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Abstract—This work developed a workflow engine that
enables the execution of workflows on existing Cloud platforms.
The workflow engine automatically delivers the computation
of each individual task to the selected Cloud and transfers
the input/output data across different platforms. Additionally,
it predicts the execution time and payment of the tasks,
helping users select the best Cloud services with respect to
the performance vs. cost tradeoff.
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I. I NTRODUCTION

Since Amazon published its Elastic Compute Cloud (EC2)
[1] and Simple Storage Service (S3) [2] in 2008, Cloud
Computing became a hot topic in both industrial and aca-
demic areas. There exist different definitions of Cloud Com-
puting, including our earlier contribution [3]. Recently,the
National Institute of Standards and Technology (NIST) pro-
vides a specific definition: Cloud computing is a model for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management
effort or service provider interaction [4].

Cloud computing distinguishes itself from other comput-
ing paradigms in the following aspects:

• Utility computing model: Users obtain and employ
computing platforms in computing Clouds as easily
as they access a traditional public utility (such as
electricity, water, natural gas, or telephone network).

• On-demand service provisioning: Computing Clouds
provide resources and services for users on demand.
Users can customize and personalize their computing
environments later on, for example, software instal-
lation, network configuration, as users usually own
administrative privileges.

• QoS guaranteed offer: The computing environments
provided by computing Clouds can guarantee QoS
for users, e.g., hardware performance. The computing
Cloud renders QoS in general by processing Service
Level Agreement (SLA) with users.

As a result of these advantages, Cloud Computing is
gaining more and more customers. Currently established
Cloud infrastructures mainly deliver three kinds of services:

Infrastructure as a Service (IaaS), Software as a Service
(SaaS), and Platform as a Service. IaaS targets on an
on-demand provision of the computational resources. The
commercial computing Cloud Amazon EC2 and its non-
commercial implementation Eucalyptus [5] are well-known
examples of IaaS-featured Cloud platforms. SaaS allows the
consumers to use the provider’s applications running on a
cloud infrastructure. The applications are accessible from
various client devices through a thin client interface [4].An
example of SaaS is Web-based email. PaaS targets on an
entire platform including the hardware and the application
development environment. Google App Engine [6] and Mi-
crosoft Azure [7] are examples of PaaS-featured Clouds.

The goal of this work is to combine different Clouds
to run a user-defined service workflow. A workflow is
a methodology that splits the computation of a complex
problem into several tasks. A well-known scenario is to
run scientific experiments on the Grid [8], where an en-
tire computation is partitioned and distributed over several
computing nodes with a result of being able to process
large data sets. This scenario can also occur on the Cloud
when scientific applications move to them. Furthermore,
there are other scenarios on the Cloud, where users require
the workflow support. For example, users may compose the
services provided by different Clouds for an overall goal.

We developed an execution engine for workflow manage-
ment on Clouds. In difference to Grid workflow implementa-
tions that target on a unified interface [9], a Cloud workflow
system has to cope with different interfaces and features
of individual Clouds. In order to enable the combination
of single workflow tasks running on various Clouds, we
implemented a Cloud abstraction and designed mechanisms
for inter-Cloud data transfer. We also established a predic-
tion model to estimate the execution time and cost of the
individual tasks on different Cloud nodes, therefore helping
users achieve maximum performance at lowest payment.

The remainder of the paper is organized as following.
Section II describes the related work. Section III analyzesthe
requirement on a Cloud workflow framework and presents
the designed software architecture. Section IV gives the
details of an initial prototypical implementation, followed
by the evaluation results in Section V. The paper concludes
in Section VI with a brief summary and several future
directions.
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II. RELATED WORK

The concept of resource sharing in Cloud Computing is
similar to Grid Computing. Cloud Computing allows on-
demand resource creation and easy access to resources,
while Grid Computing developed standards and provides
various utilities. A detailed comparison of these two comput-
ing paradigms can be found in [10]. One utility implemented
on the Grid is the workflow management system. Production
Grids, such as WLCG [11], TeraGrid [12], and EGEE [13],
commonly support the execution of scientific workflows
on the underlying resources. There are also various imple-
mentations of workflow engines on the Grid. Examples are
ASKALON [14], Unicore [15], Kepler [16], GridAnt [17],
Pegasus [18], and GridFlow [19]. An overview of these
workflow systems is presented in [20].

The research work on workflow management systems on
the Cloud has been started. A well-known project is the
Cloudbus Toolkit [21] that defines a complete architecture
for creating market-oriented Clouds. A workflow engine is
also mentioned in the designed architecture and described
in detail in [22]. The authors analyzed the requirement and
changes needed to be incorporated when moving scientific
workflows to Clouds. They also described the visions and
inherent difficulties when a workflow involves various Cloud
services. The work presented in this paper aims at a proto-
typical implementation of a workflow engine that executes
a workflow composed of different Cloud services, because
such a tool is currently still not available. The goal is to
simply provide a new functionality rather than to investigate
a comprehensive solution.

III. A RCHITECTUREDESIGN

Grid Computing has been investigated for more than a
dozen of years and established standards. Cloud Computing,
in contrast, is a novel technology and has not been standard-
ized. The specific feature of each Cloud brings additional
challenges to implementing a workflow engine on Clouds.

A. Design Challenges

Grid workflows may be executed in several resource
centers but the involved resources are contained in a single
Grid infrastructure and hence can be accessed with the
same interface. Cloud workflows, however, run usually on
different Clouds.

Figure 1 shows a sample scenario of running workflows
on Clouds. While some tasks may be executed on the same
Cloud, e.g., Cloud C1, some others may run on different
Cloud platforms. The data are transferred from one Cloud
to another in order to deliver the output of one task to
other tasks. Unfortunately, different Clouds use also different
data format. Furthermore, existing Clouds have their own
access interfaces. A standard, called Open Cloud Computing
Interface (OCCI) [23], has been proposed but no implemen-
tation is currently available. To link the services of different
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Figure 1. A sample execution scenario of Cloud workflows.
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Figure 2. Software architecture of the workflow engine.

Clouds, an abstraction layer is required for providing an
identical view with the data and interfaces of the target
Cloud infrastructures.

Additionally, the service price varies across Cloud
providers. Cloud users usually expect an optimal perfor-
mance vs. cost tradeoff: i.e., acquiring the best service with
the lowest payment. While increasing Cloud infrastructures
are emerging, there may be several choices to run a workflow
task. A prediction model, which is capable of estimating the
performance and cost of an execution on a specific Cloud,
can help users select the best Cloud for their tasks.

Based on the aforementioned observations, we designed
a software architecture for the proposed Cloud workflow
engine and defined a performance-cost model. The following
two subsections give some details.

B. Software Architecture

Figure 2 demonstrates the software architecture of the pro-
posed workflow engine for Cloud Computing. An important
component in the architecture is the Cloud abstraction layer,
shown in the middle of the figure. The task of this layer is
to implement a unified API for accessing different Clouds.
The runtime environment of the workflow engine uses this
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API to run the tasks in a workflow.
The abstraction layer defines common functions for Cloud

activities. It also contains a mediator that translates thefunc-
tions in the unified API to concrete calls to the underlying
Cloud platforms. For example, the function RunNode() is
provided for running a virtual machine instance on any IaaS-
featured Cloud. During the runtime the mediator replaces
the function by a Cloud specific one, in this example, either
StartNode for Cloud A or RunServer for Cloud B. It also
maps the function parameters in the functions of the unified
API to the functions of the APIs of individual Clouds. Fur-
thermore, the mediator handles the authentication/security
issues.

C. Prediction Model

Cloud users not only take care of the execution perfor-
mance but pay more attention to the payment for using
resources on the Clouds. As an initial design, we bring the
two most important metrics, application execution time and
the cost, into the prediction model. Workflows in this work
are defined as: A workflow is comprised of several tasks,
each is combined with an application/software that is either
executed on an IaaS-Cloud or hosted as a Web service on a
SaaS/PaaS-Cloud.

The execution time of a workflow (EoW in short) can be
calculated with the following mathematical form:

EoW = EoT1 + DT1 + EoT2 + DT2 + .... + EoTn

whereEoTi is the execution time of taski andDTi is the
time for transferring data fromTi to Ti+1. Note that we
ignore the time to start a service on the Cloud as well as
data transfers from and back to the customer environment.

The execution time of a single task depends on the
features of the host machine on which the task is running.
Roughly, it can be presented with:

EoT = f(Scomp, Fcpu, Smem, SI/O)

where the parameters are size of the computation, frequency
of CPU, size of memory and cache, and size of input/output
data. For parallel applications, an additional parameter,the
communication speed, has to be considered.

The price of a service on a Cloud is usually determined by
the node type and the location of the resource. Each Cloud
provider maintains a price table, where concrete payment (in
US$ per hour) is depicted. Based on this table, we calculate
the cost of a workflow task with:

CoT = f(EoT, $/h)

The cost of executing a workflow is then calculated with:

CoW = CoT1 + CoT2 + .... + CoTn

The functions for computing the execution time of a
task can be designed differently with a tradeoff between
complexity and accuracy. We implemented a simple model,
which is detailed in the following section.

IV. PROTOTYPICAL IMPLEMENTATION

Our initial implementation of a Cloud workflow manage-
ment system focused on the following components:

• Cloud abstraction
• Runtime execution environment
• Prediction model

A. Cloud Abstraction

To run a workflow on diverse Clouds, an abstraction layer
is required for the purpose of hiding the different access
interface each Cloud presents to the users. We use jClouds
[24] as the base of this work. jClouds provides a framework
for transferring programs and their data to an IaaS-Cloud
and then starting an instance to execute the program on the
Cloud. The current release of jCloud can connect several
IaaS-Clouds including Amazon EC2.

jClouds defines an API for accessing the underlying
IaaS platforms. For SaaS/PaaS-featured Clouds, however,
there exists currently no implementation for an abstraction
layer. Our main task in extending jClouds is to develop an
S+P abstraction that interacts with SaaS-featured and PaaS-
featured Clouds.

The S+P abstraction contains two kinds of functions,
GET and POST, for transferring data and service requests.
Their input and output are defined in XML documents. This
is identical to all Clouds. Each Cloud, however, requires
specific input and output formats as well as different pa-
rameters for service requests. Our solution is to use XSL
Transformation (XSLT) [25] to map the input and output of
the service functions to the required data format and service
parameters.

XSLT is a part of the Extensible Stylesheet Language
(XSL) family and often adopted to transform XML docu-
ments. An XSLT file describes templates for matching the
source document. In the transformation process, XSLT uses
XPath, an interface for accessing XML, to navigate through
the source document and thereby to extract information or to
combine/reorganize the separate information elements. For
this work an XSLT document is introduced for some data
formats, like SOAP. For others, such as binary and JSON
(JavaScript Object Notation), a data transformation is not
needed.

The process of invoking a SaaS or PaaS service with the
developed S+P abstract contains the following steps:

• Processing the input data of the service request.
• Constructing a URL for the service. Information about

Cookies, SOAP actions and other parameters, is con-
tained in the head of the protocol (HTTP), while the
content of the protocol defines the request.

• A service request is sent to the aforementioned URL,
together with the data.

• The results of the service are downloaded as raw data.
For the data formats like SOAP, where the results are
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Figure 3. A simple Cloud workflow.

coded, an XSLT document is defined to extract the
useful information.

B. Workflow Execution

In order to allow an easier understanding of the tasks
for a Cloud workflow execution engine, we take a simple
workflow as an example. Figure 3 demonstrates the sample
workflow consisting of five tasks, T1 to T5, which are
combined through a respective data flow. A task can be a
program or an available Web service on a SaaS or PaaS
Cloud. For the former, the program is executed on an IaaS
Cloud, while for the latter the Cloud provides resources for
running the software. The workflow and its tasks are defined
by the user in an XML file. .

The workflow execution engine is responsible for running
each task on the selected Cloud, transferring the result of one
task to its successor, and downloading the final results to the
user. The first job is performed within a single Cloud and
contains the following steps, which are all covered by the
Cloud abstraction described above:

• Transferring data (Program or service parameters) to
the target Cloud.

• Executing the program on an IaaS Cloud or invoking
the Web service on the SaaS or PaaS Cloud. In the case
of IaaS, a virtual machine instance has to be started
and some scripts are executed for configuration and
program installation.

• Extracting the results out of the Cloud.

Another task of the workflow runtime engine is to deliver
the output of one task to the next task as input. This
involves an inter-Cloud communication. We implemented
mechanisms for the following data transfer:

• IaaS to SaaS/PaaS: We use SSH to transfer data from
the IaaS node to the local host and then use HTTP to
deliver the data further to the SaaS/PaaS request;

• SaaS/PaaS to SaaS/PaaS: Data are extracted from the
HTTP stream, stored temporally on the host, and then
applied to the next HTTP request;

• SaaS/PaaS to IaaS: Locally storing the data, which
are again extracted from an HTTP stream, and then
transferring them to the IaaS node via SSH;

• IaaS to IaaS: We transfer the data directly from one
IaaS node to the other that is potentially located on a
different Cloud. This is an optimization for removing
the overhead caused by an intermediate storage.

Finally, the result of the entire execution is downloaded
to the user or stored on the last Cloud.

C. Performance & Cost Prediction

The proposed prediction model, as described in the pre-
vious section, involves several hardware parameters that can
be only acquired at the runtime by accessing the Cloud
resources. For the prototypical implementation, we devel-
oped a simple model without using the runtime resource
information of the underlying infrastructures.

Our model is based on the execution history of similar
tasks, which are tasks executing the same program. The
execution history is stored in a user database, which contains
the following main data structures:

• node class: describes a computing node with node ID,
node name, Cloud name, payment cycle, and startup
time.

• execution: describes an execution of a task on a
node with several attributes including program name,
node class, size of I/O, and execution time.

• node price: gives the per-cycle-price of the computing
nodes.

• node location: gives the country and continent the node
is located.

For each task in a new user-defined workflow, the potential
execution time is calculated for all registered Clouds and
their associated computing nodes. The payment is then
calculated according to the price published by the Cloud
providers. The first five{Cloud, node} pairs with the best
performance vs. cost tradeoff are shown to the users to help
them select the optimal target platforms.

We use the following algorithm to predict the execution
time of a new task presented witht(p,s), where the first
attribute is the program to be executed ands is the size of
the input data.

First, the average execution time of the program on a node
ns is calculated with

t(p,ns) =

n∑

i=1

ti(p,ns,si)

n

whereti(p,ns,si) is the time measured with the recorded
ith execution of programp on nodens with a data size ofsi.
Here,t(p,ns) is associated with the average data sizes(p,ns),
which is calculated in a similar way. The execution time of
the new taskt(p,s) can then be estimated with

t(p,s) =
s

s(p,ns)
· t(p,ns) · Wdata

We introduce a weight variableWdata to represent the
influence degree of the input size on the execution time.
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Table I
EXPERIMENTAL RESULTS WITH THE3D RENDER WORKFLOW(85 CAMERA POSITIONS).

Task Node Execution time Performance vs. Cost
Measured Predicted Difference (%)

m1.small 145 138 -4.8 12.4
3dscenetopictures c1.medium 56 52 -7.1 19.03

m1.large 48 42 -12.5 17,97
m1.small 59 48 -18.6 5.01

picturetovideo c1.medium 47 37 -21.2 15.97
m1.large 44 36 -18.2 14.96

Table II
EXPERIMENTAL RESULTS WITH THE WORKFLOW OF SYNCHRONIZING A FOUR MINUTES VIDEO.

Task Node Execution time Performance vs. Cost
Measured Predicted Difference (%)

m1.small 665 688 3.4 168.04
videototext c1.medium 341 355 4.1 116.3

m1.large 257 271 5.4 87.2
translatejatoen 45 40 -11.1 0

m1.small 26 22 -15.4 1.87
texttospeech c1.medium 22 20 -9.1 7.47

m1.large 19 17 -10.5 6.46
m1.small 89 104 16.8 7.6

jointovideo c1.medium 87 94 8.04 29.6
m1.large 97 75 -12.4 33.02

V. EVALUATION RESULTS

To evaluate the developed framework, several workflows
were tested. In this section, we present the results with two
examples. The first workflow processes 3D scenes with a
result of creating a video. The second workflow performs
film synchronization whereby to translate the spoken text
from Japanese to English.

The first workflow contains two main tasks,3dscene-
topictures(the raytracer) andpicturetovideo. The raytracer
acquires a scene file and a camera file as input and splits
the scene into single pictures based on the position defined
in the camera file. The single pictures are then processed by
the second task to produce a continuous video. We apply
the Tachyon [26] raytracer for the first task, which needs
an MPI cluster on an IaaS Cloud because the software is
parallelized with MPI. To combine the pictures to a video,
the program FFmpeg [27] is applied. We run this task on
a single IaaS node. Hence, the first workflow involves only
IaaSs.

The second workflow is comprised of four components:
the language identifier (taskvideototext), a translator (task
translatejatoen), the text synthesizer (tasktexttospeech), and
the taskjointovideo. The language identifier acquires a video
file as input and outputs its text in Japanese. The output is
then delivered to the language translator, where an English
text is produced. In the following, the text synthesizer
converts the text to speech, which is combined with the video
via the last task of the workflow. We apply the language
identifier Julius [28] to process the audio that is extracted
from the video by FFmpeg. In order to speed up the process,
an audio is first partitioned and the partitions are then

processed in parallel. Hence, an MPI cluster is required for
this task. For language translation, the translation service
of Google is applied. In order to model a SaaS/PaaS to
SaaS/PaaS data transfer and to verify our Cloud abstraction,
the Japanese text is first translated to German and then to
English. The tasktexttospeechis implemented using the
speech synthesizer eSpeak [29]. Finally, the aforementioned
FFmpeg program combines the audio with the video.

For the experiments we requested an account on EC2.
The test results are shown in Table I and Table II for each
workflow. The tables show the execution time of tasks of a
single workflow on different nodes of EC2. In the case of
Google, the Web service is executed on a Google machine,
which cannot be specified by the user.

The execution time of a task is presented with the
measured time and the predicted one, where the former
was acquired at runtime and the latter was calculated using
the developed prediction model. It can be seen that the
accuracy of our model varies between the tasks, where the
value with the second workflow is relative better. For the
3D render, the model underestimates the execution time in
most cases, while an alternating behavior can be seen with
the second workflow. Altogether, we achieved the best case
with a difference of 3.4% between the real execution time
and the predicted one, while the worse case shows a value
of -21.2%. The difference is caused by the fact that the
time for executing a program can vary significantly from
one execution to the other, even though the executions are
performed successively. This indicates that a more accurate
model is required for a better prediction, which shall be our
future work.
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The values in the last column of the tables are calculated
by multiplying the real execution time by the payment. It
is expected that both the execution time and the payment
are low. Hence, we use the values in the last column to
represent the performance vs. cost tradeoff, where a lower
value indicates a better behavior. Observing Table I it can
be seen that the nodes m1.small have a better behavior. This
may be associated with the concrete tasks, which do not
demand a high computation capacity. With larger programs,
e.g., the taskvideototextin the second workflow, a node
with higher capacity, m1.large in this case, behaves better.
However, the best choice is to use the free services provided
by some Clouds, such as the translation service on Google.

VI. CONCLUSIONS

This paper described a workflow engine, which are de-
signed and implemented for Cloud Computing. To enable
the execution of a service workflow we developed a Cloud
abstraction that mediates between different Cloud platforms.
We implemented a runtime engine to execute the single tasks
in the workflow and transfer data among them. Additionally,
a prediction model was designed to estimate the execution
time of the tasks on different Cloud nodes. Currently we
implemented a simple model that will be improved in the
next step of this work. Furthermore, we plan to develop a
search engine that automatically detects Cloud services for
a user-specified task. A graphical interface is also planned
to allow the user to define the workflows in a more intuitive
way. In addition, the workflow engine will be extended to
handle the exception/errors of the Cloud services.
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