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Abstract—Nowadays Cloud Computing is becoming an inter-
esting distributed computation infrastructure able to strongly
leverage the concept of Virtualization of physical resources.
This paper deals with the opportunity for managing Virtu-
alization Infrastructures in Federated scenarios. In particular,
the middleware we are introducing presents several features en-
abling an useful and easy management of private/hybrid clouds
and provides simple and easily accessible interfaces to interact
with different “interconnected” clouds. In that context, one of
the main challenges it is necessary to address is the capability
that systems need to interact together, maintaining separated
their own domains and the own administration policies. A
Cloud middleware has been designed, we named it CLEVER,
and this paper describes the architecture in each part. Several
UML schemas highlight the relevant complexity of our new
architecture. In the current status of the work, a primitive
prototype, integrating some features of the whole architecture,
has been developed as far software classes implementing the
basic functionalities.

Keywords-Cross Cloud Computing; XMPP; Fault Tolerance;
Virtual Infrastructure Management; clusters.

I. INTRODUCTION

Cloud computing is generally considered as one of the
more challenging topic in the Information Technology (IT)
world, although it is not always fully clear what its potential-
ities are and which are all the involved implications. Many
definitions of cloud computing are presented and many sce-
narios exist in literature. In [1], Ian Foster describes Cloud
Computing as a large-scale distributed computing paradigm
that is driven by economies of scale, in which a pool of
abstracted, virtualized, dynamically-scalable, managed com-
puting power, storage, platforms, and services are delivered
on demand to external customers over the Internet. Until
now, such trend has brought the steady rising of hundreds
of independent, heterogeneous cloud providers managed by
private subjects yielding various services to their clients.

In order to provide a flexible use of resources, cloud
computing delegates its functionalities in a virtual context,
allowing to treat traditional hardware resources like a pool
of virtual ones. In addition virtualization enables the ability
of migrating resources, regardless of the underlying real
physical infrastructure. Peter Mell and Tim Grance from
the Computer Security Division of the National Institute
of Standards and Technology (NIST) are initiating impor-
tant government efforts to shape essential components in
the broader cloud arena[2]. They identified clouds provide

services at three different levels: Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) and Software as a
Service (SaaS):

• SaaS: Software as a Service represents the capability
given to the consumer in using provider’s applications
running on a cloud infrastructure and accessible from
various client devices through a thin client interface
such as a Web browser.

• PaaS: Platform as a Service represents the capability
given to the consumer in order to deploy his own appli-
cation onto the cloud infrastructure using programming
languages and tools supported by the provider (i.e Java,
Python, .Net).

• IaaS represents the capability given to the consumer
for renting processing, storage, networks, and other
fundamental computing resources where the consumer
is able to deploy and run arbitrary software, which
can include operating systems and applications. The
consumer does not manage or control the underlying
cloud infrastructure.

Our work is aimed to define new functionalities that focus
on the lower level of services that is IaaS. Service Provides
are customers of such infrastructures (SPs, i.e., Ebay, Face-
book, Twitter, etc.); they need to easily deploy and execute
their services. Owners of these infrastructures are commonly
named Infrastructure Providers (IPs) or Cloud Providers (i.e.
public clouds: Amazon EC2, Google, Saleforce, Microsoft
Azure, RightScale, etc.). We consider the cloud as con-
stellations of hundreds of independent, heterogeneous, pri-
vate/hybrid clouds. Currently many business operators have
predicted that the process toward an interoperable federated
cloud scenario will begin shortly. In [3], the evolution of the
cloud computing market is hypothesized in three subsequent
phases:

• Monolithic (now), cloud services are based on propri-
etary architectures - islands of cloud services delivered
by megaproviders (this is what Amazon EC2, Google,
Salesforce and Microsoft Azure look like today);

• Vertical Supply Chain , over time, some cloud providers
will leverage cloud services from other providers. The
clouds will be proprietary islands yet, but the ecosystem
building will start;

• Horizontal Federation, smaller, medium, and large
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providers will federate horizontally themselves to gain:
economies of scale, an efficient use of their assets, and
an enlargement of their capabilities.

This paper aims to describe our architecture able to make
up an interoperable heterogeneous cloud middleware that
accomplishes the Horizontal Federation. The main chal-
lenge of interoperable clouds that needs to overcome is the
opportunity that federated heterogeneous systems have to
interact together, maintaining separated their own domains
and administration policies. The architecture we designed is
characterized by a main skeleton, in which it is possible to
add more functionalities, using a flexible approach plug-in
based. The diagrams we present in the next sections show
several details of our design choices. The complexity of the
system is rather high, this is due to the number of constrains
and issues we are trying to face. The main motivation to
design a new cloud middleware has been given from the lack
in literature of such a middleware. The overall motivations
to propose CLEVER (CLoud-Enabled Virtual EnviRonment)
have been provided in our recent work [4]. That work also
provides an useful and detailed description of pros and cons
in CLEVER against the other existing infrastructures.

The paper is organized as follows. In Section II, we
provide a brief description about the new Cloud stack. In the
same section we briefly explore the current state-of-the-art
in Cloud Computing and existing middleware implementa-
tions. This section critically analyses the features of such
cloud middlewares and motivates the need to design and
implement a new one. Section III introduces CLEVER as the
Virtual Infrastructure Manager and explains the functional
and non functional requirements that it tries to meet. Section
IV provides an overview of the CLEVER’s features, which
are then deeply discussed in Section V where also a logical
description of each middleware module is reported together
with a brief description of our prototype implementation (see
Sec. VI). Section VII concludes the paper.

II. BACKGROUND AND RELATED WORKS

The work we are describing deals with the technology
necessary to make up a cloud infrastructure whatever level
it is: IaaS, PaaS and SaaS. This technology is the well-
known as Virtualization. Cloud Computing strongly exploits
the concept of virtualization of physical resources (hosted in
IaaS), through the Instantiation of Virtual Machines (VMs).
During our dissertation we named these VMs as Virtual
Environments (VEs), a more general term useful to describe
other virtual containers (i.e., Java Virtual Containers). These
VEs can be seen as the smaller part of cloud systems:
”atoms”, in which IT Services (i.e., PaaS or SaaS) are
confined into. CLEVER is a middleware able to manage
VEs in cross cloud environments. This middleware should
accomplish an important core of a general framework able
to address Federation among sites, guaranteeing Fault Tol-

Figure 1. Cloud Management Stack

erance, Easy Configuration (Zero-conf), Accounting and
Billing, Performance (SLAs), Security, etc.

In order to identify the main components constituting a
cloud and better explain the federation idea on which our
work is based, we are considering the internal architecture of
each cloud as the three-layered stack [5] presented schemat-
ically in Fig. 1. Starting from the bottom, we can identify:
Virtual Machine Manager, (VMM), Virtual Infrastructure
(VI) Manager and Cloud Manager, (CM). The Virtual Ma-
chine Manager is the layer in which the hardware virtualiza-
tion is accomplished. It hides the physical characteristics of
a computing platform from SPs, instead showing another
abstract computing platform. The software that controls
the virtualization used to be called a ”control program” at
its origins, but nowadays the term hypervisor is preferred.
The main hypervisors currently used to virtualize hardware
resources are: Xen [6], KVM [7], VMware [8], VirtualBox
[9], Microsoft Hyper-V [10], Oracle VM [11], IBM POWER
Hypervisor (PR/SM) [12], Apple Parallel Server [13], etc.
For example one type of a VMM can be a physical machine
with the Xen hypervisor para-virtualizer [14] controlling it
(in this case the VM are Xen domains), whereas another
type can be a machine with the necessary software to host
KVM (full-virtualizer [15]), and so on. The VI manager is
a fundamental component of private/hybrid clouds acting as
a dynamic orchestrator of VEs, which automates VEs setup,
deployment and management, regardless of the underlying
level. The Cloud Manager layer is instead able to transform
the existing infrastructure into a cloud, providing cloud-
like interfaces and higher-level functionalities for security,
contextualization and VM disk image management.

Recently, many Virtual Infrastructure Managers are ap-
pearing in literature, some of them can be listed as follows:
OpenNebula [16], OpenQRM [17], Nimbus [18], Eucalyptus
[19], etc.
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The architectures listed above were conceived considering
two main philosophies:

• Apply the virtualization model to simplify the manage-
ment of proprietary datacenters.

• Reorganize the previous distributed computation mid-
dleware for accomplishing an easy management of
virtualization capabilities.

The early case represents a simpler way to organizes hard-
ware resources hosted in local and private datacenters that
need a tedious and complex management (i.e., OpenQRM
and Eucalyptus). In the latter, we have infrastructures in
which the original focus is modified to be adapted for clouds;
for instance rearranging of GRID infrastructure as well as
Open Nebula and Nimbus. For instance OpenNEbula (ONE)
can be considered as evolution of a Grid Manager aimed
to Virtualization Systems. Thanks to the European Project
RESERVOIR [20], ONE is including some key concepts we
are trying to address in our work. Nimbus was originated
by an adaption of Globus (GRID), in fact it is currently
deployed into a Globus 4.0.x Java container.

Nowadays it is time for new cloud architectures able to
deal with new cloud requirements and constrains. Further-
more these architectures must to be conceived from the
scratch, that is the core of the system has to include at
the beginning many more basic capabilities necessary for
Cloud Computing environments. CLEVER was designed
keeping mind these goals, adding as much as possible
and at the early stage many functionalities. In our system,
Cloud Manager layers have to offer the following oppor-
tunities: Cloud Federation, Composability, and Orchestra-
tion of resources, distributed virtual resources management,
inter-cloud security, inter-cloud business model, inter-cloud
networking, inter-cloud monitoring, etc. Even at Virtual
Infrastructure Manager layers it is necessary to add these
following features in order to satisfy the CM layers needs:
local virtual resources management, load-balancing, fault
tolerance, intra-cloud security, intra-cloud business mod-
els, intra-cloud networking, intra-cloud monitoring, etc. To
drawing new cloud systems, it is important to initially take
into account concepts of ”inter” and ”intra” requirements
and capabilities. In the interoperability arena, Application
Programming Interface (APIs) cover a strong role, as shown
by Fig. 1 (rectangle shapes in between layers: A, B and C).
APIs have to guarantee the interoperability among Clouds
(see section II-B) in Private, Public and Hybrid scenarios.

Business and trading may represent the engine of Cloud
development under many perspectives, Section II-A high-
lights these concepts.

In the direction of an open [21] and advanced cloud
framework, NASA is working on an ambitious project:
OpenStack [22]. On their web portal, they stated: The goal
of OpenStack is to allow any organization to create and offer
cloud computing capabilities using open source software
running on standard hardware. OpenStack Compute is soft-

ware for automatically creating and managing large groups
of virtual private servers. OpenStack Storage is software for
creating redundant, scalable object storage using clusters
of commodity servers to store terabytes or even petabytes of
data. These sentences remark as our overall assumptions
and motivations, which led us to develop CLEVER, are
completely in line with the new Cloud researching context.

In our final considerations, the figured world can appear
rather complex and hard to face but the virtualization
environments might greatly simplify the necessary effort.
Specifically all hypervisors leverage the new virtualization
capabilities offered by hardware architectures (i.e., Intel,
AMD, etc.), thus allowing to limit their diversity. These
features are strongly exploited by cloud operators because
they increase the system performances. But at the same time
thus determines the reduction of the differentiation among
hypervisors, hence we can foresee a great challenge in the
Virtual Computing (or Virtual Cloud). We can remark the
concept considering the virtualization world as the simplest
way to identify and regroup a subset of functionalities that it
is necessary to deal within a Cloud. Since the formalization
of such requirements, constrains, and capabilities might not
be particularly tough to accomplish.

A. Commercial Cloud Infrastructures and their businesses.

Cloud Computing is finding a wide consensus among
IT operators, because behind its computation model it is
possible to advise a real business model [23]. One of the
main reason of the Grid Computing failure, seen under
the economic perspectives, was the not applicability of
any business model on it. Currently in the IT world we
are assisting to a progressive mixing of meaningful efforts
among operators, scientific communities and organizations
for standards (as well: DTMF, IEEE, IETF, ITU, etc.) to en-
force this new distributed computation infrastructure: Cloud
Computing. We can state that it is not possible to draw clear
boundaries among commercial, academic, opensource and
legacy cloud platforms. Several platforms born in academia
have migrated to commercial purposes (Nimbus, Eucaliptus,
OpeNebula), others from legacy to OpenSource (OpenQRM)
to consolidate and advertise the work done, and finally a
few of them were totally born as OpenSource (OpenStack)
or commercial (Citrix, VMware, Telefonica, IBM, HP, etc.)
approaches. The evolution we are noting is a movement of
lower layers toward the upper layers of the Cloud stack.
For instance hypervisor as Vmware and Xen is providing
a new cloud middleware able to address all the issues
in entire distributed datacenters (VMM to VIM: VMware
vSphere, XEN Cloud Platform). VIMs are looking at Cloud
Management.

In this process, we think the commercial IT world might
be far to define an interoperable framework, whereas the
current VIM middleware should change the original focus
to be ready for the new challenges. A platform ready to
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face these challenges might be the OpenStack framework,
it promises an interesting contribution, but it is a young
architecture yet. The CLEVER infrastructure might also
provide a valid support in that direction.

The standardization rate of proposals is also showing
an huge interest of IT stockholders, the next section will
provide a brief enlightenment on that.

B. Cloud Standards in a Nutshel: APIs

The concepts of interoperability need to be enforced
at Cloud Manager level, but the VIMs need to provide
Application Program Interfaces (APIs) enabling the full
control and monitoring of cross-cloud virtual resources.
The federation among Clouds can be perpetrated if each
Cloud Operator can dynamically join the federation [24],
interact with federated clouds in trustiness [25],[26] and
finally exchange data with their partners [27]. Since the
federation can exist if there is a high level infrastructure
that allows this aggregation. Furthermore it is not possible
to spread computation among several IPs, without an ad-
equate intercommunication protocol among parties. Fig. 1
highlights this concept. In the Cloud stack it is necessary
to include APIs among each layer that allow to cross-
correlate more heterogeneous infrastructures. The working
group in DMTF Standards is defining the Cloud Incubator
Initiative for Cloud Management Standards. It was formed
to address management interoperability for Cloud Systems
[28]. The DTMF organization has began the initiatives in
Virtualization environments with Open Virtual Format (OVF,
see the fig., API: A ).The format (OVF) represents an early
descriptor able to define the customer requirements, in terms
of number of VEs to instantiate; memory, CPUs, storage and
etc. to allocate and so on. This format permits the interaction
from IaaSs and their costumers (SPs).

Inside DTMF many IT companies are also trying to add
standards in the cloud particularly useful for their busi-
nesses. For instance VMware has introduced in DMTF the
VCloud[29] API, while Telefonica their TCloud [30] API.
Both proposals should guarantee a set of new parameters
useful for the cross interaction. In this way, many more
functionalities should be addressed, such as: load balancing,
fault tolerance (VMs replication), network configuration,
firewalling policies, etc. The main feature of such standards
is the adoption of OVF as the base, to meet the SPs
requirements and constrains, without an heavy translation
among different descriptor files. Another example of API
standardization process is the Open Cloud Computing Inter-
face (OCCI) standard [31]. The OCCI standard, is proposed
inside the Open Grid Forum (OGF), it should guarantee an
exposition of VIM capabilities, as depicted in Fig. 1 (API:
B). But it does not appear to be nor particularly flexible
neither oriented to SPs requirements. In this case it needs
a translation from OVF. All the standards presented above

are based on XML in order to guarantee the portability and
interoperability in heterogeneous systems.

In the following subsection we briefly describe the main
VIMs. Subsequently, we provide an in-depth description of
our CLEVER architecture.

C. Related Works

As we introduced in Section II and stated in [5], cloud
management can be performed at the lowest stack layer of
Fig. 1 as Virtual Infrastructure Management.

The project OpenQRM [17] is an open-source platform for
enabling flexible management of computing infrastructures.
It is able to implement a cloud with several features that
allows the automatic deployment of services. It supports
different virtualization technologies and format conversion
during migration. This means VEs (appliances in the Open-
QRM terminology) can not only easily move from physical
to virtual (and back), but they can also be migrated from
different virtualization technologies, even transforming the
server image. OpenQRM is able to grant a complete monitor
of systems and services by means of the Nagios tool [32],
which maps the entire openQRM network and creates (or
updates) its corresponding configuration (i.e., all systems
and available services). Finally, OpenQRM addresses the
concepts related to High Availability (HA) systems: virtual-
ization is exploited to allow users to achieve services fail-
over without wasting all the computing resources (e.g. using
stand-by systems).

OpenNebula [16] is an open and flexible tool to build
a Cloud computing environment. OpenNebula can be pri-
marily used as a virtualization tool to manage virtual in-
frastructures in a data-center or cluster, which is usually
referred as Private Cloud. Only the more recent versions of
OpenNebula are trying to supports Hybrid Cloud to combine
local infrastructure with public cloud-based infrastructure,
enabling highly scalable hosting environments. OpenNebula
also supports Public Clouds by providing Cloud interfaces
to expose its functionalities for virtual machine, storage and
network management.

Still looking at the stack of Fig. 1, other middlewares
work at an higher level than the VI Manager (High-level
Management) and albeit they provide high-level features
(external interfaces, security and contextualization) their
VI management capabilities are limited and lack VI man-
agement features: this type of cloud middlewares include
Globus Nimbus [18] and Eucalyptus [19].

Nimbus [18] is an open source toolkit that allows to turn
a set of computing resources into an Iaas cloud. Nimbus
comes with a component called workspace-control, installed
on each node, used to start, stop and pause VMs, implements
VM image reconstruction and management, securely con-
nects the VMs to the network, and delivers contextualization.
Nimbus’s workspace-control tools work with Xen and KVM
but only the Xen version is distributed. Nimbus provides
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interfaces to VM management functions based on the WSRF
set of protocols. There is also an alternative implementation
exploiting Amazon EC2 WSDL.

Eucalyptus [19] is an open-source cloud-computing
framework that uses the computational and storage infras-
tructures commonly available at academic research groups
to provide a platform that is modular and open to experimen-
tal instrumentation and study. Eucalyptus addresses several
crucial cloud computing questions, including VM instance
scheduling, cloud computing administrative interfaces, con-
struction of virtual networks, definition and execution of
service level agreements (cloud/user and cloud/cloud), and
cloud computing user interfaces.

III. THE CLEVER ARCHITECTURE

CLEVER aims to provide Virtual Infrastructure Man-
agement services and suitable interfaces at the High-level
Management layer to enable the integration of high-level
features such as Public Cloud Interfaces, Contextualization,
Security and Dynamic Resources provisioning.

Looking at the middleware implementations, which act as
High-level Cloud Manager [18], [19], it can be said that their
architecture lacks modularity: it could be a difficult task to
change these cloud middleware for integrating new features
or modifying the existing ones. CLEVER instead intends
granting an higher scalability, modularity and flexibility ex-
ploiting the plug-ins concept. This means that other features
can be easily added to the middleware just introducing new
plug-ins or modules within its architecture without upsetting
the organization.

Furthermore, analysing the current existing middleware
[17], [16], which deal with the Virtual Infrastructure Man-
agement, we retain that some new features could be added
within their implementation in order to achieve a system able
to grant high modularity, scalability and fault tolerance. Our
idea of cloud middleware, in fact, finds in the terms flexibil-
ity and scalability its key-concepts, leading to an architecture
designed to satisfy the following requirements: 1) persistent
communication among middleware entities; 2) transparency
respect to “user” requests; 3) fault tolerance against crashes
of both physical hosts and single software modules; 4) heavy
modular design (e.g., monitoring operations, managing of
hypervisor and managing of VEs images will be performed
by specific plug-ins, according to different OS, different
hypervisor technologies, etc.); 5) scalability and simplicity
when new resources have to be added, organized in new
hosts (within the same cluster) or in new clusters (within
the same cloud); 6) automatic and optimal system workload
balancing by means of dynamic VEs allocation and live VEs
migration.

Looking at Figure 2, we believe the existing solutions
lack a cloud Virtual Infrastructure able to implement all the
characteristics of each row. The big black dot in the cell
specifies the feature that the middleware has. CLEVER has

Figure 2. A comparison of CLEVER features VS other Cloud middleware
implementations

all the features listed, in fact CLEVER is able to manage
in a flexible way both physical infrastructures composed
of several hosts within a cluster and physical infrastruc-
tures composed of different “interconnected” clusters. This
task is performed ensuring fault tolerance while operations
are executed, exploiting particular methods which allow
the dynamic activation of recovery mechanisms when a
crash occurs. Furthermore, due to its pluggable architecture,
CLEVER is able to provide simple and accessible interfaces
that could be used to implement the concept of hybrid cloud.
Finally, it is also ready to interact with other different cloud
technologies supposing that their communication protocol or
interfaces are known.

IV. CLEVER REFERENCE SCENARIO

Our reference scenario consists of a set of physical
hardware resources (i.e., a cluster) where VEs are dy-
namically created and executed on the hosts considering
their workload, data location and several other parameters.
The basic operations our middleware should perform refer
to: 1) Monitoring the VEs behavior and performance, in
terms of CPU, memory and storage usage; 2) Managing the
VEs, providing functions to destroy, shut-down, migrate and
network setting; 3) Managing the VEs images, i.e., images
discovery, file transfer and uploading.

Considering the concepts stated in [4] and looking at
Fig. 1, such features, usually implemented in the Virtual
Infrastructure Management layer, can be further analyzed
and arranged on two different sub-layers: Host Management
(lower) and Cluster Management (higher).

Grounding the design of the middleware on such logical
subdivision and taking into account the satisfaction of all
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the above mentioned requirements, the simplest approach to
design our middleware is based on the architecture schema
depicted in Fig. 3, which shows a cluster of n nodes
(also an interconnection of clusters could be analyzed) each
containing a host level management module (Host Manager).
A single node may also include a cluster level manage-
ment module (Cluster Manager). All these entities interact
exchanging information by means of the Communication
System based on the XMPP. The set of data necessary to
enable the middleware functioning is stored within a specific
Database deployed in a distributed fashion.

Figure 3. CLEVER reference Scenario representation

Figure 3 shows the main components of the CLEVER
architecture, which can be split into two logical categories:
software agents (typical of the architecture itself) and the
tools they exploit. To the former set belong both Host
Manager and Cluster Manager:

• Host manager (HM) performs the operations needed
to monitor the physical resources and the instantiated
VEs; moreover, it runs the VEs on the physical hosts
(downloading the VE image) and performs the migra-
tion of VEs (more precisely, it performs the low level
aspects of this operation). To carry out these functions
it must communicate with the hypervisor, hosts’ OS
and distributed file-system on which the VE images
are stored. This interaction must be performed using a
plug-ins paradigm.

• Cluster Manager (CM) acts as an interface between
the clients (software entities, which can exploit the
cloud) and the HM agents. CM receives commands
from the clients, performs operations on the HM agents
(or on the database) and finally sends information to the
clients. It also performs the management of VE images
(uploading, discover, etc.) and the monitoring of the
overall state of the cluster (resource usage, VEs state,
etc.). Following our idea, at least one CM has to be
deployed on each cluster but, in order to ensure higher
fault tolerance, many of them should exist. A master

CM will exist in active state while the other ones will
remain in a monitoring state, although client messages
are listened whatever operation is performed.

Regarding the tools such middleware components exploit,
we can identify the Distributed Database and the XMPP
Server:

• Distributed Database is merely the database con-
taining the overall set of information related to the
middleware (e.g. the current state of the VEs or data
related to the connection existing on the Communi-
cation System). Since the database could represent a
centralized point of failure, it has to be developed
according to a well structured approach, for enabling
fault tolerance features. The best way to achieve such
features consists of using a Distributed Database

• XMPP Server is the “channel” used to enable the
interaction among the middleware components. In order
to grant the satisfaction of our requirements, it is able
to offer: decentralization (i.e., no central master server
should exist: such capability in native on the XMPP)
in a way similar to a p2p communication system for
granting fault-tolerance and scalability when new hosts
are added in the infrastructure; flexibility to maintain
system interoperability; security based on the use of
channel encryption. Since the XMPP Server also could
exploit the distributed database to work, the solution
enables an high fault tolerance level and allows system
status recovery if a crash occurs.

V. ARCHITECTURE DESIGN

In this Section, we will provide further details about
the internal structure of the two main software components
deployed on the cluster’s hosts (already pointed out in Fig.
3) analyzing the Host Manager and the Cluster Manager.
Moreover, the main results of our design process will be
presented using the UML description.

Figure 4 shows the internal organization of such CLEVER
components and how they are deployed on the reference
scenario already introduced.

The left part of the Figure points out the Host Manager.
As previously stated, such component lies in the lower part
of the VI layer of the stack and interacts with the OS of
each host of the cluster. The main modules composing the
Host Manager are described below.

• Monitor: Provides resource usage monitoring for each
host. The information are organized and made available
to the HM coordinator.

• Hypervisor Interface: is the middleware back-end to
the hypervisor running on the host’s OS. Different
virtualization technologies could be employed using
different plug-ins structure has to be developed.

• Image Manager: supplies to the Hypervisor Interfaces
the needed VE disk-image corresponding to a specific
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Figure 4. CLEVER deployment diagram

VE. Different plug-ins associated could be associated
to different data access/transfer methods.

• Network Manager: Gathers information about the
host network state. Manages host network (OS level)
according to the guidelines provided by the HM Coor-
dinator: dynamically creates network bridges, routing
and firewalling rules.

The Cluster Manager, depicted in the right part of Figure
4, lies in the higher part of the same stack layer of the Host
Manager and coordinates all the entities of the middleware
(i.e. the HMs). Its internal composition is described in the
following.

• Database Manager: interacts with the database em-
ployed to store information needed to the cluster han-
dling. Database Manager must maintain the data strictly
related to the cluster state.

• Performance Estimator: Analysis of the set of data
collected from the Coordinator, in order to compute
and provide a probable trend estimation of the collected
measures.

• Image Manager: manages both registrations and up-
loads within the Cluster Storage System of the VEs
disk-images. The Storage Manager is used to perform
the registration process of such files and manage the
internal cluster distributed file system.

As the Figure points out, both Host Manager and Cluster
Manager include a specific module named respectively Host
Coordinator and Cluster Coordinator. More specifically, the
Host Coordinator manages the communication between the
Host Manager internal modules while the Cluster Coordina-
tor performs the same task for the Cluster Manager modules.

Furthermore, the Host Coordinator and Cluster Coordina-
tor, exploiting the XMPP connection, allows the middleware
functioning by exchanging messages in a chat-like fashion:
as previously introduced, both Host Manager and Cluster

Manager(s) will attend a XMPP chat session for enabling
operation of resource monitoring, VEs allocation. The mid-
dleware back-end to the XMPP is represented by the Host
Coordinator and the Cluster Coordinator.

As will be better explained in the following, within
each component of the middleware, each module has been
designed according to a well-structured plugin fashion: this
allows a given module to be independent from the underlying
technologies of the hosts on which it is running, since the
best plugin will be employed and linked (dynamically) to
the corresponding module.

Figure 5, considering the reference scenario described
above, presents the whole use case diagram of the middle-
ware, highlighting the main offered services and involved
actors. The latter include Host Coordinator, Cluster Coordi-
nator, Operating System, Hypervisor, Client and (eventually)
Other Clusters. Starting from such diagram which describes
the middleware specification, the design process has been
refined using both activity diagrams, sequence diagrams and
other use case diagrams. The final result of such work has
been the definition of the whole system regarding the classes
(referring to the object oriented software development) of
each module on the CLEVER components.

VI. PROTOTYPE IMPLEMENTATION

In the current status of the work, a primitive prototype,
integrating some features of the whole architecture, has been
developed as far software classes implementing the basic
functionalities of the Host Manager and Cluster Manager
have been written using the Java programming language,
allowing middleware components interaction by means of
the XMPP protocol: the management of all the problems
related to identification, access, monitoring and control of
hardware resources in the Cloud Environment have been thus
addressed in the current implementation.
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Figure 5. CLEVER general use case diagram

As previously introduced, using the UML description we
achieved a deep description of the middleware behavior. The
design process has lead to the definition of a series of class,
packaged according to the deployment diagram of Fig. 4,
each referred to a different module of the middleware com-
ponents: currently, our set class consists of approximately
150 hundreds of classes and 50% of them have been fully
implemented.

Figure 6 depicts the class diagram of the Hypervisor Inter-
face module: we would like to underline that in our current
implementation, each module of both the HM and the CM
has been developed as a self-contained entity running into a
different OS process. Such approach ensures an higher fault-
tolerance level (since a failure of a single process/module
will be isolated) and increases the modularity of the whole
system. A drawback of such approach is related to the high
level of complexity introduced: since each module within
the middleware components represents a different process,
a specific (interprocess) communication method has to be
employed to ensure the interaction between all the modules.
According to the aforementioned plugin approach, our com-
munication method is based on a particular plugin referring
to Apache ActiveMQ [33] and Java Message Service.

According to the description reported in the Section III,

both the Host Manager and the Cluster Manager have been
implemented including a Java class which act as XMPP
client exploiting the Smack [34] set of libraries. By means of
such software module, our middleware components are able
to communicate each other exploiting the XMPP facilities
provided by the Ejabber XMPP server [35]. The latter
has been chosen due to its distributed and fault tollerance
features.

In order to manage VEs allocation, our implementation
of the HM components, includes a specific software module
whose aim refers to the interaction with the hypervisor run-
ning on the Host OS: such software practically implements
a plugin for the Hypervisor Interface of the Host Manager,
linking the Libvirt [36] set of libraries. Using the API offered
by libvirt, the plugin is able to start create and start virtual
environment on several hypervisor.

VII. CONCLUSIONS AND FUTURE WORKS

In this work, we described the design principles and the
preliminary prototype implementation of our cloud mid-
dleware named CLEVER: unlike similar works existing in
the literature, CLEVER provides both Virtual Infrastructure
Management services and suitable interfaces at the High-
level Management layer to enable the integration of Public

183

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-106-9



Figure 6. CLEVER: example of the hypervisor interface class diagram

Cloud Interfaces, Contextualization, Security and Dynamic
Resources provisioning within the cloud infrastructure.

Furthermore, thanks to its pluggable design, CLEVER
grants scalability, modularity, flexibility and fault tolerance.
We are working to further extend the middleware functional-
ities according to the reference UML model described in this
paper. Moreover, a set of tests is being executed to obtain a
comprehensive set of experimental results to deeply evaluate
the behavior of the middleware and its performance.
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