
Introducing a Dynamic Federation Model
for RESTful Cloud Storage

Yang Xiang
Rechenzentrum Garching

Max-Planck-Society
Garching, Germany

yang.xiang@rzg.mpg.de

Sebastian Rieger
GWDG

Max-Planck-Society
Göttingen, Germany

sebastian.rieger@gwdg.de

Harald Richter
Department of Informatics

Clausthal University of Technology
Clausthal-Zellerfeld, Germany

hri@tu-clausthal.de

Abstract—This paper presents a solution for RESTful cloud
storage in a dynamic identity federation. With dynamic federa-
tions, Cloud Service Providers are able to find Identity Providers
autonomously in the cloud in order to make services flexible,
scalable and interoperable. By combining a Representational
State Transfer architecture with SAML-based identity federation,
a distributed and decentralized cloud storage is provided which
allows users to access files via the Internet seamlessly and
transparently.

Keywords-Dynamic Identity Federation; REST; Cloud Com-
puting; Storage; SAML

I. INTRODUCTION

Cloud computing is a modern way to provide IT services as
a kind of commodity to customers via the Internet. In storage
clouds, which are a specialization of cloud computing, files
can be kept at different sites, and the user is able to mount his
virtual storage from any computer connected to the Internet
independently of which site actually hosts the data. This is
called transparent and seamless file access and it is usually
accomplished by offering a web interface to the user.

This paper introduces a new solution for authentication
and authorization (AA) for storage clouds which employ
dynamic identity federation. Its focus lies on contemporary
storage clouds such as Amazon S3 [1] and Google Storage
[2]. Both clouds are decentralized, web-based and use the
Representational State Transfer architecture (REST) [3] as
a communication framework between the server(s) of the
storage cloud and the users. Though having commonalities,
S3 and Google Storage are incompatible with each other. In
the following, a model for dynamic federation is described
that simultaneously supports multiple cloud service providers
(CSPs) by augmenting “RESTful“ storage clouds. Here REST-
ful means that the clouds have to be compatible with protocol
definitions and constraints according to REST. However, dif-
ferent storage cloud providers normally do not federate their
services, thus user files stored on a given provider will not
be accessible from another provider. The model which we
present here has the advantage that a user will be presented
with a single means of access which spans CSPs. Furthermore
the user has more flexibility and can change CSPs completely
or switch between CSPs temporarily at will. However, more
flexibility for the user also requires a faster establishment

of trust between user and CSP. Establishing, measuring and
predicting trust in an automatic manner is one of the targets
of our model. Please note that this model is not intended to act
as an identity management system, and that it is not limited
to storage clouds only.

Since decentralized AA, as used in identity federations,
offers a unified means of authentication and authorization
across different storage cloud providers, both S3 and Google
Storage can be accessed in a uniform manner. Here, it is
necessary to focus on web browser clients and on RESTful
file access together with virtual file systems as described by
the Storage Cloud Initiative of SNIA (Storage Networking
Industry Association) [4]. Our model follows this industry
standard and implements a unified AA for cloud-based storage
solutions.

A. State-of-the-Art

In recent years, RESTful web services have gained pop-
ularity and may be a potential alternative to SOAP solu-
tions [5][6]. Compared to SOAP, REST directly uses HTTP
methods to transfer data between client and server without
much protocol overhead. REST is less complex and thus
less resource-intensive than SOAP which is the reason why
it has gained interest over SOAP. REST data structures can
be encoded in HTML or XML, and RESTful web services
are easily understandable and human-readable since they are
reduced to a minimum and in plain text. S3, for example,
uses HTTP PUT, GET and DELETE methods in a RESTful
style to read, write and manage files via so-called buckets [1].
Access control, i.e., file access authorization is accomplished
by extra protocol data called authorization header that contains
all user credentials. This header and the REST-based file
access structure of S3 is shown in Figure 1 as an example.
Other cloud storage providers such as Ubuntu One [7] use
the same technique or even extend the REST functionality
by using WebDAV [8]. Regarding the prevalence of RESTful
applications in contemporary storage clouds, REST could
become a basis also for future clouds which is why our AA
system uses this technology. However, the RESTful approach
in S3 has two major drawbacks: First, the user needs a
special client or middleware that is able to create and send
the proprietary authorization header to the CSP. As a result,

86

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-106-9



Client

(1) requesting to store file a.jpg in bucket1

CSP

PUT /a.jpg HTTP/1.1
Host: bucket1.www.example.com
Authorization: AWS 123456789A...:eXaMPle=
Content-Type: image/jpeg
Content-Length: 10000
Expect: 100-continue
[object data]

HTTP/1.1 100 Continue
HTTP/1.1 200 OK
x-amz-id-2: eXaMPle
x-amz-request-id: 012345678ABC
Content-Length: 0
Connection: close
Server: AmazonS3

bucket1

a.jpg

(2) acknowledging successful file transfer

Web / Cloud

Figure 1. Basic access structure of Amazon S3

the interoperability between different CSPs is low. Second,
the user needs multiple credentials, one for every CSP he uses.
While the interoperability problem is being addressed by SNIA
in their CDMI standard [4], the multiple credential problem
still limits the simultaneous usage of different storage clouds.
Furthermore, if all users of a storage cloud are not under the
umbrella of the same scientific or commercial organization,
difficulties to authenticate and authorize them arise and the
following two problems have to be solved: How to authenticate
an individual user accessing the service anonymously from
the Internet? How to manage AA of thousands of users that
belong to different organizations which are all different cloud
customers? As a solution to these problems, an extension
to existing AA infrastructures is proposed that is based on
identity federation.

In an identity federation, a CSP does not have to care about
the user’s identity by itself. Instead, it delegates this task to a
so-called identity provider (IdP) which is responsible for the
user, and who acts as a user proxy. The idea is to augment the
identity management system of a CSP by the AA concept of
an identity federation. For this purpose, we suggest a “trust
estimation system” (TES) as a key stone of our model to
quickly establish and estimate the quality of the trust relation-
ship between CSP and user that computes numerical quantities
for the representation of trust and reputation. Our TES uses
SAML [9] for communication and can be easily incorporated
into a Shibboleth [10] IdP or SP. SAML was chosen because
it is widely supported by major service providers as their de-
facto AA standard.

The remainder of the paper is organized as follows: in Sec-
tion 2, related work is presented. In Section 3, the requirements
for identity federations that hold in storage clouds are defined.
Section 4 describes the set-up of the proposed dynamic identity
itself. Section 5 presents the TES and its implementation. In
Section 6, conclusion and future work are given.

II. RELATED WORK

There are efforts to combine the advantages of REST and
SAML. A US patent [11], for instance, describes a method
to securely invoke a REST API-call by means of a SAML

security token. With this method, a client obtains a security
token from an authentication server beforehand. When a user
sends a request to an application server to invoke a REST API-
call, authentication is performed by means of an HTTP-digest.
After successful authentication, the client computes a token
digest by using the security token it has received from the
authentication server, together with a NONCE (number used
once) and a time stamp from the application server. Finally, the
client sends this token digest back to the application server.
This method is considered good but not appropriate for the
environment of CSPs.

There are a few open source projects that are focusing to
provide cloud-based virtual file systems, for example iRods
and GridFS from mongoDB [12], beside the large com-
mercially available clouds Amazon S3 and Google Storage.
Furthermore, SAML-based solutions for identity federation
such as Shibboleth have been used already in several re-
search projects in order to provide federated AA to users of
iRods [13]. However, such AA is based on statically-federated
Shibboleth-implementations only, and the cloud storage is also
not RESTful in these projects.

III. REQUIREMENTS FOR IDENTITY FEDERATIONS IN
STORAGE CLOUDS

Large scientific and commercial communities typically have
a spatially distributed structure. The information and commu-
nication equipment may be disjoint and in part even incom-
patible between organizational branches. Different hardware,
operating systems and middleware may be in use, as well as
different storage techniques, either on the record level or the
file system level. Furthermore, different qualities in trust and
reputation may exist for users and user communities, as a result
of how they have behaved in the past. Regarding this situation,
there are several requirements for AA in storage clouds:

• AA should serve for multiple storage clouds simultane-
ously, and the designated AA mechanism should support
multiple users in each identity federation.

• There should be no central AA instance because this
would be not scalable and a single-point of failure as
well. A distributed AAI is needed instead.

• There shall be a mechanism for adding and removing
users dynamically for short-term projects which is similar
to virtual organizations (VOs) known from grid comput-
ing.

• Each home institute or subsidiary may use a different
AA system. For all institutes that are not willing to use
SAML, a backdoor solution should be available by means
of an AA gateway that translates local AA tokens into
SAML.

• AA should also work together with CSPs that do not
support entering the home organization of a user in the
CSP’s web form. As a consequence, direct file access
without a web form is needed. This means that the
global verification of locally known user names and
passwords must work under all circumstances. Therefore,
a mechanism is sought to automatically detect the user’s

87

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-106-9



home organization, instead of requesting him to select
manually his home organization in a web form as is
common in current practice.

• A trust estimation service (TES) is required which can
ensure that identity assertions truly come from an IdP as
a user proxy rather than from an intruder. The TES must
be resistant against several types of attacks.

• Users must be able to apply the same credentials they
gained from their home institute or subsidiary for access-
ing different CSPs (i.e., single sign-on).

• User credentials must not be transmitted beyond an
organizational border in non-encrypted form in order to
protect privacy. Furthermore, to make the communication
secure, data transfer between identity providers (IdPs)
and cloud service providers (CSPs) must be encrypted
to prevent user name and password phishing.

• Access to user files should be based on existing de facto
standards of storage clouds. Furthermore, AA should be
compatible with existing file system and file-backup tools.

In our opinion, these requirements lead to a need for a dynamic
federation model, where values for trust and reputation are
calculated quickly and automatically for each user and IdP.
More information about the means of calculating the trust and
reputation values can be found in Xiang et al. [14].

IV. IDENTITY FEDERATIONS

The following two subsections illustrate the advantages of
dynamic federations, as presented in this paper, over existing
static federation solutions.

A. Static Identity Federation

There are different types of static identity federations with
respect to the underlying software technologies. For example,
OpenID and Windows Card Space belong to the user-centric
category, while Shibboleth is an institution-centric system.
However, both categories exhibit the same problems which
are listed as follows:

1) There is substantial manual operator effort to maintain
existing identity federations which lies in the order of
O(n2), resulting from the fact that trust relationships
between every pair of CSPs and user must be defined.

2) Trust relationships are expressed by static values only.
This limits the cloud’s scalability since increasing the
number of users becomes very time-consuming.

3) It is difficult or impossible to dynamically connect
independent federations to form a confederation because
an entity from one federation does not know and hence
does not trust entities from the other federations.

4) If a major customer of a CSP wants to resell the service
he obtains from his CSP to his own sub-customers, then
the CSP has to add all sub-customers to its trusted IdP
list. No hierarchic linking is possible.

5) The costs of adding customers into an identity federation
increases substantially if customers join and leave the
cloud at a high rate. This is a hindrance for clouds to
sell storage as a commodity.

B. Dynamic Identity Federations

In a dynamic identity federation, a CSP does not need to
know an IdP beforehand. A trust relationship is created on
demand, and a corresponding trust value will be determined
on-the-fly. This is beneficial to those CSPs who want to
provide identity as a service (IDaaS) as a new business model
in cloud computing. CSPs which are specialized on IDaaS
act as an identity provider for other CSPs that want to sell
more elaborated services such as infrastructure as a service
(IaaS), platform as a service (PaaS), or software as a service
(SaaS). This means, CSPs for IDaaS bridge the gap between
end-customers and other CSPs that are specialized in IaaS,
PaaS or SaaS. As a result, a new business model may be
established since CSPs for IaaS, PaaS and SaaS can simply
delegate AA to an IDaaS provider. Hence, the 1:n relationship
of an existing static federation is reduced to a 1:1 relationship
in a dynamic federation as shown in Figure 2 . In Figure 3, the

CSP for IaaS,

PaaS or SaaS

CSP for IDaaS

tru
sts

truststrusts

trusts

IdP

IdP

IdP

Figure 2. CSP for IDaaS acts as an identity store for other CSPs

User 1.1

Organization 1

CSP 1
for Storage

CSP 2
for Storage

CSP k
for Storage

...

TES TES TES

TES

SPIdP 1

User 1.2 User 1.m

...

User n.1

Organization nTES

SPIdP n

User n.2 User n.m

...

...

Figure 3. AA for storage clouds serving multiple identity federations

dynamic identity federation and the TES for storage clouds are
illustrated. It supports AA for multiple storage clouds that in
turn serve multiple organizations or institutions which form a
dynamic federation. AA inside an organization or institution is
accomplished via local IdPs which are responsible for subsets
of users. The TES performs the communication between IdPs
and CSPs and computes trust values. in Figure 4, an arbitrary
organization i and a random user j inside of i are chosen as an
example scenario in order to explain the function of the TES.
In this figure, the individual protocol steps between user, IdP
and CSP are as follows:

1) User i.j shall be a customer of CSP k which has
electronically signed a contract with IdP i that all users
from organization i are allowed to access the storage

88

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-106-9



CSP k
for Storage

TES

TES

SPIdP i

User i.jOrganization i

6
.
A

c
c

e
s
s

d
o

n
e

1
.
A

c
c
e

s
s

R
e

q
u

e
s
t

3. Credential Request

4. Credential Entering

5. AA Grant

2. AA Request

Figure 4. AA protocol inside an identity federation with TES

service of CSP k. Now, user i.j is requesting access to
a file at CSP k.

2) Then, CSP k determines that IdP i is responsible for user
i.j by means of a dynamic discovery service (DDS) -
that is part of our TES - and asks IdP i for authentication,
instead of authenticating i.j by itself.

3) IdP i requests user i.j to enter his user name and
password.

4) User i.j supplies his username and password to IdP i.
5) After the IdP i has successfully authenticated user i.j

it will send a positive response back to CSP k. CSP k
may then request more attributes of user i.j from IdP i
for subsequent authorization.

6) Finally, the file access is executed by CSP k and the
operation is acknowledged positively or negatively to
user i.j.

After the first successful AA procedure, user i.j can access
his files without reentering his user name and password as
long as the HTTP session with the IdP persists. With identity
federation, CSPs and IdPs trust all entities in that federation
more or less, varying on their trust value. The trust value the
user’s IdP i has with respect to the user’s CSP k is estimated
by the TES.

V. IMPLEMENTATION OF DYNAMIC IDENTITY
FEDERATIONS WITH TES FOR RESTFUL CLOUD STORAGE

In the next two subsections, the structure of the TES will
be presented.

A. Extending Shibboleth with a TES

For our TES prototype, Shibboleth was chosen as a basis
because it is widespread and functional. Shibboleth is a
SAML-based framework for static identity federations and
consists of two parts, an IdP which is written in Java, and
a SP which is implemented in C++. It can be used as an
authentication module for Apache web servers. In Shibboleth,
the trust relationship between entities is established with static
meta data containing one or more X.509-certificates. To make
Shibboleth dynamic by exchanging meta data on demand and

in real time, Shibboleth is extended by a TES as shown in
Figure 5. The data flow of the new functionality is as follows:

User

TESSPCSP SPIdPTES

Trust
table

https://idp1.sam
ple.com/SSO

https://sp.sampl
e.com/sp

Entity-ID Trust value Location

0.5

1.0

...

...

https://idp1.sam
ple.com/SSO

https://sp.sampl
e.com/sp

Entity-ID Trust value Location

1.0

0.5

...

...

Trust
table

5

6

9
DNS

1

2

3

4

7

8

Figure 5. TES as a Shibboleth extension

1) When an end user accesses a CSP, he will be redirected
to a dynamic discovery service (DDS) which is a part
of our TES. He can then input his e-mail address (steps
1 and 2 in Figure 5).

2) After step 1, DDS/TES sends a query to the domain
name system of the Internet to obtain the Entity-ID of
the user’s home IdP (steps 3 and 4 in Figure 5).

3) The obtained Entity-ID of the user’s home IdP is used
as a search criterion in a table of the local TES, and
the local TES looks-up the corresponding end-location
of the home IdP (steps 5 and 6). Every end-location
is an Internet URL. For each IdP, which has already
been queried, an entry will exist. Beside the IdP’s end-
location, each entry contains a trust estimation value for
the IdP.

4) If the IdP can not be found in the trust table of the local
TES, or if its trust value is lower than a configurable
minimum, then the IdP is treated as not trustworthy, and
the local TES issues an error message to the end user. If
the IdP is found in the trust table, and if its trust value
is above the minimum level, then the IdP is treated as
trustworthy. Subsequently, the local TES sends a request
to the IdP’s TES in order to retrieve the IdP’s meta data
(steps 7 and 8).

5) Finally, the local TES forwards the IdP’s meta data to
the CSP (step 9).

The content of the trust table is propagated among the TESs by
using a self-developed protocol [14], which is similar to OSPF.
In doing this, the IdP’s meta data is retrieved and updated
dynamically by TES.

B. Using DNS NAPTR Record for Discovery Service

As described in the previous section, the Internet DNS is
used to resolve the Entity-IDs of IdPs which are URLs. Since
DNS is a distributed system, it matches the decentralized
nature of the dynamic identity federations proposed here.
In decentralized federations, each institution or organization
maintains the Entity-IDs of its IdPs in local name server(s).
That information is disseminated over the Internet to other
entities. When a user requests a CSP service, then he enters his

89

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-106-9



email address via a dedicated user client or a web browser, and
the DDS asks its local name server to resolve the Entity-ID of
the user’s home IdP. Although there is an existing approach for
this described procedure [15] using DNS SRV records accord-
ing to RFC 2782 [16], we chose another solution because DNS
SRV records are limited in their capability to map a service
onto a fully qualified URL. For example, DNS SRV records
cannot contain paths like “http://idp.aai.mpg.de/idp/”. Since
most Entity-IDs have URLs with paths included, we opted
for DNS NAPTR records instead, according to RFC 3403
and RFC 3404 [17]. Also OASIS [18] recommends NAPTR
records for resolving meta data via DNS.

A DNS query by means of NAPTR records is employed
to map pairs of URNs, URLs onto DNS domain names. The
DNS query in turn returns a record that has the following
data elements: a) Order, b) Preference, c) Flags, d) Services,
e) Regexp and f) Replacement. The elements of this list have
the subsequent meaning:

• Order field: A 16-bit unsigned integer specifying the or-
der in which a set of NAPTR records must be processed.

• Preference field: A 16-bit unsigned integer specifying the
order in which NAPTR records with equal order fields
should be processed. Records with a lower value in the
preference field should be processed before records with
a higher value.

• Flag field: A <character-string> containing control bits
for the rewriting and interpretation of the subsequent
fields following the flag field.

• Service field: A <character-string> that specifies the pa-
rameters for this service, including the delegation path.
The semantics of this field are service-specific.

• Regexp field: A <character-string> that contains a regular
expression which substitutes the original input string
obtained from the client to construct the proper domain
name for address resolving.

• Replacement field: Contains the next domain name to be
queried. Depends on the flags field.

An example of the NAPTR record is as follows:

$ORIGIN example . com .
IN NAPTR 100 10 " u " " a a i + i d p "
" ! ^ . ∗ $ ! h t t p : / / a a i . mpg . de / i d p / ! " .

This record has an order value of 100 and a preference of 10.
The flag “u” is a terminal symbol and indicates that the output
of the regular expression is a URI. The next field “aai+idp”
indicates that this is an AA service and that the record deals
with an IdP instead of a SP. The replacement field means that
a domain name such as “mpg.de” has to be replaced by the
full URL “http://aai.mpg.de/idp/”.

C. Implementation of a RESTful Storage Client

The TES is designed as an extension to Shibboleth which
requires a fully-featured web browser and interaction with the
end user. In the sign-on process, the Shibboleth SP uses a
so-called SAML HTTP POST profile [19] that needs support
from JavaScript on the client side to automatically return the

web form back to the IdP in order to get the user authentication
data. The same JavaScript functionality is used to transmit the
SAML assertion with one or more authentication statements
back to the SP [20]. This works fine with all current web
browsers that have JavaScript enabled. However, for some
RESTful API-calls, manual user interaction via a browser are
not possible. One solution to this problem is the enhanced
client and proxy (ECP) profile defined in SAML [19], but
ECP is currently offered only as an experimental extension
to Shibboleth, and it is limited to SOAP. Another solution
for transmitting the assertion back is an immediate URL-
encoding in a HTTP redirect request, but this is not supported
by Shibboleth [21]. Therefore, another method that does not
need JavaScript was chosen. Here, the HTTP-Response with
the SAML assertion is interpreted directly by the REST-client
without JavaScript functionality. The client extracts the content
of the web form using XPATH and forwards the assertion to
the SP. The entire data flow between client, IdP and the CSP
is depicted in Figure 6.

client
Shib Service Provider (SP)

Cloud Service Provider (CSP)

(1) requesting access to a storage resource

Home Organization
Identity Provider (IdP)

TES no

(2) redirect

(6) transfer of the assertion

and attributes

(authentication)

(authorization)

(4) redirect client to the discovered IdP

(3) send
IdP location

(5) HTTPS
Basic Auth

access
granted?

existing
session?

yes

yes

file access

GET /pics/a.jpg HTTP/1.1
Host: www.example.com
Authorization: dXNlcjpwYXNz

Figure 6. Data flow of federated access to cloud based storage solutions

As in Amazon S3, a base64-encoded authorization header
is included in the HTTP request from the client to the CSP.
The whole data flow comprises 6 steps which are described
below:

1) In step 1, the client transmits an access request for file
“a.jpg“, for example, via a RESTful HTTP message. Its
authorization header is compliant with the basic HTTP
authentication process described in [22] and therefore
uses HTTPS.

2) On the CSP side, first a check to determine if a session
exists is performed. If none exists then the HTTP request
is redirected to the TES. If a session already exists file
access is granted.

3) If there is no session then the user name contained in the
HTTP header (e.g., user@institute-a.mpg.de) is checked
by the TES to discover the user’s home organization and
his home IdP. After having found the user’s IdP, the TES
sends the IdP’s location to the CSP.

4) Subsequently, the client is redirected to the discovered
IdP.

5) If the client was not previously authenticated at the IdP
(no existing session at the IdP), the authorization header
is used to authenticate the client.

90

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-106-9



6) After a successful authentication, the IdP transmits a
response which contains the SAML assertion as a hidden
HTML input field (SAML HTTP POST profile). Since
our RESTful storage client may work independently
of a web browser, the value of the hidden input field
is extracted by using XPATH and forwarded to the
CSP with a POST request. If the authentication was
successful, the client is redirected again to the resource
“a.jpg“ which was requested by the end user, and the
data flow cycle is completed.

The delegation of AA to the IdP has an important advantage:
if a client accesses multiple cloud storage providers, within the
same session, the client does not need to authenticate again.
Hence, a single sign-on solution (SSO) is achieved. The same
holds for private clouds, as well as for services beside storage,
thus allowing for a flexible and comfortable exploitation of the
cloud paradigm.

VI. CONCLUSION AND FUTURE WORK

This paper describes the usage of dynamic identity federa-
tions together with a trust estimation system as an extension to
Shibboleth. Furthermore, the integration of dynamic federation
into a RESTful cloud storage environment is presented. A
dynamic federation model allows for the discovery of the
users’ home IdPs by means of DNS NAPTR queries. In a
distributed storage cloud, files are kept at different sites, and
it is necessary to enhance the user client for proper handling
SAML assertions. In our model, these assertions are contained
in the HTTP-response and do not require web browsers
which have JavaScript enabled. Furthermore, the model can
be used in private clouds and we are currently evaluating a
private storage cloud based on Eucalyptus Walrus [23] which
is Amazon S3-compatible. Our next goal is to modify the
existing client software and tools of Walrus to support fed-
erated authentication. Finally, because our proposed solution
is not yet able to provide virtual file systems for common
operating systems, future work is needed to adapt WebDAV
clients to virtualize the access to dynamically federated cloud
storage. Existing WebDAV clients support redirections without
problems, but the extraction of assertions and the handling
of the subsequent HTTP POST has still to be implemented.
Last but not least, authorization issues beyond the available
access control scheme of Shibboleth are not addressed yet. To
implement fine-grained access control lists on the file level,
e.g., according to the user attributes, it is necessary to integrate
dynamically federated storage clouds more closely with the
underlying operating systems.

REFERENCES

[1] “Amazon Simple Storage Service (Amazon S3).” [Online]. Available:
http://aws.amazon.com/de/s3/ [2010.06.05]

[2] “Google Storage for Developers - Developer’s Guide.” [Online].
Available: http://code.google.com/intl/en/apis/storage/docs/developer-
guide.html [2010.06.16]

[3] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[4] “Cloud data management interface,” SNIA Web Site, December 2010.
[Online]. Available: http://cdmi.sniacloud. com/ [2010.06.16]

[5] F. AlShahwan and K. Moessner, “Providing SOAP Web Services and
RESTful Web Services from Mobile Hosts,” in 2010 Fifth International
Conference on Internet and Web Applications and Services. IEEE,
2010, pp. 174–179.

[6] C. Pautasso, “REST vs. SOAP: Making the Right Architectural Deci-
sion,” in SOA Symposium, 2008, pp. 2009–01.

[7] “Ubuntu one.” [Online]. Available: https://one.ubuntu.com/ [2010.06.22]
[8] L. Dusseault, “RFC 4918: HTTP Extensions for Web Distributed Au-

thoring and Versioning (WebDAV),” RFC, IETF, June 2007., Tech. Rep.
[9] S. Cantor, J. Kemp, R. Philpott, and E. Maler, “Assertions and protocols

for the oasis security assertion markup language (saml) v2. 0,” 2005.
[10] “Shibboleth System.” [Online]. Available: http://shibboleth. internet2.

edu/ [2010.06.16]
[11] R. Lai and K. Chan, “METHOD AND APPARATUS FOR SECURELY

INVOKING A REST API,” Patent, Mar. 12, 2008, uS Patent App.
12/046,579.

[12] “Mongodb gridfs specification.” [Online]. Avail-
able: http://www.mongodb.org/display/DOCS/GridFS+Specification
[2010.06.15]

[13] “ASPiS: Architecture for a Shibboleth-Protected iRODS System.”
[Online]. Available: http://mykcl.com/iss/cerch/ projects/complet-
ed/aspis.html [2010.06.18]

[14] Y. Xiang, J. Kennedy, H. Richter, and M. Egger, “Network and Trust
Model for Dynamic Federation,” The Fourth International Conference
on Advanced Engineering Computing and Applications in Sciences.
IARIA, 2010.

[15] S. Rieger and T. Hindermann, “Dezentrales Identity Management für
Web- und Desktop-Anwendungen,” in Proc. 1. DFN-Forum Kommu-
nikationstechnologien, Kaiserslautern 2008. Gesellschaft für Informatik,
Bonn, 2008; S. 107-116.

[16] A. Gulbrandsen, P. Vixie, and L. Esibov, “RFC2782: A DNS RR for
specifying the location of services (DNS SRV),” RFC Editor United
States, 2000.

[17] M. Mealling, “RFC3403: Dynamic Delegation Discovery System
(DDDS) Part Three: The Domain Name System (DNS) Database,” RFC
Editor United States, 2002.

[18] S. Cantor, I. Moreh, S. Philpott, and E. Maler, “Metadata for the OASIS
Security Assertion Markup Language (SAML) V2. 0,” 2005.

[19] S. Cantor, J. Hughes, J. Hodges, F. Hirsh, P. Mishra, R. Philpott, and
E. Maler, “Profiles for the oasis security assertion markup language
(saml) v2. 0,” 2005.

[20] “SWITCH AAI Expert Demo.” [Online]. Available:
http://www.switch.ch/aai/demo/2/expert.html [2010.06.22]

[21] “Shibboleth Native SP Assertion Consumer Service.” [Online]. Avail-
able: https://spaces.internet2.edu/ display/SHIB2/NativeSPAssertion
ConsumerService [2010.06.22]

[22] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luo-
tonen, and L. Stewart, “RFC2617: HTTP authentication: basic and digest
access authentication,” Internet RFCs, 1999.

[23] “Walrus Storage Service.” [Online]. Available: http://open.
eucalyptus.com/wiki/EucalyptusStorage_v1.4 [2010.06.22]

91

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-106-9


