
A Convolutional Neural Network Accelerator for Power-Efficient Real-Time Vision Processing

Junghee Lee
School of Cybersecurity

Korea University, Seoul, Korea
Email: j_lee@korea.ac.kr

Chrysostomos Nicopoulos
Department of Electrical and Computer Engineering

University of Cyprus, Nicosia, Cyprus
Email: nicopoulos@ucy.ac.cy

Abstract—Deep Convolutional Neural Networks (CNN) constitute
a promising framework for many applications. Such networks
are often employed for vision processing algorithms, because
CNNs offer better accuracy than traditional signal processing
algorithms. However, it is challenging to apply high-accuracy deep
CNNs for real-time vision processing, because they require high
computational power and large data movement. Since general-
purpose processors do not efficiently support CNNs, various
hardware accelerators have been proposed. While it is required to
support all the layers of the CNN for real-time vision processing,
the large amount of weights (more than 100s of MB) limit the
speedup of hardware acceleration, because the performance is
largely bounded by memory access times. Recent CNN architec-
tures, such as SqueezeNet and GoogLeNet, address this problem
by employing narrow layers. However, their irregular architecture
necessitates a re-design of hardware accelerators. In this paper,
we propose a novel hardware accelerator for advanced CNNs
aimed at realizing real-time vision processing with high accuracy.

Keywords–Convolutional Neural Network; Hardware Accelera-
tor; Scheduling.

I. INTRODUCTION
As unmanned vehicles and robotics keep evolving, there

is a growing demand for power-efficient real-time vision
processing. While deep Convolutional Neural Networks (CNN)
offer high accuracy and are applicable to various vision
processing algorithms, they are very challenging to employ
for real-time vision processing, because of their high de-
mand on computation and data movement. Various types of
accelerators have been proposed based on Graphics Process-
ing Units (GPU) [1], Multiprocessor Systems-on-Chip (MP-
SoC) [2], reconfigurable architectures [3], Field-Programmable
Gate Arrays (FPGA) [4]–[6], in-memory computation [7], and
dedicated hardware acceleration through Application Specific
Integrated Circuits (ASIC) [8] [9].

A typical CNN architecture consists of a stack of con-
volutional and pooling layers, followed by classifier layers, as
shown in Figure 1(a). To realize real-time vision processing, all
layers of the CNN should run on an accelerator. Otherwise, the
data transfer time between the host and the accelerator cancels
out the acceleration in the computation itself. The challenge is
in the processing of the classifier layer, where all neurons are
fully connected. Award-winning high-accuracy CNNs (such as
AlexNet [10], which won the 2012 ImageNet contest) usually
require a huge number of weights (up to 100s of MB [7]) and
weights are not reused.

This challenge is being addressed by recent CNN architec-
tures. Two representative examples are SqueezeNet [11] and
GoogLeNet [12]. SqueezeNet offers comparable accuracy to
AlexNet, but it uses 510 times fewer weights. GoogLeNet
took the first place in the 2014 ILSVRC Classification contest.
GoogLeNet employs narrow layers to minimize the number
of weights, while offering high accuracy by using a large
number of such narrow layers (more than 100). As shown in
Figures 1(b) and (c), the SqueezeNet [11] and GoogLeNet [12]

architectures are not as regular as the traditional CNN archi-
tecture of Figure 1(a).

To realize real-time vision processing, all layers of the
CNN should run on the accelerator seamlessly. For example,
Eyeriss [13] [8] requires reconfiguration of the accelerator
for each layer. It takes 0.1 ms to configure one layer. If
there are 100 layers, it takes 10 ms only for reconfiguration.
ShiDianNao [9] addresses this by using hierarchical finite
state machines. However, it is not proven with large-scale
CNNs, such as SqueezeNet and GoogLeNet. Approaches using
GPUs and FPGAs can execute all layers of the CNN quickly,
but they consume an order of magnitude more power than
ASIC designs. DaDianNao [14] offers low latency for all
the layers of large-scale CNNs, but it consumes as much
power as an FPGA, which may not be suitable for power-
efficient vision processing. In general, an FPGA-based design
cannot simply be implemented in an ASIC to boost power
efficiency, due to the fundamental differences in the underlying
design principles. Since the FPGA is programmable, the design
can typically be customized to suit a particular CNN. This
customization is not feasible in an ASIC. To support advanced
CNNs like SqueezeNet and GoogLeNet in ASIC for real-time
vision processing, we need a flexible – yet power-efficient –
design that does not require run-time reconfiguration.

The proposed accelerator aims to achieve this goal by
employing data-driven scheduling and modular design. These
two key features constitute the novel contributions of this work,
since they enable the handling of advanced CNNs without the
need for reconfiguration. The operation and destination of a
Processing Element (PE) is determined at run-time upon re-
ceipt of data. The data is accompanied by metadata indicating
the meaning of the data. By interpreting the metadata, a PE
determines its schedule at run-time, which makes it easier to
handle irregular CNN architectures. To achieve scalability, a
modular design concept is employed with no shared resources
and global synchronization being assumed. Each PE can only
access its own local memory, and communicates only with its
neighbors. Modular design facilitates deep pipelining, which
enables further latency improvements by increasing the clock
frequency. As a result, it is demonstrated by experiments that
the proposed accelerator executes all layers of SqueezeNet
and GoogLeNet in 14.30 and 27.12 million cycles with 64
processing elements. Assuming a 1 GHz clock speed, these
latencies correspond to 14.30 ms and 27.12 ms, respectively,
which is comparable to high-performance FPGA-based ap-
proaches (range of 1.06 ms to 262.9 ms [5] [6]). It is
estimated that the proposed accelerator consumes 2.47 W and
2.51 W for SqueezeNet and GoogLeNet, respectively, which
may be higher than power-efficient ASIC-based approaches
(consuming 0.278 to 0.320 W [13] [9]), but it is significantly
lower than FPGA-based approaches (that consume 8 to 18.61
W [4]) and DaDianNao [14] (that consumes 15.97 W).

After discussing related works in Section II, we present

25Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

Conv

Max Pooling

Conv

Max Pooling

Conv

Max Pooling

Classifier

Classifier

Classifier

Input

Fire

Input

Conv

Max Pooling

Conv

Conv Conv

Concat

Fire

Conv

Conv Conv

Concat

Inception

Input

ConvConv ConvConv

Conv Max PoolingConv

Concat

Inception

ConvConv ConvConv

Conv Max PoolingConv

Concat

Max Pooling

(a) Traditional (b) SqueezeNet [11] (c) GoogLeNet [12]

Figure 1. Three different types of CNN architectures. The left one represents the traditional (generic) approach, while the other two represent two existing
state-of-the-art approaches.

the proposed accelerator in Section III, and the details of the
employed data-driven scheduling in Section IV. Section V
provides experimental results, and Section VI concludes the
paper.

II. BACKGROUND AND RELATED WORK
Research in neural networks has a long history. Over

the last several years, various types of approaches for the
acceleration of CNNs have been studied. There is a trade-
off between latency and power consumption among these
accelerators. The GPU approach achieves 0.19 ms latency at
227 W [1], while FPGAs offer a range of 1.06 ms to 262.9 ms
at 8 W to 18.61 W [4]–[6]. These values are measured under
AlexNet [10] or VGG-16 (Visual Geometry Group 16) [15].
On the contrary, dedicated hardware accelerators implemented
in ASIC target power-efficient implementations of small-scale
CNNs, or the convolutional layers of large-scale CNNs [9].
For example Eyeriss [8] executes the convolutional layers of
AlexNet [10] in 115.3 ms at 0.278 W [13].

Compared to two state-of-the-art CNN accelerators, the
proposed accelerator offers lower latency and better scalability
with the number of processing elements and clock frequency.
Compared to Eyeriss [8], the proposed accelerator offers sig-
nificantly lower latency through its modular design (that allows
for higher clock frequencies), weight prefetching (optimized
memory access patterns to Dynamic Random Access Memory
(DRAM)), and by using larger on-chip memory. Additionally,
the data-driven scheduling enables seamless execution of all
layers without reconfiguration. ShiDianNao [9] also supports
seamless execution of all layers, by storing all weights and
feature maps in on-chip memory. However, the ShiDianNao [9]
architecture was evaluated only with small-scale CNNs whose
weights and feature map sizes fit into on-chip memory. Fur-
thermore, both Eyeriss [8] and ShiDianNao [9] employ global
shared memory, which renders their scalability questionable.
In contrast, the modular design concept of the architecture
proposed in this work enables high clock frequencies through
pipelining. Even though the proposed accelerator requires more
hardware and memory space to accommodate its data-driven
scheduling and modular design, it is still significantly more
power-efficient than FPGA-based approaches.

III. OVERVIEW OF THE PROPOSED ACCELERATOR
A. Functional Requirements

The current implementation of the proposed accelerator
supports three types of layers, and four types of layer con-

Output
feature
maps

Input feature
maps of the
next layer

(a) Direct (b) Split (c) Fork (d) Concantenate

Figure 2. The 4 different types of layer connections supported by the
proposed CNN accelerator that can be used to implement various CNN

architectures.

nections. The four layers are: (1) convolutional layer, (2) max
pooling layer, and (3) average pooling layer. The classifier
layer can be implemented as a special case of the convolutional
layer. SqeezeNet and GoogLeNet still use the classifier layer,
even though it is not as big as those in traditional CNNs.

To support a traditional/generic CNN, only one type of
layer connection is enough, which is shown in Figure 2(a).
To support more advanced CNN architectures, the proposed
accelerator supports three other types of connections. The
feature maps of a layer can be split and sent to different layers,
as shown in Figure 2(b), and all feature maps can be sent to
multiple layers, as shown in Figure 2(c). Finally, output feature
maps of different layers can be concatenated as input feature
maps of a layer, as shown in Figure 2(d).

The data-driven scheduling and modular design make it
easy to support various types of layers and connections. Since
the abovementioned three layers and four connections are
enough to support SqueezeNet and GoogLeNet, the proposed
accelerator only implements these for now, but it can be easily
extended to cover other types of layers and connections. It
is also possible to use heterogeneous PEs. These extension
possibilities – and more – of the accelerator will be explored
in our future work.

B. Architecture
For real-time vision processing, the speed of the feed-

forward process is more important than that of the backward
process, because the backward process is usually performed
off-line during training. Thus, the proposed accelerator is
focused on accelerating the feed-forward process.

Figure 3 illustrates the architecture of the proposed acceler-
ator and presents the high-level details of one PE module. We
assume that the accelerator is implemented as a separate chip.
It receives inputs from and sends outputs to the host through

26Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

TABLE I. CONFIGURATION OF A LAYER TO BE STORED IN
CONFIGURATION MEMORY.

Parameter Description
R Number of rows of an output feature map
C Number of columns of an output feature map
M Number of output feature maps
N Number of input feature maps
K Filter size
S Stride
O Number of next layers connected with this layer
Tn The layer number of n− th connected layer

F start
n Start feature map number of the n− th connected layer
F end

n End feature map number of the n− th connected layer
F shift

n Feature map number shift of the n− th connected layer

a standard bus interface. It has its own main memory (e.g.,
DRAM), which is used to store weights.

The proposed accelerator consists of a number of PEs. All
PEs are the same, but one of them is designated as an interface
PE, which interacts with the host and memory. The PEs are
connected by 1D rings. Two rings are used for data (activation)
transfer, and the third ring is used for weight prefetching.

A PE consists of a communication interface, matching
logic, functional units (multiplier and adder), an output Finite
State Machine (FSM), and local memories for weights and
feature maps. The matching logic determines whether the
incoming activation is assigned to the PE or not. The matching
logic makes a decision based on the mapping information,
which is presented in the next section (subsection IV-A). If
the incoming activation is accepted, it is pushed to a queue
and processed by the functional unit. If the queue is full,
the incoming activation cannot be accepted, even though it is
destined to this PE. By interpreting the metadata accompanied
by the activation, the corresponding functional unit is triggered.
The result is stored in the local feature map memory, and
transferred to other PEs when the computation is done.

IV. DATA-DRIVEN SCHEDULING
The heart of the proposed accelerator and its key nov-

elty is data-driven scheduling. It enables the execution of
advanced CNN architectures without reconfiguration. Each PE
determines whether to accept an activation and the subsequent
schedule of operations, based on metadata and the CNN’s
configuration. The metadata is accompanied by the activation
coming from the interconnection network. The CNN config-
uration is transferred from the host through the interface PE,
and stored in the local configuration memory.

Figure 4 shows examples of the metadata. The format of
the metadata depends on the type of data. For example, for
activations, the metadata includes the layer, feature map, and
the position (row and column) of the activation. The position
of an activation in the input feature map is denoted as y and
x, that of a neuron in the output feature map is denoted as
row and col, and that of a weight in a filter is denoted as i
and j throughout this paper.

The configuration of layers is broadcasted to all PEs at
initialization time, and it is stored in the local configuration
memory of each PE. The configuration of one layer is shown
in Table I.

The parameters R,C,M,N,K, and S are basic parameters
of the CNN. Specifically, O and F are used to specify the
connection, while F start and F end are used to support splits,
and F shift is used to support concatenation. For example, if
a layer has 64 output feature maps, and 32 of them are sent

to layer 1, and the remaining 32 are sent to layer 2, then
O=2, T0=1, F start

0 =0, F end
0 =31, F shift

0 =0, T1=2, F start
1 =32,

F end
1 =63, and F shift

1 =-32. In this case, F shift
1 is used to

convert the feature map numbers 32–63 of the current layer to
the feature map numbers 0–31 of the next layer. In a similar
way, when feature maps of multiple layers are concatenated,
the feature map numbers can be adjusted to become linear, by
using the F shift parameter.

A. Mapping
In the proposed accelerator architecture, the granularity of

mapping is a feature map. A PE processes all neurons in its
assigned feature maps. In this way, we can avoid the sharing
of weights among PEs, which facilitates modular design. In
other words, if a PE processes all the neurons of its assigned
feature maps, it can store their weights in its local memory
and other PEs do not need to access them.

Feature maps are assigned as a combination of input and
output feature maps. As a toy example, let us suppose a layer
has 2 input feature maps (ifm0 and ifm1), and 2 output
feature maps (ofm0 and ofm1). If there are 2 PEs, one
PE is assigned to ifm0-ofm0 and ifm1-ofm0, and the
other PE is assigned to ifm0-ofm1 and ifm1-ofm1. In
other words, each PE processes all input feature maps of its
assigned output feature map. If there are 4 PEs, feature maps
are spread out as PE0 to ifm0-ofm0, PE1 to ifm1-ofm0,
PE2 to ifm0-ofm1, and PE3 to ifm1-ofm1. PE0 and PE1
produce partial sums of neurons for ofm0, and one of them
must accumulate them. In the proposed accelerator, the PE
processing the last input feature map of an output feature map
is responsible to collect the partial sums from other PEs that are
assigned to the same output feature map. In our toy example,
PE0 should send its partial sums to PE1, so that PE1 can
collect them and generate the final ofm0, while PE2 should
send its partial sums to PE3, so that PE3 can generate the final
ofm1.

To generalize this concept, we compute a feature map
index for each combination of input and output feature maps,
and a range of indices is assigned to PEs. The feature map
index is computed as index = ifm + ofm × M, where
ifm denotes the input feature map number, ofm is the output
feature map number, and M is the total number of input feature
maps. In the above toy example, the index of ifm0-ofm0 is
0, ifm1-ofm0 is 1, ifm0-ofm1 is 2, and ifm1-ofm1 is
3. If there are 2 PEs, PE0 is assigned to the range of indices
from 0 to 1, and PE1 to indices from 2 to 3. If there are 3
PEs, PE0 is assigned to 0 and 1, PE1 to 2, and PE2 to 3.
Thus, feature maps are not evenly distributed. If there are 4
PEs, each PE is assigned to each index.

The matching logic accepts an incoming activation, if its
feature map falls within the range of the assigned indices.
Recall that an activation is accompanied by metadata that
includes the input feature map number, as shown in Figure 4.
The pseudo code in Figure 5 shows how to determine if an acti-
vation, whose index is ifm, should be accepted or not, given a
range of indices from index_start to index_end. Again,
M indicates the total number of input feature maps.

Even if the activation is accepted, it should be forwarded
to the next PE, because it may be used by the next PE.
In fact, if there is a high enough number of output feature
maps, as compared to the number of PEs, all PEs would
need all input feature maps. Coming back to the toy example,

27Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

Host

Memory

CNN
Accelerator

Memory Int
PE PE PE PE

PEPE PEPE

PEPE PEPE

Matching
Logic

Scheduler

Queues

Weight
Memory

Feature Map
Memory

CNN Accelerator
PE (Processing Element)

Host

Memory

Config
Memory

*

+

Figure 3. The architecture of the proposed accelerator and a high-level overview of one processing element. Note that the memory connected to the CNN
accelerator on the leftmost diagram is connected only to the interface PE, i.e. it is not a shared memory. The pseudo codes of the ‘Matching Logic’ and the

‘Scheduler’ modules are presented, respectively, in Figure 5 and Figure 7.

data

data

type

type

Weight layer

Activation layer

Metadata

ec

ec

ifm ofm i j

ifm y x count

Figure 4. Examples of message formats, including the pertinent metadata.
[ec: Escape channel; ifm: Input feature map number; ofm: Output feature

map number.]

ofm_start =
index_start % M <= ifm ?
index_start / M : index_start / M + 1;

ofm_end =
ifm <= index_end % M ?
index_end / M : index_end / M - 1;

if(ofm_end >= ofm_start)
activation accepted;

Figure 5. The pseudo code of the matching logic. The code determines if an
activation should be accepted or not.

let us suppose there are 2 PEs. PE0 processes ifm0-ofm0
and ifm1-ofm0, while PE1 processes ifm0-ofm1 and
ifm1-ofm1. Thus, both PE0 and PE1 need all input feature
maps (ifm0 and ifm1). Therefore, we designed the accel-
erator in such a way that activations are broadcast, and PEs
determine if they are to be accepted. This is in contrast to
sending activations to specific target destinations.

Due to resource constraints, an activation may not be
accepted, even if it is destined to the particular PE. Because of
this, we need to maintain two types of counters. One counter
is to determine when the activation should be removed from
the network. When the activation is injected into the network,
the total number of output feature maps is attached to the
metadata. Whenever a PE accepts the activation, it decrements
this counter by the number of assigned output feature maps and
forwards it to the next PE. When this counter reaches zero, it
is no longer forwarded (i.e., it is removed from the network).

The other type of counter is for determining if the activation
has already been accepted, or not. Because a ring is used as
a communication fabric in the proposed accelerator, the same
activation may arrive at the PE more than once, if it is not
removed from the network. To check for this, a PE maintains
a counter for each input feature map of a layer. The activations
of an input feature map are accepted in a pre-determined order.
In our implementation, all columns of a row are accepted in an
increasing order of their column index, and those of the next
rows are accepted in the same way. The counter counts how
many activations of the input feature map have been accepted.
Since activations are accepted in a specific order, if a PE
knows how many have been accepted, the PE can determine

Input FM Output FM

Figure 6. Illustration of how an activation is used for multiple filters.

what should come next. The activation is accepted only if the
incoming activation is what the PE is expecting. In this way,
the PE avoids accepting the same activation more than once.

In case of the max and average pooling layers, the number
of input and output feature maps is always the same. An output
feature map only needs one corresponding input feature map.
Thus, those PEs that generate the final output feature map
of the previous layer (which is the input feature map of the
pooling layer) are assigned to process the corresponding output
feature map of the pooling layer. In this way, we can eliminate
unnecessary activation transfers.

B. Scheduling
Once an activation is accepted, all operations that need

the activation are scheduled. To compute a neuron, its neigh-
boring activations are required. The exact number of required
activations depends on the size of a filter. In other words, an
activation should be used by multiple filters.

Figure 6 shows an example. Let us suppose the filter size
is 2 by 2 and the stride is 1. To compute a neuron at (1,1) of
an output feature map, we need activations (neurons of input
feature map) at (1,1), (1,2), (2,1), and (2,2). Similarly, neurons
at (1,2), (2,1), and (2,2) of the output feature map need the
same activation at (2,2) of the input feature map. If multiple
output feature maps are assigned to the PE, neurons in other
feature maps also need the incoming activation.

The pseudo code in Figure 7 shows how Multiply-And-
Accumulate (MAC) operations are scheduled for an incoming
activation. The ofm_start and ofm_end parameters are
computed as shown in Figure 5. As shown in Figure 4, the
position of the activation is given by y and x. The same mech-
anism is used for pooling layers. Instead of MAC operations,
comparison (max pooling) or accumulation (average pooling)
operations are scheduled.

The pseudo code is implemented as an FSM in the func-
tional units. The FSM pops an activation from the queue lo-
cated in-between the functional units and the matching logic in
Figure 3. Once the FSM finishes all the scheduled operations,
it pops the next activation from the queue. A functional unit

28Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

for(ofm=ofm_start; ofm<=ofm_end; ofm++)
for(row=MIN(y/S, R-1); row>(y-K)/S && row>=0; row--)
for(col=MIN(x/S, C-1); col>(x-K)/S && col>=0; col--) {
i = y-row*S;
j = x-col*S;
feature_map[layer][ofm][row][col] +=
weights[ofm][ifm][i][j] *
activation

}

Figure 7. The schedule of operations when an activation is accepted. [R:
Number of rows of the output feature map; C: Number of columns of the

output feature map; K: Filter size; S: Stride. All of the R, C, K, and S are of
the current layer.]

TABLE II. THE DEFAULT SIMULATION PARAMETERS USED IN ALL
EXPERIMENTS.

Parameter SqueezeNet GoogLeNet
Number of PEs 64
Average memory access cycle 1
Pipeline stages of communication channel 1
Pipeline stages of functional units 1
Queue depth 16
Number of rings 3
Configuration memory size 0.021 MB 0.092 MB
Weight memory size 1.289 MB 4.119 MB
Feature map memory size 9.132 MB 3.333 MB
Bit width of one activation ring 68 71
Bit width of the weight ring 58 61
Number of escape channels 10 46

accesses the weight memory and the feature map memory to
perform its operation, and the result is stored in the feature
map memory. To determine if accumulation is finished for one
neuron, a counter is maintained for every neuron in the output
feature map. The counter is stored in the feature map memory.
The overhead of the memory will be discussed in Section V.

V. EVALUATION

A. Experimental Setup
We developed a cycle-level in-house simulator using Sys-

temC [16]. The default simulation parameters are shown in
Table II.

The proposed accelerator can take full advantage of the
DRAM bandwidth, because the access pattern is always se-
quential. All feature maps are stored in the on-chip memory by
adopting a sliding window technique, and the external DRAM
is used only for weights. Since weights are prefetched in the
order of layers, there is no need for random accesses to DRAM.
Assuming the proposed accelerator runs at 1 GHz, then a
2 GB/s throughput is required to fetch one weight (16 bits)
per cycle. According to the DDR4 standard, the maximum
throughput can be up to 25.6 GB/s. Therefore, the DRAM
throughput is high enough to easily supply one weight every
cycle.

B. Performance Analysis
Table III shows the number of cycles required to execute all

layers of SqueezeNet and GoogLeNet. Under the assumption
that the proposed accelerator runs at 1 GHz (since ShiDian-
Nao [9] also runs at 1 GHz), these results correspond to 14.30
ms and 27.12 ms for SqueezeNet and GoogLeNet, respectively.

Even though a direct comparison may not be meaningful
due to fundamental differences in the design goals (low power
vs. low latency) and benchmark (different CNNs), Eyeriss [13]
is reported to execute the convolutional layers of AlexNet in
115.3 ms, and the convolutional layers of VGG-16 in 4309.5
ms. While a GPU executes all layers of these CNNs in 0.19

TABLE III. NUMBER OF CYCLES REQUIRED TO EXECUTE ALL LAYERS OF
THE CNN.

CNN Number of cycles Execution time∗

SqeezeNet [11] 14,303,612 14.30 ms
GoogLeNet [12] 27,122,439 27.12 ms

* 1 GHz clock frequency is assumed.

TABLE IV. THE MAXIMUM SUPPORTED VALUES OF THE VARIOUS CNN
CONFIGURATION PARAMETERS.

Parameter Meaning SqueezeNet GoogLeNet
R Rows 224 224
C Columns 224 224
M Input feature maps 1000 1000
N Output feature maps 1000 1000
K Filter size 7 7
S Stride 2 2
O Connections of a layer 2 4
Tn Next layer 33 106

F start
n Start feature map 1000 1000
F end

n End feature map 1000 1000
F shift

n Feature map shift 1000 1000
Total number of layers 33 106

Total number of connections 40 204

ms, FPGAs require 1.06 ms to 262.9 ms [1] [4]–[6]. The
performance of the proposed accelerator is comparable to
FPGA-based techniques. DaDianNao [14] offers even lower
latency, but its power consumption is comparable to FPGA-
based techniques. This is because it targets high-performance
implementations supporting all the layers of large-scale CNNs
and both the forward and backward processing steps.

It should also be noted that the proposed accelerator offers
flexibility in that it can support SqueezeNet and GoogLeNet
without run-time reconfiguration. Since SqueezeNet and
GoogLeNet offer comparable accuracy with AlexNet and
VGG-16, we believe they are good alternatives for power-
efficient real-time vision processing.

On the other hand, ShiDianNao [9] reports 0.047 ms to
execute all layers of ConvNN [17]. However, ConvNN is much
smaller. For example, GoogLeNet requires 1502 million MAC
operations, whereas ConvNN only needs 0.6 million. While it
demonstrates an efficient implementation of small-scale CNNs,
it is not proven with large-scale CNNs for high-accuracy vision
processing algorithms.

C. Cost Analysis
To compute the minimum required memory size and the

minimum required bit-width for the rings, it is essential to
assess the maximum supported values of the parameters of the
CNN configurations under investigation. These parameters are
summarized in Table IV. The total number of layers used for
the proposed accelerator is different from the number assumed
in the original implementations of the CNN architectures.
We slightly changed the architecture – in a mathematically
equivalent manner – to better fit the underlying architecture of
the accelerator. Specifically, instead of introducing an explicit
concatenation layer, the output feature maps are directly con-
nected to the next layer to reduce the memory requirement.
Thus, if a pooling layer is followed by a concatenation layer,
the pooling layer has to be split into the previous layers,
because pooling layers are processed by the same PE where
the output feature map is generated.

In the configuration memory, the basic parameters
(R,C,M,N,K, S, and O) are stored for each layer and the
connection parameters (T , F start, F end, and F shift) are

29Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

TABLE V. THE MINIMUM REQUIRED MEMORY SIZES UNDER TWO
DIFFERENT NUMBER REPRESENTATIONS.

Memory SqueezeNet GoogLeNet
16 bits 6 bits 16 bits 6 bits

Weight memory 1.289 MB 0.483 MB 4.119 MB 1.544 MB
Feature-map memory 9.132 MB 5.619 MB 3.333 MB 2.051 MB

stored for each connection. The total number of bits to required
to store all of these is 2,793 and 12,106 for SqueezeNet and
GoogLeNet, respectively. Since all PEs need to store them, the
sum of the configuration memory size of all PEs is 0.021 MB
and 0.092 MB for SqueezeNet and GoogLeNet, respectively,
as shown in Table II.

The minimum size of the weight and feature-map memories
varies for different PEs, depending on the feature map assign-
ment. For regularity, we used the same memory size across all
PEs. The proposed accelerator does not depend on the type
of number representation. All analysis results shown so far is
based on 16-bit fixed-point representation, which is the most
popular setup in previous efforts. If, instead, we adopt 6-bit
representation [18], the memory size can be further reduced.
Table V shows both cases.

Obviously, the memory size required for the proposed
accelerator is significantly larger than that of existing ac-
celerators. This is because the design goal of the proposed
accelerator is to minimize latency as much as possible at a
reasonable hardware cost. Considering the fact that recent Intel
processors employ 8 MB of L3 cache and multiple 256 KB
L2 and 32 KB L1 caches and DaDianNao [14] has a 36 MB
embedded on-chip DRAM, we believe that 10 MB of on-chip
memory is affordable for a stand-alone hardware-based CNN
accelerator.

D. Power Estimation
It is estimated that the power consumption of the proposed

accelerator is similar to ShiDianNao [9], which consumes
320.10 mW (except for the memory power, which will be
discussed shortly), assuming an operating frequency of 1 GHz.
Both designs run at the same clock frequency, employ the same
number of PEs (64), and use the same types of functional units
(multipliers and adders). The overhead of the control logic
would obviously be different, but according to the analysis in
Eyeriss [13], the power consumption of the control logic cor-
responds to only 9.5% to 10.0% of the total power budget. In
general, the biggest consumer of power is the on-chip memory.
Since the proposed accelerator employs a significantly larger
memory, it consumes more power than ShiDianNao, which has
a 288 KB on-chip memory. By using the per-access energy
model of CACTI [19] and the number of memory accesses
obtained through simulation, the power consumption of both
the on-chip memory and DRAM can be estimated. Including
the power consumption of the other components reported by
ShiDianNao, the total power consumption (including DRAM
accesses) of the proposed accelerator is estimated as 2.47 W
and 2.51 W for SqueezeNet and GoogLeNet, respectively.
Despite the fact that these numbers are based solely on esti-
mation, it is clear that the power consumption of the proposed
accelerator is significantly lower than FPGA-based approaches
(that consume 8 to 18.61 W) and DaDianNao’s 15.97 W [14].

VI. CONCLUSIONS
This paper proposes a novel hardware-based accelerator

for deep CNNs used to realize power-efficient real-time vision

processing. This attribute is enabled by modular design, opti-
mized memory access patterns due to weight prefetching, and
larger on-chip memory. More importantly, the new accelerator
can execute all layers of SqueezeNet and GoogLeNet in 14.30
ms and 27.12 ms, respectively, which are comparable to high-
performance FPGA-based approaches, but with significantly
lower power consumption at 2.47 W and 2.51 W, respectively.
The use of data-driven scheduling can seamlessly support
advanced CNN architectures without any reconfiguration.

REFERENCES
[1] nVIDIA, “Tesla m4 gpu accelerator,” 2016.
[2] C. Wang et al., “Cnn-based object detection solutions for embedded

heterogeneous multicore socs,” in 2017 22nd Asia and South Pacific
Design Automation Conference (ASP-DAC), Jan 2017, pp. 105–110.

[3] S. Cadambi, A. Majumdar, M. Becchi, S. Chakradhar, and H. P. Graf,
“A programmable parallel accelerator for learning and classification,”
in 2010 19th International Conference on Parallel Architectures and
Compilation Techniques (PACT), Sept 2010, pp. 273–283.

[4] J. Qiu et al., “Going deeper with embedded fpga platform for con-
volutional neural network,” in Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, ser.
FPGA ’16. New York, NY, USA: ACM, 2016, pp. 26–35.

[5] X. Wei et al., “Automated systolic array architecture synthesis for
high throughput cnn inference on fpgas,” in ACM/EDAC/IEEE Design
Automation Conference (DAC), June 2017, pp. 1–6.

[6] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu, “An
opencl™deep learning accelerator on arria 10,” in Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. New York, NY, USA: ACM, 2017, pp. 55–64.

[7] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS:
scalable and efficient neural network acceleration with 3d memory,” in
Proceedings of International Conference on Architectural Support for
Programming Languages and Operating Systems, 2017, pp. 751–764.

[8] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,” in
Proceedings of the 43rd International Symposium on Computer Ar-
chitecture, 2016, pp. 367–379.

[9] Z. Du et al., “ShiDianNao: shifting vision processing closer to the
sensor,” in 2015 ACM/IEEE 42nd Annual International Symposium on
Computer Architecture (ISCA), June 2015, pp. 92–104.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, 2012, pp. 1097–1105.

[11] F. N. Iandola et al., “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <1mb model size,” CoRR, vol. abs/1602.07360, 2016.

[12] C. Szegedy et al., “Going deeper with convolutions,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2015, pp. 1–9.

[13] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, Jan 2017,
pp. 127–138.

[14] Y. Chen et al., “Dadiannao: A machine-learning supercomputer,” in
2014 47th Annual IEEE/ACM International Symposium on Microar-
chitecture, Dec 2014, pp. 609–622.

[15] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[16] Accellera, “Systemc 2.3.3,” November 2018.
[17] M. Delakis and C. Garcia, “Text detection with convolutional neural

networks,” in International Conference on Computer Vision Theory and
Applications, 2008, pp. 290–294.

[18] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neu-
ral networks using logarithmic data representation,” CoRR, vol.
abs/1603.01025, 2016.

[19] S. J. E. Wilton and N. P. Jouppi, “Cacti: an enhanced cache access and
cycle time model,” IEEE Journal of Solid-State Circuits, vol. 31, no. 5,
May 1996, pp. 677–688.

30Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

