS, and it
is responsible for regularly updating static information
from the FCM Repository on service availability, and ag-
gregated dynamic information collected from the Cloud-
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Fig. 1. The Federated Cloud Management architecture
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Fig. 2. The architecture of the Generic Meta-Broker Service

Brokers including average VA deployment and service
execution times. The Invoker component forwards the
service call to the selected CloudBroker and receives the
service response.

Each CloudBroker is described by an XML-based
Broker Property Description Language (BPDL) docu-

ment containing basic broker properties (e.g., name),
and the gathered aggregated dynamic properties. The
scheduling-related attributes are typically stored in the
PerformanceMetrics field of BPDL. More information
on this document format can be read in [12]. Namely,
the following data are stored in the BPDL of each
CloudBroker:

- Estimated availability time for a specific virtual
appliance in a native repository – collected from
the FCM Repository;

- average VA deployment time and average service
execution time for each VA – queried from the
CloudBroker;

The scheduling process first filters the CloudBro-
kers by checking VA availability in the native cloud
repository, then a rank is calculated for each broker
based on the collected static and dynamic data. Finally,
the CloudBroker with the highest rank is selected for
forwarding the service request.

B. CloudBroker

The CloudBroker handles and dispatches service calls
to resources and performs resource management within
a single IaaS system, it is an extended version of the
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system described in [13].
The architecture of the CloudBroker is shown in

Figure 1. Its first task is to dynamically create or destroy
virtual machines (V M i

x) and VM queues (V MQx) for
the different used virtual appliances. To do that, first, the
VA has to be replicated to the native repository of the
IaaS system from the FCM Repository (an alternative
method is discussed in Section IV). Alongside the ap-
pliance, the FCM Repository also stores additional static
requirements about its future instances, like its minimum
resource demands (disk, CPU and memory), that are
needed by the CloudBroker. This data is not replicated
to the native repository, rather the FCM Repository is
queried.

A VM queue stores references to resources capable
of handling a specific service call, thus instances of
a specific VA. New resource requests are new entries
inserted into the queue of the appropriate VA, while
resource destruction requests are modification of entries
representing an already running resource. The entries
are managed by the VM Handler, that is a cloud fabric
specific component designed to interact with the public
interface of a single IaaS system. It simply translates
and forwards requests to the public interface of the
IaaS system (Clouda). Each VA contains a monitoring
component deployed, that allows the CloudBroker to
monitor the basic status (CPU, disk and memory usage)
of the running resources along the average deployment
time for each VA and average service execution times.
These data can be queried by the IS Agent of the GMBS.

The service call queue (Q1 and Q2) stores incoming
service requests and, for each request, reference to a
VA in the FCM Repository. There is a single service
call queue in each CloudBroker, while there are many
VM queues. If the native repository does not contain the
requested VA it is replicated first. Dynamic requirements
for the VA may be specified with the service call:

- Additional resources (CPU, memory and disk);
- an UUID, that allows to identify service calls orig-

inating from the same entity.

The UUID will allow to meet SLA constraints later,
e.g., to enforce a total cost limit on public clouds for
service calls of the entity, or to be in compliance with
deadlines. If any dynamic requirements are present the
CloudBroker treats the VA as a new VA type, thus
creating a new VM queue and starts a VM. The service
calls may now be dispatched to the appropriate VMs.
Most IaaS systems offer predefined classes of resources
(CPU, memory and disk capacity) not adjustable by the
user, in this case the CloudBroker will select the resource
class that has at least the requested resources available.

This may lead to allocating excess resources in some
cases (e.g., the resource class has twice the memory
requested to meet the CPU number requirement).

The CloudBroker also performs the scheduling of ser-
vice call requests to VA’s and the life-cycle management
of resources. Scheduling decision is made based on the
monitoring information gathered from the resources. If
the service request cannot be scheduled to any resource
the CloudBroker may decide to start a new VM capable
of serving the request. The decision is based on the
following:

- The number of running VM’s available to handle
the service call;

- the number of waiting service calls for the VA in
the service call queue;

- the average execution time of service calls;
- the average deployment time of VA’s;
- and SLA constraints (e.g., total budget, deadline);
VM decommission is also based on the above, but

the CloudBroker takes into account the billing period
of the IaaS system, shutdown is performed only shortly
before the end of the period with regard to the average
decommission time for the system.

IV. VIRTUAL APPLIANCE DELIVERY OPTIMIZATION

IaaS systems require virtual appliances to be stored in
their native repositories. Only those virtual appliances,
that were previously stored in these repositories, can
be used to instantiate virtual machines. Our architecture
allows users to upload their virtual appliances to the
FCM Repository that behaves as an active repository and
handles the distribution of the appliances to the native
repositories according to [14]. As an active repository,
the FCM repository identifies the common parts of the
appliances and decomposes them into smaller packages
that allow appliance delivery and rebuilding from mul-
tiple repositories.

Central virtual appliance storage would require the
VM Handler to first download the entire appliance from
the FCM repository to a native one, then instantiate
the appliance with the IaaS system. To avoid the first
transfer, but keep the convenience for the users of our
architecture, we have investigated options to rebuild vir-
tual appliances in already running virtual machines. We
have identified two distinct approaches for rebuilding:
(i) native appliance reuse, (ii) minimal manageable
virtual appliances. The first approach utilizes already
available virtual appliances in the native repositories and
extends them towards the required virtual appliance. In
this article, we do not aim at this approach because
it requires the investigation of the publicly available
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appliances in order to find the appliance most suitable
for extension.

The second approach proposes the minimal manage-
able virtual appliance that we define as basic appliance
with the following three properties:

- Offers content management interfaces to add, con-
figure and remove new appliance parts.

- Offers monitoring interfaces to analyze the current
state of its instances (e.g., provide access to their
CPU load, free disk space and network usage).

- Optimally sized: only those files present in the
appliance that are required to offer their extensibility
with the previously mentioned interfaces.

As a result, our architecture only needs to replicate
the MMVAs to every native repository. If the FCM
repository identifies high demands for specific virtual
appliance parts, then the active repository functionality
automatically replicates the appliance to those IaaS sys-
tems where most requests were originated from.

Our VM Handler is prepared to control virtual ap-
pliance rebuilding using minimal manageable virtual
appliances. Consequently, the VM Handler applies a new
strategy when it receives a virtual appliance instantiation
request for a specific appliance that is not available
in the native repository. This strategy starts with the
instantiation of the MMVA. Next, the Handler waits until
the virtual machine of the MMVA has started up. Then,
it requests the content management interfaces to add the
parts of the specific appliance that were identified as
unique during the decomposition of the MMVA and the
specific appliance. As a result, the specific appliance is
rebuilt and ready to serve the scheduled service requests
in the virtual machine instantiated for the MMVA.

V. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a Federated Cloud Man-
agement solution that acts as an entry point to cloud
federations. Its architecture incorporates the concepts of
meta-brokering, cloud brokering and on-demand service
deployment – their interaction is exemplified through
a low-level use case. The meta-brokering component
provides transparent service execution for the users by
allowing the system to interconnect the various cloud
broker solutions managed by aggregating capabilities
of these IaaS cloud providers. We have shown how
CloudBrokers manage the number and the location of the
utilized virtual machines for the various service requests
they receive. In order to fast track the virtual machine
instantiation, our architecture uses the automatic service
deployment component that is capable of optimizing
its delivery by decomposing and replicating it among

the various IaaS cloud infrastructures. Regarding future
works, we plan to investigate various scenarios that arise
during handling federated cloud infrastructures using the
FCM architecture (e.g., the interactions and interopera-
tion of public and private IaaS systems).
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