
Improving the Gradient Descent Based
FPGA-Placement Algorithm

Tobias Thiemann, Timm Bostelmann and Sergei Sawitzki

FH Wedel (University of Applied Sciences)
Wedel, Germany

Email: {inf103917,bos,saw}@fh-wedel.de

Abstract—In a previous paper of the authors, a gradient descent
based Field-Programmable Gate Array (FPGA) placement algo-
rithm was presented. It achieved similar results to the reference
(based on simulated annealing) regarding the bounding-box
quality, while being on average 3.8 times faster. However, the
critical path was significantly longer. The paper concluded by
pointing out several possible areas of improvement, which could
lead to better quality of the placement results and / or further
increases to placement speed. These different suggestions were
evaluated, and the results applied to the algorithm. This paper
explains the process and shows the final results of the improved
algorithm. The improvements lead to the final version of the
program being roughly 5.1 times as fast as the reference, while
also improving the bounding box cost by 1.27 %, as well as the
timing of the critical path by 16 %, when compared to the original
version.

Keywords–EDA; FPGA; placement; gradient descent.

I. INTRODUCTION
The work presented in this paper seeks to improve on the

results from the previous paper “Fast FPGA-Placement Using
a Gradient Descent Based Algorithm” [1], which described the
base algorithm. The underlying problem of netlist placement
for FPGAs can be roughly described as selecting a resource
cell (a position) on the target FPGA for every node of the given
netlist. Thereby, necessary constraints (e.g., not overlapping)
must be considered as well as quality constraints (e.g., the
length of resulting critical path).

To differentiate, which version of the algorithm is being
referred to, the terms Gradient-Place Original (GPO) and
Gradient-Place New (GPN) are used, where GPO refers to
the final version of the program from the original paper, while
GPN refers to the program, as improved in this paper. It should
be noted that the usage of GPN during the explanation of the
process does not refer to the final results, but to the results up
to that point, including the currently discussed improvement.
Only in Section VII, when the final results are presented,
does GPN refer to the final version. When just the term “the
program” is used it generally means that it applies equally to
the original and the improved version.

The rest of this work is organized as follows. In Section II,
the implementation of GPO is introduced in form of a short-
ened version of the implementation sections from the previous
paper [1] for easy reference. From Section III to Section VI,
the process of evaluating the various possible improvements
for GPN is explained and intermediate results are presented.
The changes made for each step are used for all following
steps, so each improvement is incremental to the previous. In

Section VII, the final version of GPN is benchmarked using
the Microelectronics Center of North Carolina (MCNC) set of
netlists [2], which were also used in the original paper. Finally,
in Section VIII, the results of this work are summarized and
a prospect to further work is given.

II. BACKGROUND
This section will give an overview of the different steps

in the implementation of GPO, which represents a shortened
version of the implementation sections from the previous
paper, purely for easy reference.

A. Preparation
GPO initially assigned a random starting position to each

node, which also included the nodes, which represent pins,
meaning that pin locations may also be somewhere in the
middle of the placement grid initially. These positions were
distributed over the placement area in continuous coordinates,
which means they do not represent a valid placement.

The coordinates are generated using a deterministic XOR-
Shift Pseudo-Random Number Generator (PRNG) [3] with a
static seed value. This means that multiple runs will generate
the same initial placement and hence have the same results.

B. Legalization
Since continuous coordinates are used, GPO performs a

legalization step for each iteration, to assign a valid position
to each node. This is necessary since node positions during
training can be anywhere on the placement grid, and there
might be an arbitrary number of nodes occupying the space
of a single cell of the placement grid. The function of the
legalization is shown schematically in Figure 1 and Figure 2,
where the first shows the current position of all nodes, and the
second shows the valid positions for the nodes, as determined
during legalization.

The concrete approach is a simplified version of the legal-
ization, as presented in the work of Gort and Anderson [4].
Their algorithm works in two steps:

1) Begin with single cell regions, determine all nodes
that currently occupy that region, and extend the
regions outwards, merging with neighboring regions,
until all nodes could fit into the extended region.

2) Recursively split the resulting region(s) into halves,
and assign nodes to the new halves, depending on
their exact position, while making sure no split region
overfills.

12Copyright (c) IARIA, 2020. ISBN: 978-1-61208-823-5

CENICS 2020 : The Thirteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

I/O-Node

Logic-Node

I/O-Cell

Logic-Cell

Figure 1. An exemplary placement during the optimization. The nodes are
the elements of the netlist that need to be placed on the resource cells of the

FPGA.

I/O-Node

Logic-Node

I/O-Cell

Logic-Cell

Figure 2. Legal placement determined by legalization step. The nodes are
the elements of the netlist that need to be placed on the resource cells of the

FPGA.

GPO uses only the second step, to simplify implementation,
as well as to potentially save on time for the legalization. Con-
cretely, the first step was dropped, since it would often result in
the worst case scenario, where regions are extended until there
is a single large region spanning the entire placement grid.
Directly starting with that single large region instead reduces
complexity, while also cutting out the time required to compute
that single region.

C. Gradient Calculation
For the gradient calculation GPO utilizes a simple cost

function based on the bounding boxes of the separate nets that
a node is connected to. This cost function, when expressed for
a specific node, is concretely:

Ci = α2 ·
∑
n∈Ni

(
eα1 ·(xi−maxx (n)) + eα1 ·(minx (n)−xi)+

eα1 ·(yi−maxy (n)) + eα1 ·(miny (n)−yi)
) (1)

where xi and yi describe the x and y coordinates of the
current node, Ni describes the set of all nets that the node is

connected to and minx , maxx , miny and maxy are the minimal
and maximal coordinates of the given net, i.e., the bounding-
box. To speed up calculations the bounding boxes of the nets
are determined in a separate step before the gradients are
calculated.

The parameters α1 and α2 affect the exact shape of the cost
function. α1 determines, how large the distance between a node
and the bounding-box can be before the node’s effect on the
cost function becomes negligible, as well as the steepness of
the gradients of nodes close to the border. α2 is a simple scaling
factor, which allows increasing or decreasing the weight of the
gradients relative to the legalization.

This cost function ensures that gradients will be contin-
uous, and that nodes will have at least a small gradient for
each net they are connected to (unless the node is exactly in
the middle of the net), whereas a cost function using only
the borders of the net as a hard threshold would cause very
sporadic gradients and affect only a tiny proportion of the
nodes.

The gradients for a node in x- and y-direction, based on
(1), can then be calculated as:

dCi

dxi
= α1α2 ·

∑
n∈Ni

(
eα1 ·(xi−maxx (n)) − eα1 ·(minx (n)−xi)

)
(2)

dCi

dyi
= α1α2 ·

∑
n∈Ni

(
eα1 ·(yi−maxy (n)) − eα1 ·(miny (n)−yi)

)
(3)

The exemplary plot in Figure 3, assuming a net with the
boundaries minx = 1, maxx = 7 and α2 = 1, helps visualizing
the effect of α1 on the gradient. In general, it holds that nodes,
which are near the bounding-box of their containing net, have a
gradient of ±α1α2, whereas the gradients of nodes with a larger
distance to the bounding-box are much lower. Consequentially,
nodes closer to the bounding-box will be moved more during
the next optimization step.

D. Optimization
GPO uses the Adam optimization algorithm, introduced by

Kingma and Ba [5], to apply the calculated gradients to the
nodes. This algorithm does not just simply use the gradients
as they are for each individual iteration, but forms a running
average of the gradients, generally called the first moment,
as well as a second moment, which is used to scale the
gradients, such that changes made by the optimizer are neither
excessively large, nor too small to matter. It consists of the
following calculations, which are performed individually for
the x- and y-axis of each node:

mt = β1 · mt−1 + (1 − β1) · gt Running avg. 1st moment

vt = β2 · vt−1 + (1 − β2) · g
2
t Running avg. 2nd moment

m̂t = mt/
(
1 − βt1

)
Bias corrected 1st moment

v̂t = vt/
(
1 − βt2

)
Bias corrected 2nd moment

φt = φt−1 − Sa · m̂t/

(√
v̂t + ε

)
Update of the variable

The term gt refers to the corresponding gradients, as calculated
in the previous step. The constants β1 and β2 define how
fast the moving averages of the first and second moments
change. Sa refers to the step size, which allows for compromise
between stability and speed of convergence. High values may
approach a minimum quickly, but then fail to converge on
it, whereas a too small step size results in good convergence

13Copyright (c) IARIA, 2020. ISBN: 978-1-61208-823-5

CENICS 2020 : The Thirteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

-4

-3

-2

-1

 0

 1

 2

 3

 4

 1 2 3 4 5 6 7

C
os

t-
G

ra
di

en
t

X Coordinate

α1 = 1
α1 = 2
α1 = 3
α1 = 4

Figure 3. Exemplary plot of possible gradients for the x coordinate of a node, assuming a net with the boundaries minx = 1, maxx = 7 and α2 = 1.

towards a minimum, but may severely increase time required
for the algorithm to converge. ε is a small bias used to prevent
divisions by zero during the variable update step.

The paper by Kingma and Ba suggests the values Sa =
0.001, β1 = 0.9 and β2 = 0.999, which were determined by
testing them on a few machine learning applications. GPO
on the other hand uses slightly different values, which have
been determined experimentally. These concrete values are
Sa = 1.5, β1 = 0.96 and β2 = 0.998. The difference can
be explained by the difference in the context they are used.
Especially the step size usually needs to be much smaller in
machine learning applications, since a tiny change there may
already cause massive differences in the result, whereas a tiny
movement of a node in the context of the placement problem
has basically no effect.

The bias correction of the two moments is required during
the first few iterations, where the first and second moment
are still very low, which would lead to disproportionally small
changes for these iterations.

E. Placement Phases
The actual placement in GPO is performed as a certain

number of iterations over several phases, where each iteration
performs all the mentioned steps in the same order. Each phase
may slightly adjust certain parameters, which was deemed
sensible to improve early arranging and later final detail
placement. The different placement phases are as follows:

1) Presorting (5000 iterations)
In this phase, all nodes are moved with a high step
size in the general direction of their final position.

2) Grid placement (1000 iterations)
In this phase, the factor for the legalization is in-
creased. Thereby, the nodes are pulled harder towards
legal positions. This is necessary – for example – to
prevent input and output cells from getting stuck in
the logic block section of the architecture, as well as
making sure that Configurable Logic Blocks (CLBs)
spread over the entire placement area.

3) Initial detail placement (1000 iterations)
In this phase, the global step-factor is reduced from
1.0 to 0.1. This influences the legalization and the
optimization equally, so that the balance between
those two steps is not changed. However, the move-
ments are much smaller, resulting in more localized
changes.

4) Detail placement (5000 iterations)
In this phase, the step-size of the optimization is
reduced linearly from 1.5 to 0.3 (20 percent of its
original value). This means that the relative effect of
the legalization slowly becomes dominant over the
optimization, forcing nodes closer to their final posi-
tion and allowing only small, final node movements
towards the end.

5) Final placement (100 iterations)
In this phase the influence of the optimization is re-
duced to zero, so that effectively only the legalization
is active. Hence, the nodes are moved to their final
position in the grid.

III. OPTIMIZATION OF RUN TIME BY UTILIZING
MULTITHREADING

As previously noted, some steps of the general algorithm
have no sequential dependencies and as such can be trivially
executed in parallel. These are specifically:

1) Calculation of the bounding boxes and costs of the
separate nets.

2) Calculation of the gradients for each node.
3) Applying the gradients for each node.

The calculation of legal positions for each node has an inherent
sequential component, since it requires sorting of the list of
nodes inside a given region, which prevents it from being fully
parallel. However, it is still be possible to run recursive calls in
parallel, since separate regions have no dependencies on each
other.

The framework OpenMP [6] was used to evaluate the effect
of using multiple threads for the different operations, without

14Copyright (c) IARIA, 2020. ISBN: 978-1-61208-823-5

CENICS 2020 : The Thirteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

TABLE I. LIST OF THE TIMINGS FOR THE SEPARATE STEPS THAT OCCURRED WHEN USING SEPARATE OPENMP TASKS FOR THE RECURSIONS OF THE
LEGALIZATION FUNCTION, GIVEN A SPECIFIC THRESHOLD

Thresh. Legal. (µs) Calc. Grad. (µs) Apply Grad. (µs) Calc. Nets (µs) Time Real (s) Time User (s) Time Sys (s)

- 3159.3 1272.0 63.9 268.3 57.92 57.88 0.030

2 2866.3 1263.1 63.9 259.7 54.34 128.6 47.74

4 2610.6 1244.5 64.3 268.3 51.15 118.7 39.23

8 2258.9 1231.5 64.4 250.7 46.55 105.5 27.53

16 2006.1 1229.5 64.2 246.7 43.38 97.21 18.92

32 1646.1 1251.0 64.3 262.4 39.52 84.48 7.064

64 1524.3 1228.6 65.5 253.8 37.63 78.59 3.427

128 1458.3 1218.0 64.4 240.2 36.56 75.05 1.324

256 1455.1 1219.9 64.7 243.3 36.59 74.00 1.244

512 1467.4 1226.5 64.6 248.2 36.84 73.89 1.221

1024 1503.4 1226.4 64.9 251.3 37.34 73.41 1.147

2048 1605.2 1257.5 65.7 251.1 38.91 72.91 1.302

4096 1744.5 1305.7 67.8 259.5 41.31 71.46 0.909

8192 2415.1 1300.4 67.4 250.7 49.12 70.79 0.795

requiring major changes to the program structure. OpenMP is a
combination of compiler features and a run time library, which
several modern compilers offer support for, and allows for
easy parallel execution of certain types of loops and program
constructs, without the need to explicitly include primitives for
thread creation and synchronization. This is achieved by an-
notating loops or certain function calls with OpenMP-specific
pragmas, which the compiler automatically translates into the
required threading primitives. OpenMP internally employs a
thread pool, with a specified number of worker threads, to
avoid the overhead of frequent thread creation. It also allows to
explicitly specify the number of threads to use for an operation,
as well as the scheduling mode. Unless otherwise specified,
OpenMP will default to the “Active” scheduling mode, which
causes idle threads to busy-wait on the work queue. This
potentially reduces the delay before a thread starts working
on a task, but will also waste a lot of Central Processing Unit
(CPU) time. The alternative is the “Passive” scheduling mode,
where all idle threads are sleeping and have to be woken up
once work is available.

While intuition may suggest that using more threads to
accomplish a task will always cause faster processing, this
is usually far from the truth in real applications. As outlined
above, not all parts of the program can be run in parallel,
which means that execution can never be faster than these
portions. Next, thread creation incurs a certain overhead, as
do the required synchronization primitives to make sure that
all threads finished a specific workload. Lastly, there are often
non-deterministic effects between threads, caused by a variety
of factors, including the scheduling of threads performed by
the Operation System (OS), as well as caching and speculative
behavior employed by the CPU.

As a measure for the effect of the multithreading, various
timing data were recorded. For each of the 12,000 iterations the
duration for each of the steps was noted, and combined into
an average at the end. Additionally, the time for the overall
placement, as well as the CPU time attributed to the user and
the system were noted, where the CPU time is effectively the
time spent computing times the number of CPU cores that were
busy during that time, and can thus exceed the real execution
time. For all tests OpenMP was set up to use a maximum of
eight threads, matching the number of hardware threads of the
CPU used for the measurements, and the passive scheduling

mode. The netlist used for the measurements was the “clma”
netlist, which contains 8383 CLBs, 62 inputs and 82 outputs,
and represents the largest netlist in the benchmark for the
previous results, which means improvements should be most
obvious on this netlist.

A. Effect on the legalization step
The legalization step was evaluated first, since it represents

the majority of the time spent on each iteration. OpenMP is
used here for parallel execution of recursive calls, as previously
mentioned. This is guarded by a threshold value, depending
on the number of nodes left in the region. The threshold
value is used as a compromise between how many threads
can work on the recursive calls, and the overhead that is
incurred on task creation and thread interaction. Concretely,
a low threshold value means potentially higher parallelism,
while a high threshold means lower overhead.

To achieve the parallel execution, the separate recursive
calls are specified as OpenMP “tasks”, which are scheduled
by OpenMP and will be distributed to any free threads. This
means that the maximum number of threads still applies.

Table I shows the resulting timing data of the entire
algorithm relative to the specified threshold value. The first
row designates the baseline timing, when the entire program
runs with a single thread. It can be seen that even at a threshold
of two, the program is slightly faster than the baseline, but it
is also rather clear that there is a lot of overhead, given the
system CPU time. Additionally, this series of measurements
also shows how independent steps are affected by the use of
threading, even though this effect can not be properly qualified,
since it does not seem to correlate with the overall run time
of the legalization step.

When looking at the results, a threshold of 128 yields the
lowest real time for a placement. However, at a threshold of
256 the real time used is only 30 ms higher, while requiring
about a second less of user CPU time. As such, the threshold
of 256 was chosen as the ideal value, and will be used during
all following tests.

B. Calculation of the gradients
The next largest part of the duration of each iteration is

the calculation of the gradients for each node. This calculation
can be performed independently for each node, which means
a simple OpenMP loop construct can be used. These allow

15Copyright (c) IARIA, 2020. ISBN: 978-1-61208-823-5

CENICS 2020 : The Thirteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

TABLE II. LIST OF THE TIMINGS FOR THE SEPARATE STEPS THAT OCCURRED FOR DIFFERENT SIZES OF THE WORK GROUPS FOR THE GRADIENT
CALCULATION STEP

Work size Legal. (µs) Calc. Grad. (µs) Apply Grad. (µs) Calc. Nets (µs) Time Real (s) Time User (s) Time Sys (s)

2 1492.2 374.3 73.8 241.6 26.84 87.49 1.350

4 1466.8 350.3 73.9 243.9 26.52 85.44 1.443

8 1465.0 336.1 75.8 245.9 26.39 84.15 1.392

16 1470.4 320.2 76.8 245.7 26.30 83.72 1.276

32 1484.6 318.7 77.6 244.7 26.38 83.99 1.462

64 1501.9 328.2 79.5 248.4 26.82 85.00 1.346

128 1501.1 335.6 80.2 252.3 26.96 84.81 1.553

256 1528.8 354.5 81.6 254.2 27.56 85.46 1.554

512 1524.0 378.6 81.3 252.9 27.77 86.18 1.333

TABLE III. LIST OF THE TIMINGS FOR THE SEPARATE STEPS THAT OCCURRED FOR DIFFERENT SIZES OF THE WORK GROUPS FOR THE NET INFORMATION
CALCULATION STEP

Work size Legal. (µs) Calc. Grad. (µs) Apply Grad. (µs) Calc. Nets (µs) Time Real (s) Time User (s) Time Sys (s)

2 1454.8 316.5 79.6 151.1 24.99 89.19 1.625

4 1459.4 315.5 80.1 126.6 24.83 86.98 1.970

8 1460.4 313.0 79.7 112.4 24.58 86.43 1.496

16 1458.1 316.6 80.3 105.8 24.50 85.94 1.737

32 1459.0 321.0 80.3 105.0 24.59 85.66 1.591

64 1460.4 325.2 80.5 107.2 24.67 85.45 1.810

128 1453.2 326.5 81.0 108.1 24.67 85.24 1.558

256 1458.9 322.5 80.3 109.2 24.62 85.67 1.665

512 1467.9 318.1 80.7 112.6 24.74 86.13 1.485

specifying the size of the work groups to be handled per thread,
where the implications of the work group size are similar to
the tasks for the recursive calls: Smaller work groups allow for
higher parallelism, while larger work groups reduce the overall
overhead. These work groups will be dispatched to available
threads on a dynamic basis, meaning that if one thread happens
to be scheduled more often by the OS, it may be able to accept
two workloads in the same time as another thread accepts a
single one.

The results for different work group sizes are shown in
Table II. The row with threshold value 256 from Table I serves
as the baseline in this case, since these results are supposed to
improve on the ones for the legalization.

The difference between the worst and best times is much
less pronounced here, compared to the results for the legaliza-
tion step. At the same time, it is somewhat surprising that
the entry with the lowest real time is with a work group
size of just 16. This seems to counter the intuition that larger
work groups should allow threads to work without interruption,
and consequentially with lower overhead, but also mirrors
the previous statement that there are various non-deterministic
cross-thread effects.

The noted work group size of 16 was consequentially
chosen as optimal and will be kept for successive tests.

C. Calculation of net information
The procedure used to evaluate the effect of multithreading

on the net information calculation step is identical to the
gradient calculation step. As before, these results attempt to
improve upon the previous ones, so the row with a work group
size of 16 from Table II now serves as the baseline. Table III
shows the results for the net information calculation.

As can be seen the difference between the highest and the
lowest real time measurement is even smaller than previously.
However, the measurements are on average 2.1 seconds lower

than the optimal duration for the gradient calculation step.
The lowest real time measurement for this step, if only by

a small margin, is again with a work group size of 16.

D. Application of gradients to node position
Lastly, the application of the computed gradients was

evaluated, again identically to the methodology applied during
the last two steps. This step usually only takes a low percentage
of the total time per iteration, so it is to be expected that the
impact of using multiple threads will also be small.

The results are presented in Table IV. As before, the
average real time duration is lower than the optimal run of
the previous step, by about 1.1 seconds. In this instance, the
lowest real time is for a work group size of 128. This can
be explained by the fact that during the gradient application,
each iteration of the loop performs very few memory accesses
and much fewer operations in general, compared to the other
steps. Here the duration would be dominated by the overhead
for low work group sizes.

Interestingly, the user CPU time decreases by nearly
1.5 seconds, while in all other cases it increased when utilizing
multiple threads. This might again be explained by the behav-
ior of idle threads and general thread scheduling, since it is
likely that there would be a certain amount of time wasted by
the idle worker threads in OpenMP’s thread pool, during the
times, where the placement program uses only a single thread.

E. Summary
Overall we can observe a noteworthy improvement, where

the real time requirement for a placement is reduced by
59.9 %, while increasing the required amount of user CPU
time by about 45.9 %. At the same time the system CPU time
increases by 5340 %, which is to be expected for heavy use of
multithreading and thread synchronization.

16Copyright (c) IARIA, 2020. ISBN: 978-1-61208-823-5

CENICS 2020 : The Thirteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

TABLE IV. LIST OF THE TIMINGS FOR THE SEPARATE STEPS THAT OCCURRED FOR DIFFERENT SIZES OF THE WORK GROUPS FOR THE GRADIENT
APPLICATION STEP

Work size Legal. (µs) Calc. Grad. (µs) Apply Grad. (µs) Calc. Nets (µs) Time Real (s) Time User (s) Time Sys (s)

2 1406.2 308.0 113.0 97.7 24.14 89.65 1.780

4 1411.8 307.9 76.7 97.1 23.76 86.92 1.726

8 1417.9 306.2 55.0 97.6 23.56 85.25 2.039

16 1415.0 316.0 44.4 99.7 23.51 84.29 2.066

32 1418.2 319.8 40.8 100.6 23.61 84.44 1.801

64 1418.9 313.3 39.3 102.2 23.52 83.90 2.070

128 1414.1 304.7 39.1 99.3 23.24 84.45 1.632

256 1421.8 311.2 40.9 99.7 23.45 84.45 1.770

TABLE V. AVERAGE BOUNDING BOX COSTS AND STANDARD DEVIATION
(IN PERCENT OF THE AVERAGE) OF THE RANDOM PLACEMENT FOR THE

DIFFERENT NETLISTS

Net Avg. BB StdDev. (%)

s298 218.55 0.38

ex5p 174.03 0.41

apex4 191.11 0.43

alu4 202.73 0.44

misex3 201.05 0.59

tseng 100.16 0.64

elliptic 495.85 0.72

e64-4lut 30.57 0.80

seq 266.96 0.88

bigkey 202.97 0.99

diffeq 157.71 1.05

frisc 592.76 1.07

dsip 180.31 1.11

spla 664.16 1.26

apex2 290.97 1.34

s38584.1 767.97 1.35

s38417 801.45 1.37

pdc 965.86 1.48

ex1010 730.25 1.83

clma 1617.5 1.97

des 273.99 2.23

IV. IMPROVEMENT OF THE INITIAL PLACEMENT
As already explained, GPO just uses a random initial

placement, which means that all CLBs and pins are placed at
random, non-integer positions on the placement grid. For this,
a simple PRNG with a constant seed is used, so the placement
would stay identical between runs.

Of course the initial placement has a measurable effect
on the end result, which will also affect later attempts to
optimize the parameters. To get an idea of the magnitude
of that effect, each netlist of the benchmark set was run
through GPN multiple times, where the seed for the PRNG was
changed each time to generate a different initial placement.
Table V shows that the resulting bounding box cost values
have a standard deviation of up to 2.23% of the mean, with
different netlists being affected in different amounts. The most
consistently placed netlist showed just 0.38% deviation. This
poses a problem, when the different attempts at optimizing
the algorithm are meant to get within the last percent of the
bounding box cost that can be reached using Versatile Place
and Route (VPR) [7].

This points out two facts:
1) The placement algorithm is, as is to be expected, not

generally capable of finding the global minimum.
2) The overall quality of the placement could be im-

proved by choosing a better initial placement.
As a first attempt a series of tests was run to see, if the
bounding box cost of the initial random placement correlates
with the cost of the end result. For this the nodes were placed
randomly and a legalization pass was performed. After all
nodes moved to their legal positions, the bounding box cost
was calculated and noted. The exemplary results for the netlist
“alu4” are shown in Figure 4 and turned out to have an R2 of
0.00966 for a linear regression, which indicates no correlation.
Thus, this measure can not be used to predict the quality of
the final placement.

Next, the initial random placement was run through a low
number of iterations (500) before the initial bounding box cost
calculation, to see if this would give a more clear result, which
is shown in Figure 5. As the plot shows, the results also do
not correlate, with an R2 of just 0.042 in this case, slightly
better than the previous attempt, but still insignificant.

A. Starting placement via Min-Cut approach
Instead of initially placing all nodes at random, an approach

inspired by the min-cut [8] problem was chosen. The place-
ment area is split into two regions, and all nodes assigned
to either one region or the other, such that neither region is
overfilled. Then, for each node, the number of connections
within the node’s region is determined, as well as the number
of connections to the other region. The two sums are then
subtracted and assigned to the node as a “delta” value, i.e. an
indication how many more connections would become internal,
if the node would be moved to the other region. The following
steps are then performed in a loop:

1) The lists of nodes and their delta values for both
regions are sorted

2) One (and only one) of the following steps, selected
in the given order:

a) If region 2 is not full and the highest delta
from region 1 is > 0 then move that node to
region 2

b) If region 1 is not full and the highest delta
from region 2 is > 0 then move that node to
region 1

c) If the highest delta from region 1 is higher
than the negation of the highest delta from
region 2 then swap the corresponding nodes

3) The delta value of the moved node is updated, as well
as for all nodes, which were connected to the node
that was moved

17Copyright (c) IARIA, 2020. ISBN: 978-1-61208-823-5

CENICS 2020 : The Thirteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 200.5

 201

 201.5

 202

 202.5

 203

 203.5

 204

 204.5

 594 596 598 600 602 604 606 608 610 612

B
B

 C
o
st

 E
n
d

BB Cost Start

Figure 4. X/Y plot of the data points gathered to see if the BB cost of the initial random placement correlates with the end result

 200.5

 201

 201.5

 202

 202.5

 203

 203.5

 204

 204.5

 241 242 243 244 245 246 247 248 249

B
B

 C
o
st

 E
n
d

BB Cost Start

Figure 5. X/Y plot of the data points gathered to see if the BB cost after just 500 iterations correlates with the end result.

Step c) may switch nodes, even if one of the nodes has a
negative delta, as long as the sum of the delta values is still
positive. The loop is repeated until none of the steps a) through
c) can be performed. In that case, a local minimum for the
number of connections between regions was found.

Once this is the case, both areas are recursively split
again and the same steps performed separately for the new
regions. This is repeated until each remaining region ultimately
only contain a single node, in which case that node will be
placed at the resulting position. Since this recursion scheme
functions much in the same way as the legalization step,
the same multithreading improvement can be applied, even
though the majority of the work happens in the initial region,
which contains all nodes. Subdivided regions will contain a
higher percentage of nodes, which have connections outside

of both regions, and which will not be counted during the
delta calculation.

The results for the nets, when placed after an initial min-
cut run, are shown in Table VI, together with the relative
percentage of the average bounding box cost for the random
placement. As can be seen nearly all results are very close to
the average, and most are even slightly below, with the “s298”
net being the only outlier, having a final bounding box cost
9.64,% above the random average.

While not a major improvement, this means that the
min-cut initial placement is slightly better than the random
placement on average, and thus also avoids situations where
the initial random placement may be detrimental to the quality
of the final placement.

18Copyright (c) IARIA, 2020. ISBN: 978-1-61208-823-5

CENICS 2020 : The Thirteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

TABLE VI. BOUNDING BOX VALUES FOR ALL NETS AFTER PLACEMENT,
WHEN THE DESCRIBED MIN-CUT APPROACH IS USED FOR INITIAL
PLACEMENT, ALSO RELATIVE TO RANDOM INITIAL PLACEMENT

Net Final BB Rel. Rand. Avg. (%)

s298 216.3 109.64

ex5p 173.6 99.76

apex4 190.3 99.58

alu4 201.5 99.40

misex3 202.0 100.47

tseng 101.7 101.54

elliptic 503.5 101.54

e64-4lut 30.6 100.11

seq 266.2 99.72

bigkey 202.8 99.92

diffeq 156.3 99.11

frisc 566.9 95.64

dsip 177.8 98.61

spla 653.8 98.44

apex2 292.7 99.58

s38584.1 753.2 98.08

s38417 793.9 99.06

pdc 962.6 99.66

ex1010 725.3 99.32

clma 1592.5 98.45

des 276.8 101.02

V. IMPROVING THE TIMING OF THE PLACEMENT RESULTS
Another issue, which was rather common for GPO, was

the path delay of the placed and routed netlists, which was
on average about 46 % higher than results produced by VPR.
This is due to the fact that VPR uses not only the previously
presented cost metric for the bounding box, but also uses a
metric for the timing behavior, to keep the critical path as
short as possible, which GPO did not.

To remedy this shortcoming a kind of path metric had to
be calculated. This was implemented by finding the maxi-
mum number of nodes preceding and following each node,
where an input has zero preceding nodes, and an output zero
following nodes respectively. Clocked logic elements act as
inputs/outputs respectively, since in terms of timing analysis
they break the critical path. These two measures are then
summed, if the node is not clocked, or the maximum of both is
taken if it is, to yield the path metric of that node, meaning that
all nodes directly on the critical path also have the highest path
metric. After all nodes have been processed the path metric of
all nodes is brought into the range [0; 1] by the simple formula

p′b = eα3 ·(pb−pM)

where pb is the previously calculated path metric, and pM is
the highest path metric found. Consequentially, nodes that are
on the critical path have a path metric of 1, whereas nodes
which are on an even slightly shorter path will have a very
low path metric. For example, if the path a node is on is four
nodes shorter than the critical path, its path metric will only
be 0.018 when α3 = 1, which means the node will have very
little impact on later calculations.

With the path metric depending only on the node difference
between longest and current path the drop-off is always similar
between netlists with different amounts of nodes and thus
different lengths of the critical path. A variant, where the path
metric uses the percentage of nodes on the path, relative to

the longest one, i.e. pb

pM
, would cause the drop-off to be much

smaller in netlists that have a much longer critical path. For
example in a netlist with a critical path of length 20, a node
on a path of length 19 would have a path metric of 0.369 with
the chosen function, whereas the ratio would still be 95 %,
giving too much importance to nodes not on the critical path.
Raising that ratio to some power would alleviate the effect, but
the power would have to depend on the length of the critical
path, otherwise the problem would just shift slightly.

The parameter α3 allows to change how quickly the path
metric decays. The higher the parameter is the fewer nodes
will be strongly affected by the path metric aspect, and vice
versa. However, if there are too many nodes being affected
by the path metric step, it stops being useful to stabilize the
critical path.

This path metric is then used during the gradient calcu-
lation. For every node, a few terms are calculated, based on
the nodes following and preceding it. The following formulas
describe the calculations for the nodes preceding the current
node, which are basically identical to the formulas for the
nodes following the current one.

gxp (n) =
∑

n2∈Nprev

(xn − xn2) · pn2 (4)

gyp (n) =
∑

n2∈Nprev

(yn − yn2) · pn2 (5)

wp(n) =
∑

n2∈Nprev

pn2 (6)

g′xp (n) = gxp ·
α4 · pn
wp(n)

(7)

g′yp (n) = gyp ·
α4 · pn
wp(n)

(8)

Nprev is the set of all preceding nodes, which are connected
to the given node. pn refers to the path metric of node n,
as previously calculated, so that gxp (n) and gyp (n) are the
weighted sums of position differences to all preceding nodes.
wp(n) is the sum of the path metrics of all preceding nodes, and
is used in g′xp (n) and g′yp (n) to normalize the gradient terms,
so that the terms between a node with very few preceding or
following nodes, and one with many are similar in magnitude.
g′xp (n) and g′yp (n) are then the final terms, which are added to
the gradients for the given node. The new parameter a4 allows
to control, how strong the effect of the path metric terms on
the node’s gradients should be.

After a few manual tests, a full test run was performed
using α3 = 0.75 and α4 = 0.2, the results of which are shown
in Table VII. The averages indicate that the bounding box cost
of the placement is overall still slightly worse than VPR, if only
by 1.36 %, but also improves on the results of GPO by 0.52 %.
The timing of the critical path is still noticeably worse than
with VPR, but improves on the previous results by 11.86 %.

Since the manipulation of gradients for the path length
aspect affects the general placement flow, optimization of the
parameter α4 by itself is not sensible. Thus, the final choice
of the parameter α4 will be decided during the general attempt
to optimize the various parameters of the algorithm.

VI. OPTIMIZATION OF PARAMETERS
Since, so far, the various parameters of the algorithm have

only been chosen manually after a few empirical tests, it is

19Copyright (c) IARIA, 2020. ISBN: 978-1-61208-823-5

CENICS 2020 : The Thirteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

TABLE VII. RESULTS FOR THE VARIOUS NETLISTS OF THE FIRST
ATTEMPT OF UTILIZING PATH LENGTH DURING OPTIMIZATION, RELATIVE

TO VPR AND GPO

Netlist BB. Rel. (%) Crit. Path. Rel. (%)
VPR GPO VPR GPO

e64-4lut 100.56 97.43 104.39 87.34

tseng 99.68 101.84 171.67 106.46

ex5p 96.15 99.09 148.32 85.57

apex4 98.17 100.90 101.13 96.61

dsip 89.39 98.20 102.93 73.20

misex3 101.14 101.59 121.83 78.60

diffeq 101.33 101.66 178.29 103.86

alu4 99.82 101.52 149.74 110.81

des 106.26 103.98 150.86 103.61

bigkey 97.85 101.92 116.20 87.03

seq 102.36 99.67 93.45 76.54

apex2 102.69 98.88 112.70 84.07

s298 95.69 98.62 141.27 81.02

frisc 95.79 93.67 154.16 78.95

elliptic 100.10 99.33 178.81 99.91

spla 105.06 97.93 107.58 83.53

pdc 103.28 101.07 88.25 83.98

ex1010 105.24 99.08 104.91 87.55

s38417 114.62 101.31 143.65 79.26

s38584.1 109.82 95.80 135.73 90.71

clma 103.51 95.65 94.43 72.25

Average 101.36 99.48 128.57 88.14

very likely that better parameter values could be found by
performing an actual parameter search. The parameters in
question are specifically:

1) The global step size of the Adam optimizer
2) The legalization factors for pins and CLBs
3) The factors α1 and α2 of the previously described

gradient function
4) The Factor α4 of the path length aspect

Since there are multiple phases, different sets of parameters are
required depending on the progress of the placement algorithm.
With two sets consisting of six parameters each, every phase
has twelve parameters in total.

On one hand, blindly picking parameters and trying them
on the different netlists would not be helpful in determining
the optimum. On the other hand, an exhaustive search of the
parameter space would be infeasible, since every invocation of
GPN takes several seconds at best, and exhaustively searching
a 12-dimensional parameter space would require an incredibly
high amount of invocations.

The problem can be generalized to finding the (ideally
global) minimum of a not fully known cost function with
12 variables, which is expensive to evaluate, using as few
evaluations of the function as possible. Usually, this could be
simplified by using an approximation of the cost function and
searching for a minimum on this approximation. For functions
of very few variables it is usually feasible to use a regression
to a quadratic or cubic function, but with the given 12 variables
this approach becomes rather problematic. Instead, the search
space was investigated using artificial neural networks (i.e., the
purely mathematical layered model, as commonly utilized in
machine learning).

In a general sense, a neural network can approximate any
function of a certain amount of input variables, where the

Pa
ra

m
e
te

rs

C
o
st

 e
st

im
a
ti

o
n

Figure 6. Schematic visualization of the used network layout.

accuracy of the approximation is limited by the complexity
of the network, as well as the number of known input/output
pairs used during training. The exact complexity of the used
network is usually a compromise between the precision of the
results and an attempt to keep the network from overfitting.
Overfitting in this context means that the network gives the
exact results for the known data pairs, but is completely wrong
on any other point. This occurs when the network has too
high complexity for the dataset, so instead of generalizing, the
network only detects, which of the known inputs was given,
and produces the specific output value for that input.

The network layout used is a simple feed-forward type
network, schematically shown in Figure 6, utilizing an input
layer with as many nodes as parameters, two hidden layers
with 40 nodes each, and an output layer with a single node,
representing the estimated cost value. The used activation
function is the exponential linear unit (ELU), and the training
uses the Adam optimizer. Each netlist has its own instance of
such a network, since the relation between parameters to cost
is different for each netlist.

A. Preparation of input and output values
Artificial neural networks tend to work better when the

inputs are normalized to the same range. This means that the
different parameters, which each have different ranges, are all
mapped to the range [0; 1], given a minimum and maximum
for each parameter. This also ensures that the chosen value for
a certain parameter never goes outside of the sensible range,
for example the step size of the Adam optimizer should never
be negative, and ideally also never be zero, since a value of
zero means no movement of nodes. Similar restrictions apply
for the other parameters. The chosen ranges for the parameters
are thus:
• Adam step size: [0.01; 1.0]
• Legalization factors: [0.0001; 1.0]
• Net-size cost factors α1 and α2: [0.05; 20.0]
• Path length factor α4: [0.01; 1.0]
The output also needs to be normalized from the different

bounding box costs of the netlists to the range [0; 1]. This is
achieved the same way as the parameters, except the minimum
and maximum values are dynamic, based on the lowest and
highest cost that has been found during actual evaluation of the
different sets of parameters. However, the range of cost values
will generally be quite large, where the worst result might be
as much as three times as high as the best one. At the same
time, the majority of results are in the lower cost range, which
means that the output range would be rather squashed towards
zero. Since we are only really interested in the low range the

20Copyright (c) IARIA, 2020. ISBN: 978-1-61208-823-5

CENICS 2020 : The Thirteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

normalized output value should be slightly skewed, such that
the low cost range spans a larger part of the [0; 1] interval. For
this, the square root of the normalized output values will be
used as the training target, which is still in the given range,
but stretches low values over a wider part of the interval.

B. Training process
The training process initially operates separately on the dif-

ferent netlists. It starts by trying 32 random sets of parameters
for each netlist and noting the results. These are then used
to start the training of the corresponding network, until the
network’s loss drops below a threshold of 0.01, where the loss
is calculated as the sum of squared errors between the target
and calculated output values.

The network is then used to determine a set of eight new
parameter sets. This is done by utilizing the normal gradient
descent approach, which is also used during training, but
instead of changing the network’s weights, the input is changed
to minimize the output. For this, a constant negative gradient
is fed backwards through the network, and the calculated
gradients for the inputs are then used to slightly change
these. This is repeated 2000 times, and the resulting parameter
sets, after they have been brought back to the proper ranges,
again evaluated using GPN. The (normalized) parameters are
clamped to the range [0; 1] while iterating, to ensure they do
not leave the predefined sensible range.

The whole process is repeated a number of times, where
first improved results may occur within 50 known points, and
more proper results usually occur within the first 200 known
points. After 200 iterations, the approach is switched from a
per-netlist to a shared one.

The general procedure stays the same in the shared ap-
proach, with the difference that the next parameter sets to
evaluate is determined by using all the trained networks. So
instead of finding a per-netlist cost minimum, a minimum for
all used netlists is determined by summing their outputs. The
outputs are not brought back into their normal range, so each
net has the same weight on the cost sum, whereas the weight
would otherwise depend on the range of the bounding box
costs. The parameter set is then evaluated on the given netlists,
and all networks re-trained.

C. Intermediate results
For the optimization, GPN has been slightly simplified

to use only a single placement phase, instead of multiple
as before, and also perform only 6,000 iterations, to speed
up initial attempts. It would also load the parameters from
a file, instead of using hardcoded default values, which was
required to allow parameter sets to be specified by the training
process. During the single optimization phase, all parameters
are linearly swept from the “before” to the “after” values, i.e.
all values slowly change during placement.

Additionally, the number of netlists for the search is only
a subset of the full benchmark, to reduce the required time per
iteration to a more reasonable amount.

During the initial attempts, it already became clear that
even at 6,000 iterations the results were either pretty close
to the ones produced by VPR, or sometimes even better.
Additionally, since the parameters were optimized separately
for each netlist in the first step, it is possible to find a separate
parameter set for nearly every netlist, which leads to a better
placement (in terms of the bounding box costs) than VPR.

TABLE VIII. INTERMEDIATE RESULTS FOR THE SEPARATE NETLISTS
DURING PARAMETER OPTIMIZATION

Netlist BB. Cost Rel. VPR (%) Rel. GPO (%)

e64-4lut 29.7 96.9 93.9

tseng 96.7 94.4 96.5

ex5p 169.3 93.7 96.6

apex4 188.7 96.6 99.3

dsip 176.2 88.2 96.9

alu4 200.3 97.9 99.5

des 252.5 98.0 95.9

apex2 286.4 102.2 98.5

frisc 555.1 94.5 92.5

elliptic 483.0 97.0 96.3

TABLE IX. FINAL CHOICE OF PARAMETERS

Parameter Value Pre. Value Post.

Adam Step size 0.934 0.346

CLB Legalization 0.0438 0.460

Pin Legalization 0.0001 0.506

Gradient factor α1 0.050 14.978

Gradient factor α2 13.267 12.267

Path length factor α4 0.591 0.219

Table VIII shows the intermediate results, when using the
best found parameter set for every single netlist. It improves
on the results from GPO for all tested netlists, and in nearly
all cases when compared to VPR. This indicates that the initial
approach, utilizing multiple phases and 12,000 iterations, was
in fact not necessary to achieve good results, so the simplified
placement algorithm with reduced iteration count will also be
sufficient.

D. Chosen parameters
The shared training process was continued until no im-

provements could be observed for 100 iterations. Then, the
best found parameter set was chosen as the final parameters
that GPN will use, which are shown in Table IX.

It can be seen that the step size of the Adam optimizer
reduces during the placement phase, which mirrors prior
observations that a higher step size is usually useful for rough
organization, while a low step size is required for proper fine
detail placement towards the end. This is similar to the slowly
declining “temperature” of the simulated annealing algorithms
like the one VPR uses.

The legalization factors for CLBs and pins increase during
placement, starting with a rather low value, to allow pins and
CLBs to quickly move to a more ideal region at the beginning.

For the gradient calculation, the factor α2 turns out to
change only slightly, whereas factor α1 increases from close to
zero to about 75 % of the allowed range, indicating contraction
of the bounding boxes for the netlists to be more important
towards the end of the placement process. Inversely, the factor
α4 for the path length metric decreases during placement,
which leads to the critical path being prioritized especially
in the beginning.

The results of applying the chosen parameters to all netlists
in the benchmark will be shown in Section VII.

VII. FINAL RESULTS
The final version of GPN, after the various attempts

to optimize performance, was again benchmarked using the

21Copyright (c) IARIA, 2020. ISBN: 978-1-61208-823-5

CENICS 2020 : The Thirteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

TABLE X. A LIST OF THE USED BENCHMARKS AND THEIR
CHARACTERISTICS, THE NUMBER OF CLBS, INPUT BLOCKS, OUTPUT

BLOCKS AND THE SUM OF ALL NODES

Name Inputs Outputs CLBs Nodes

ex5p 8 63 1064 1135

tseng 52 122 1047 1221

apex4 9 19 1262 1290

misex3 14 14 1397 1425

alu4 14 8 1522 1544

diffeq 64 39 1497 1600

dsip 229 197 1370 1796

seq 41 35 1750 1826

apex2 38 3 1878 1919

s298 4 6 1931 1941

des 256 245 1591 2092

bigkey 229 197 1707 2133

frisc 20 116 3556 3692

spla 16 46 3690 3752

elliptic 131 114 3604 3849

ex1010 10 10 4598 4618

pdc 16 40 4575 4631

s38417 29 106 6406 6541

s38584.1 38 304 6447 6789

clma 62 82 8383 8527

TABLE XI. COMPARISON OF THE BOUNDING-BOX COSTS BETWEEN THE
GRADIENT PLACEMENT AND THE SIMULATED ANNEALING OF VPR

Netlist VPR GPO GPN (Pt. / % VPR / % GPO)

ex5p 180.599 175.250 170.872 94.61 97.50
tseng 102.398 100.219 100.147 97.80 99.93
apex4 195.338 190.064 190.817 97.69 100.40
misex3 200.456 199.570 202.401 100.97 101.42
alu4 204.692 201.253 203.429 99.38 101.08
diffeq 155.531 155.028 157.706 101.40 101.73
dsip 199.845 181.925 180.203 90.17 99.05
seq 260.789 267.835 264.410 101.39 98.72
apex2 280.120 290.910 289.174 103.23 99.40
s298 225.344 218.734 211.962 94.02 96.90
des 257.643 263.300 262.286 101.80 99.61
bigkey 209.470 201.106 202.395 96.62 100.64
frisc 587.227 600.463 556.471 94.76 92.67
spla 628.155 673.901 679.609 108.19 100.85
elliptic 497.645 501.466 510.023 102.49 101.71
ex1010 684.798 727.315 733.547 107.12 100.86
pdc 939.813 960.346 959.026 102.04 99.86
s38417 687.198 777.488 733.140 106.69 94.30
s38584.1 684.220 784.347 745.078 108.89 94.99
clma 1502.330 1625.850 1569.470 104.47 96.53

Average 100.57 98.73

MCNC set of netlists, which were also used in the original
paper, and some of which were used to evaluate parameters
for the intermediate stages. The results shown are compared to
VPR, but this time also with GPO, to give an indication how
significant the effect of the optimization actually is.

The set of netlists used for benchmarking is listed in
Table X, including their complexity as the number of nodes.
The netlists are technology-mapped for, and will be placed on
a simple island-style FPGA-architecture with four bit lookup
tables.

A. Bounding-Box Costs
As before, the main cost metric employed by VPR is the

simple sum of all net bounding boxes, as given by the formula

Cost =
Nnet s∑
n=1

q(n)
[

bbx(n)
Cav,x(n)

+
bby(n)

Cav,y(n)

]
(9)

where bbx(n) and bby(n) describe the size of the bounding box
for net n in x and y direction. q(n) is a corrective factor, which
compensates for the expected routing effort. What this means is
that a net with just two nodes would need just as many routing
resources as required to span the distance of the bounding
box, whereas a net with more nodes would need additional
routing segments inside the bounding box to properly connect
all nodes. However, the number of routing segments required
is not linear to the number of nodes, since many nodes will be
either close to each other, or able to share routing segments
with nearby nodes of the same net. In short: While a net with
more nodes will always require more resources, the relative
routing overhead is much lower for nets with many nodes
than for nets with very few nodes, so multiplying the size of
the bounding box by the number of nodes would noticeably
overestimate the required routing effort.

This q(n) term is elaborated in two parts: For numbers
below 50, a simple table is used, whereas for numbers ≥ 50 a
linear function is utilized. The mentioned table holds a factor
of 1.0 for up to three nodes, and a logarithmically increasing
sequence for larger values. This sequence can be approximated
with the following logarithmic function:

q′(n) ≈ 1.0 + 8.543 · ln
(
0.953 + 0.0234 · n0.635

)
(10)

n in this case refers to the number of nodes in a given net.
The linear function is then just a continuation, given as

q′′(n) ≈ 2.7933 + 0.02616 · (n − 50) (11)

Table XI shows the resulting bounding box costs for the
three algorithms after a complete placement run, and their
relative percentage to each other. As can be seen, GPN is
on average still slightly worse than VPR (by 0.57,%), but
improved on the results of the original version by 1.27 %.

B. Runtime
The runtime behavior of the final version of GPN was

also reevaluated. Given that one of the early optimization was
utilization of multithreading, which by itself already showed a
good deal of improvement, a noticeable reduction in the run-
time of the placement would be expected.

Table XII and Figure 7 show the runtime results, again
comparing the final version of GPN to VPR and GPO. As can
be seen, the algorithm is now a bit more than five times faster
than VPR, while also being 2.16 times faster than GPO.

A noteworthy detail is how the runtime changes in respect
to the number of nets in each netlist. A regression of this
relationship to a function of the form α1 · xα2 was performed,
with the results shown in Figure 8. It can be seen that VPR’s
runtime increases faster with the number of nets than the
one of the presented algorithm. While the factor α2 is about
1.173 for GPO and GPN, it is approximately 1.46 for VPR,
meaning that the difference in placement time will only get
more pronounced the more nets a netlist contains.

22Copyright (c) IARIA, 2020. ISBN: 978-1-61208-823-5

CENICS 2020 : The Thirteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

ex5p
tse

ng
apex4

mise
x3

alu4
diffeq

dsipseq apex2
s298

des
bigkey

fris
c
splaellip

tic
ex1010

pdc
s38417

s38584.1

clm
a

R
u
n
ti

m
e
 /

 s

Netlist

VPR
GPO
GPN

Figure 7. Diagram of the runtime as average of ten measurements between the gradient based placement algorithm (previous and improved) and the simulated
annealing of VPR.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1000 2000 3000 4000 5000 6000 7000 8000

R
un

ti
m

e

Nets

VPR
GPO
GPN

Figure 8. Plot of the regression of run time over the number of nets per netlist.

C. Timing
The critical path lengths were not reported in the original

paper, but they were significantly worse compared to VPR.
One of the optimizations, namely the addition of the path
metric mechanism, explicitly addreses this issue. The results
are shown in Table XIII.

While GPO was worse for every single netlist, the final
version of GPN at least delivers better results than VPR for
three of the netlists. In general, the results have improved by
16 % over the original version, but are on average still 21.14 %

worse compared to VPR.

VIII. CONCLUSION
This paper shows that applying multiple threads to several

steps of the placement algorithm speeds up the overall place-
ment, such that GPN is on average 5.1 times as fast as VPR.
It also shows that the run time of GPN increases slower with
the number of nets in the netlist compared to VPR, which
indicates that GPN scales better. At the same time simply
using more threads does not always yield an improvement,

23Copyright (c) IARIA, 2020. ISBN: 978-1-61208-823-5

CENICS 2020 : The Thirteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

TABLE XII. COMPARISON OF THE PROGRAM RUN TIME BETWEEN THE
GRADIENT BASED PLACEMENT ALGORITHM (PREVIOUS AND IMPROVED)

AND VPR

Netlist VPR (s) GPO (s) GPN (s / % VPR / % GPO)

ex5p 10.08 4.48 2.10 20.86 46.93
tseng 9.54 4.57 2.19 22.91 47.83
apex4 11.90 5.36 2.43 20.39 45.32
misex3 12.77 6.00 2.56 20.02 42.60
alu4 14.33 6.74 2.99 20.89 44.45
diffeq 14.73 6.67 2.91 19.75 43.60
dsip 14.03 7.51 3.46 24.64 45.99
seq 18.99 8.02 3.32 17.49 41.39
apex2 20.67 8.61 3.62 17.54 42.11
s298 18.02 8.41 3.66 20.33 43.55
des 18.63 8.75 3.96 21.26 45.27
bigkey 19.69 9.05 3.90 19.83 43.16
frisc 53.52 18.31 7.54 14.08 41.17
spla 56.36 18.69 8.16 14.48 43.66
elliptic 55.61 18.50 8.09 14.54 43.72
ex1010 75.01 23.57 10.62 14.16 45.05
pdc 79.45 24.79 9.30 11.66 37.52
s38417 114.86 34.24 14.89 12.96 43.49
s38584.1 120.65 35.57 18.77 15.55 52.75
clma 183.35 48.81 20.81 11.35 42.63

Average 19.69 46.39

TABLE XIII. COMPARISON OF THE CRITICAL PATH DELAY BETWEEN THE
GRADIENT BASED PLACEMENT ALGORITHM (PREVIOUS AND IMPROVED)

AND VPR

Netlist VPR (ns) GPO (ns) GPN (ns / % VPR / % GPO)

ex5p 77.43 134.21 97.76 126.25 72.84
tseng 54.05 87.16 80.22 148.42 92.04
apex4 115.96 121.39 101.22 87.29 83.39
misex3 80.33 124.52 94.37 117.13 75.79
alu4 81.17 109.50 119.98 147.81 109.58
diffeq 64.47 110.67 106.33 164.93 96.08
dsip 62.06 87.26 72.69 117.13 83.30
seq 112.07 136.84 136.83 122.09 99.99
apex2 96.96 129.98 126.04 129.99 96.97
s298 146.11 254.77 173.73 118.90 68.19
des 89.68 130.58 116.57 129.98 89.27
bigkey 62.56 83.53 72.67 116.16 87.00
frisc 133.22 260.13 177.07 132.92 68.07
spla 158.94 204.70 182.83 115.03 89.32
elliptic 138.25 247.43 196.62 142.22 79.46
ex1010 181.87 217.93 198.90 109.37 91.27
pdc 232.23 244.01 197.77 85.16 81.05
s38417 123.94 224.62 135.77 109.55 60.45
s38584.1 94.18 140.92 136.63 145.07 96.96
clma 231.10 302.03 197.55 85.48 65.41

Average 121.14 84.00

next to the fact that there is a natural limit on how much
faster the overall placement can get, depending on the amount
of inherently sequential components.

It was also evaluated, how much the initial placement
affects the final results, and a better approach to generate the
initial placement was tested and implemented. This makes sure

that the initial placement is always about as good as random
placements would be on average. At the same time initial
random placements which severely reduce the quality of the
final result are avoided.

The timing behavior of the critical path, which the previous
paper did not fully address, was also improved by about 16 %
on average. This was achieved by introducing another gradient
term for each node, which depends on the node’s path metric,
and causes nodes on the critical path to be placed closer to
each other.

The various parameters were optimized using a simple
feed-forward type neuronal network, which is used as a
dynamic approximation of the cost function, since direct
evaluation of the cost function via program invocations takes
a prohibitively long time. During the parameter optimization,
it was also discovered that the approach of using multiple
placement phases was not in fact necessary. As a result, the
final number of iterations was halved. It was also shown
that, unsurprisingly, the best results for each netlist could be
achieved by using a parameter set specifically optimized for
that netlist, instead of using a single parameter set for all
netlists.

Finally, it has to be acknowledged that the version of
VPR used in this work as benchmarking platform is quite
outdated. In future work, a recent version of the Verilog-To-
Routing (VTR) Project for FPGAs [9] should be used instead.
Even though the gradient placement approach was shown to
be comparably fast for large netlists, a more recent set of
benchmarks like the one included in VTR – containing much
larger netlists – could be used to underline the scalability of
the approach even further.

REFERENCES
[1] T. Bostelmann, T. Thiemann, and S. Sawitzki, “Fast FPGA-placement

using a gradient descent based algorithm,” International Journal on
Advances in Systems and Measurements, vol. 13, no. 1 & 2, 2020, pp.
175–184.

[2] S. Yang, “Logic synthesis and optimization benchmarks user guide
version 3.0,” Microelectronics Center of North Carolina, Tech. Rep.,
1991.

[3] G. Marsaglia, “Xorshift RNGs,” Journal of Statistical Software, Articles,
vol. 8, no. 14, 2003, pp. 1–6.

[4] M. Gort and J. H. Anderson, “Analytical placement for heterogeneous
FPGAs,” in 22nd International Conference on Field Programmable Logic
and Applications (FPL), August 2012, pp. 143–150.

[5] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings,
2015, pp. 1–15.

[6] L. Dagum and R. Menon, “OpenMP: an industry standard API for shared-
memory programming,” IEEE Computational Science and Engineering,
vol. 5, no. 1, 1998, pp. 46–55.

[7] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool
for FPGA research,” in International Conference on Field Programmable
Logic and Applications (FPL). Springer, 1997, pp. 213–222.

[8] M. Stoer and F. Wagner, “A simple min-cut algorithm,” Journal of the
ACM, vol. 44, no. 4, Jul. 1997, pp. 585–591.

[9] K. E. Murray et al., “VTR 8: High performance cad and customizable
FPGA architecture modelling,” ACM Trans. Reconfigurable Technol.
Syst., 2020.

24Copyright (c) IARIA, 2020. ISBN: 978-1-61208-823-5

CENICS 2020 : The Thirteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

	Introduction
	Background
	Preparation
	Legalization
	Gradient Calculation
	Optimization
	Placement Phases

	Optimization of run time by utilizing multithreading
	Effect on the legalization step
	Calculation of the gradients
	Calculation of net information
	Application of gradients to node position
	Summary

	Improvement of the initial placement
	Starting placement via Min-Cut approach

	Improving the timing of the placement results
	Optimization of parameters
	Preparation of input and output values
	Training process
	Intermediate results
	Chosen parameters

	Final results
	Bounding-Box Costs
	Runtime
	Timing

	Conclusion
	References

