
Implementation of an FPGA - Raspberry Pi SPI Connection

Haissam Hajjar
Department of Applied Business Computer,
Faculty of Technology, Lebanese University

Saîda, Lebanon
haissamh@ul.edu.lb

Hussein Mourad
Department of Applied Business Computer,
Faculty of Technology, Lebanese University

Saîda, Lebanon
mourad_hussein@hotmail.com

Abstract— The use of Field Programmable Gate Arrays
(FPGAs) requires low level programming. This makes it
difficult to have a friendly user interface. The presented work
explains FPGA techniques in detail. There are few works
demonstrating an application integrating FPGA and
ergonomic user-interface techniques. This article describes the
connection of an FPGA to a Raspberry PI using a Serial
Peripheral Interface (SPI) link. A Python SPI driver is
developed on the Raspberry side. A Very High-Speed
Integrated Circuit Hardware Description Language (VHDL)
driver is developed on the FPGA side. A Web client-server
application is developed to demonstrate the usage of SPI link
and its integration with a standard Web application to control
the FPGA inputs and outputs.

Keywords—SPI VHDL driver; VHDL; Raspberry PI; Altera
Cyclone II; Python VHDL communication; Python-PHP socket
communication.

I. INTRODUCTION

FPGAs are typically used in electronic circuits. Usually,
they are programed in VHDL or Verilog [1]. This is well
suited to stay at the hardware level but remains very poor
and complex when developing a user-friendly human-
machine interface.

The VHDL implementation of SPI protocol is developed
in some previous works [2][3]. However, these works focus
their efforts on the electronic aspect by neglecting the
application aspect.

The objective of this paper is to connect an FPGA to a
Raspberry PI so that one side can use the FPGA for the
electronic part, while the Raspberry PI can be used to
develop a friendly user interface using common well-known
techniques. The utilization of a Raspberry PI is taken to
demonstrate a low-cost solution for this implementation.

As the Raspberry runs under Linux operating system and
the FPGA is programmed at an electronic level, we elected
to use the SPI standard that does not need to use a common
clock (see Figure 1). The communication is synchronized by
a clock signal delivered by the SPI Master, independently of
the internal clock frequency of each side.

On the programming language level, we choose to use
Python for the Linux side (Raspberry) and VHDL for the
FPGA side. So, the SPI driver can be integrated with the
commonly used frameworks on the Linux side.

MISO

SPI Master

Clock

SPI SlaveMOSI

CS

Figure 1. SPI Single Master – Single Slave signals - Chip Select (CS),
Master Out Slave In (MOSI), Master In Slave Out (MISO)

This paper covers the following topics: Section I has
provided an introduction. In Section II, we give a functional
description of the implemented system. In Section III, we
describe the hardware implementation and the materials
used. In Section IV, we develop the SPI implementation on
the Master level and the Slave level. In Section V, we
present testing results of the SPI. In Section VI, we describe
a high-level user interface developed to illustrate the SPI
utilization. Finally, a conclusion is included in Section VII.

II. FUNCTIONAL DESCRIPTION

Figure 2 illustrates a functional representation of the
whole system:

A. Raspberry PI

A Raspberry PI 3 [4] functions as Master of the SPI link.
The Raspberry PI is equipped with a General Purpose
Input/Output (GPIO). The SPI was implemented using 4
lines of this GPIO. A Python implementation of SPI Master
is utilized. An Apache Web server is implemented inside the
Raspberry to allow implementation of ergonomic and easy
to use interface for testing and demonstration purposes. A
SPI Master driver is developed using Python language and
libraries. As the system must work efficiently with regards
to real time response time, two independent processes were
implemented within the Raspberry PI system:
 To handle the user requests: an Apache Web server is

implemented using PHP scripting for the Web server
side.

 To handle the SPI link during the communication with
the FPGA. This driver is written using Python.

7Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 The communication between these two processes is
executed using TCP/IP socket communication.

Raspberry PI

FPGA

WEB Server

Python SPI Master Driver

SPI

VHDL SPI Slave Driver

I/O Process

Physical Inputs / Outputs

TCP/IP Network

Interprocess
communication

Figure 2. Functional representation

B. FPGA

An ‘Altera DE2’ Development and Education Board’ [5]
is used to implement the FPGA part. This board is built on a
Cyclone II EP2C35F672C6 FPGA working up to 50 MHz
clock frequency. This board has a 2 lines/16-character LCD
display, a set of 18 toggle switches for digital inputs, a set of
4 pushbuttons, a set of 18 red led for digital outputs and 2
forty lines extension headers for external connection. The
SPI is implemented using one of these extension headers.

To illustrate the successful operation of the SPI link, we
devise three functional usages:

 Send order, starting from the user interface, to drive the
18 FPGA board digital outputs

 Receive the status of the 18 lines of digital input to
display on the user screen.

 Send 32 bytes, entered on the user screen, in order to be
displayed on the FPGA LCD 2 lines display.

Compared to OSI communication layer, we can consider
the SPI drivers as the physical layer and these functional
usages as a link layer. So, this can be extended to implement
other functional types of messages exchanged between the
FPGA and the Raspberry.

TCP/IP network: The Raspberry PI has an 802.11 Wi-Fi
2.4 GHz interface. This interface is used to allow the
connection of a Web-based client using a standard browser.
A Web-based user interface is developed to allow the usage
of the previously mentioned illustration function for the use
of the SPI connection.

III. PHYSICAL IMPLEMENTATION

Figure 3 represents the physical implementation:

Figure 3. Physical implementation

1. DE2 Development and Education Board: we use this
board for the FPGA implementation part. For detailed
documentation, refer to the Intel official documentation
[5]

2. Raspberry Pi 3 board [3]: this board is equipped with 1
GB Ram, processor Cortex-A53 (ARMv8) 64-bit SoC
@ 1.4GHz.

3. Cyclone® II 2C35 FPGA in a 672-pin package,
working at 50 MHz

4. 18 switches used as digital inputs

5. 18 LEDs used as digital outputs

6. 40 pins flat cable used as connector between the
Raspberry GPIO and the extension header of the DE2
board. This cable is used to implements the SPI
connection between the Raspberry PI and the Altera
DE2 FPGA evaluation board.

7. 2x16 LCD and eight 7 segment digital display

8. HDMI connector for Raspberry PI

9. Power supply for Raspberry PI

10. Mouse and keyboard USB connectors

11. Power Supply and Programmer connection

8Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

IV. SPI IMPLEMENTATION

The implemented system is represented in Figure 4. A
single Master with single Slave scenario is shown in the
following paragraphs.

A. Physical interface

Figure 4 presents the SPI signals. The Raspberry PI is
the master and the FPGA is the slave. A configuration of
one Master/one Slave is implemented:

MISO

Raspberry PI

Clock

FPGAMOSI

CS

MISO

Raspberry PI

Clock

FPGAMOSI

CS

Figure 4. SPI implementation

 Clock: the clock is generated by the Master. This
signal drives the communication in both directions.

 CS (Chip Select) high when the FPGA is not
selected: No communication; low when selected.

 MOSI: Master Out Slave In: data transferred from
the Master to the Slave.

 MISO: Master In Slave Out: data transmitted from
the Slave to the Master.

B. Implementation principle

The communication is driven by the Master. The first
byte determines the type of communication. To illustrate the
usage of the drivers, three types of messages were
implemented:

 Send Memory: The Master sends to the Slave 32
bytes of data for displaying on the LCD.

 Send Outputs: The Master sends to the Slave the
order to set its digital outputs ON or OFF

 Receive Inputs: The Slave sends to the Master the
status of its digital inputs.

C. Master Driver

This driver is based on the RPI.GPIO Python library [9].
After initialization, two functions are available for an upper
level usage:

Sendbyte: send a byte from Master to Slave.

Receivebyte: receive a byte from Slave to Master.

To send a bit, MOSI is set, and then a Clock is generated
(SCLK from Low to High).

To receive a bit, a Clock rising is generated, and then the
MISO line level is read.

SPI Initialization (Figure 5): the GPIO of the Raspberry
includes 2 SPI lines. We had trouble driving these lines with
the standard Raspberry library. We opted to drive the SPI
signals directly through our program. This allowed us to
control the CS and Clock lines easily and to reach the
maximum possible communication speed with a Python
driver.

import RPi.GPIO as GPIO
Line definition

MOSI = 5
MISO = 10
SCLK = 15
CE0 = 7

#
SPI line initialization
def initspi():

GPIO.setmode(GPIO.BOARD)
GPIO.setwarnings(False)
GPIO.setup(MOSI, GPIO.OUT)
GPIO.setup(MISO, GPIO.IN)
GPIO.setup(SCLK, GPIO.OUT)
GPIO.setup(CE0, GPIO.OUT)

Figure 5. Master driver - SPI initialization

Send byte (Figure 6): The transmission of a byte starts
with the change of the signal CS (CS low). This will initiate
the reception process on the VHDL side. The MOSI level is
set according to the bits to be sent and a clock signal is
generated. After transmission of the 8 bits, this CS signal
returns to the high level.

def sendbyte(cc):
c=ord(cc)
select slave
GPIO.output(CE0, GPIO.LOW)
bitsx = [0,0,0,0,0,0,0,0]
determine bits 0/1
for x in range(8):

bitsx[7-x] = int(c % 2)
c = int((c - bitsx[7-x])/2)

set Mosi signal level
for x in range(8):

if (bitsx[x]>0):
GPIO.output(MOSI,

GPIO.HIGH)
else:

GPIO.output(MOSI, GPIO.LOW)
clock

GPIO.output(SCLK, GPIO.LOW)
GPIO.output(SCLK, GPIO.HIGH)

end of byte transmission
GPIO.output(CE0, GPIO.HIGH)
GPIO.output(SCLK, GPIO.LOW)
GPIO.output(SCLK, GPIO.HIGH)

Figure 6. Master driver – Send byte

9Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

Receive byte (Figure 7): The reception of a byte starts
with the change of the signal CS (CS low). This will initiate
the transmission process on the VHDL side. The MISO
level is read according to the bits received each clock signal
generated. After reception of the 8 bits, this CS signal
returns to the high level.

def receivebyte():
GPIO.output(SCLK, GPIO.LOW)
select slave
GPIO.output(CE0, GPIO.LOW)
out = 0b0
read 8 bits on MISO
for x in range(8):

GPIO.output(SCLK, GPIO.LOW)
GPIO.output(SCLK, GPIO.HIGH)
out = out*2
if GPIO.input(MISO):

out = out + 1
GPIO.output(CE0, GPIO.HIGH)
return out

Figure 7. Master driver - Receivebyte

D. Slave Driver

Figure 8 presents the process handling the
communication on the FPGA.

No

Waiting for the

first bytec

Memory

Receive byte

ETX ?

0 <- countchar

Store byte

countchar +1

Inputs

Send input

status

countchar +1

Last byte?

0 <- countchar

Outputs

Receive byte

ETX ?

0 <- countchar

Set outputs

countchar +1

Yes

Yes

Yes

No

No

Yes
Yes

Yes

No

Waiting for the

first bytec

Memory

Receive byte

ETX ?

0 <- countchar

Store byte

countchar +1

Inputs

Send input

status

countchar +1

Last byte?

0 <- countchar

Outputs

Receive byte

ETX ?

0 <- countchar

Set outputs

countchar +1

Yes

Yes

Yes

No

No

Yes
Yes

Yes

Figure 8. Master driver - Receivebyte

The process is normally in a waiting state. It is activated
by the CS signal. When the CS is down, the FPGA reads the
bits set on MOSI signal on rising edge of Clock signal.

process (SCK,CS,reset)
begin

if (CS = '1' and octet=MasterToSlaveMemory) then
countbit <= 0; countchar <= 0;
direction <= RECEIVE_MEMORY;

elsif (CS = '1' and octet=MasterToSlaveOutput) then
countbit <= 0; countchar <= 0;
direction <= RECEIVE_OUTPUTS;

elsif (CS = '1' and octet=SlaveToMaster) then
countbit <= 0; countchar <= 0;
direction <= SEND_INPUTS;

elsif …..

Figure 9. Slave driver - Message type detection

When the first byte is received, it is tested. Three cases
are considered:

 ‘Send Memory’: the FPGA continues the reception
of the following bytes. The received bytes are stored in an
internal memory indexed by a reception counter. This will
end when an EOT is received.

-- Receive memory
if (rising_edge(SCK) and CS='0'

and direction=RECEIVE_MEMORY) then
octet <= octet(size-2 downto 0) & mosi;
countbit <= countbit+1;
if (countbit=7) then

memory(countchar) <= octet(size-2 downto 0) &
mosi;

if memory(countchar) = EOT then
countchar <= 0;

else
countchar <= countchar+1;

end if;
countbit <= 0;

end if;
end if;

Figure 10. Slave driver - Receive memory

 ‘Send outputs’: the FPGA continues the reception
of data. The outputs are set/unset according to the received
data.

-- Receive Outputs
if (rising_edge(SCK) and CS='0' and

direction=RECEIVE_OUTPUTS) then
-- Receive 3 bytes [18 bits only valid] for digital outputs

outputs(countchar)(7-countbit) <= mosi;
countbit <= countbit+1;
if (countbit=7) then

if memory(countchar) = EOT then
countchar <= 0;

else
countchar <= countchar+1;

end if;
countbit <= 0;

end if; end if;

Figure 11. Slave driver - Receive outputs

10Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 ‘Receive inputs’: the FPGA sends the status of its
digital inputs [3 bytes for 18 inputs] using the MISO line.
An EOT is sent to inform the Master that the end of
sending is reached.

if (rising_edge(SCK) and CS='0'
and direction=RECEIVE_OUTPUTS) then

-- Receive 3 bytes [18 bits only valid] for digital outputs
outputs(countchar)(7-countbit) <= mosi;
countbit <= countbit+1;
if (countbit=7) then

if memory(countchar) = EOT then
countchar <= 0;

else
countchar <= countchar+1;

end if;
countchar <= countchar+1;
countbit <= 0;

end if;
end if;

Figure 12. Slave driver - Request to send inputs

V. TESTING AND RESULTS

We present three tests executed to validate
communication using this implementation of SPI.

A. Setting outputs

Send order from the Master (Raspberry PI) to the Slave
(Altera FPGA DE2 board) to set/unset its digital outputs:
‘Oxxx’: Message of 4 bytes. The first byte represents the
type of message; the following bytes represent the required
outputs status.

Figure 13 shows the signals observed on the SPI lines.
The message sent from the Master: the first byte represents
the ASCII representation of the character O (01101111)
used as identifier for this message. As described in Section
IV, the following 3 bytes represent the value to be set on the
digital outputs. The following 3 bytes represent the
requested status of FPGA 18 lines output.

Each byte starts when the CS comes down and is sent
when the CS goes up again. Figure 14 shows the LEDs
corresponding to the signal shown in Figure 13. The LED is
on when ‘1’ is received and is off when ‘0’ is received.

Figure 14: Led status on the FPGA board

B. Read inputs

Send order from the Master (Raspberry PI) to the Slave
(Altera FPGA DE2 board) ‘r’: This message asks the FPGA
to send back to the Raspberry the status of its digital inputs.
The Raspberry (Master) must continue to generate the clock.
The next bytes are sent by the FPGA (Slave) to the master
over the MISO line. As we have 18 inputs, three bytes are
used for this function.

Figure 15 shows the SPI signals: the clock is always
given by the Master. The Master sends the first ‘r’ byte
(01110100) over the MOSI signal. Then, the Slave sends
back three bytes.

Figure 16 shows the input switches generating the signals
shown in Figure 15.

Figure 16. Input switch corresponding to Schema 6 signals

C. Performance

The performance of this link depends on the SPI Master.
For the Raspberry III utilized, the speed of 100kb/s was
reached.

VI. APPLICATION TESTING

An application is developed to show a concreate
utilization of this work. Figure 17 shows a functional
representation of this realization.

The implementation inside the Raspberry PI is performed
using two processes: an Apache server and the SPI link
driver. This is done for real time constraints. The
communication between these two processes is executed
using client/server socket communication. The Apache side
is developed in PHP and the SPI link driver side is developed
in Python. Figure 18 presents the principle of this
communication.

Figure 15: Signals on the SPI lines for read inputs outputs

Figure 13. Signals on the SPI lines for sending outputs

Schema 2

Mobile
phone

Outputs

Inputs

FPGA

Interface
register

Raspberry PI

Socket
communication

APACHE

Server
Link

Driver 40 pins
flat cable

Link

Driver
process

I/O

Process
WIFI

Network

2 3 41

Figure 17. Signals on the SPI lines for sending outputs

11Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

Figure 19 shows the user-interface on a smartphone
screen using a standard Web browser.

Raspberry Sever processApache php script

Query status

Initialisation

Send response

Send response

Receive response

Query FPGA

Receive query

Receive response

make HTML page

New query

Mobi le
phone

Figure 18. Client/server communication in Raspberry PI

The number of inputs and outputs are reduced to 8 to
have an ergonomic user-interface on smartphones. The status
of the digital inputs of the FPGA is reported on the user
screen. The digital outputs of the FPGA are set according to
the radio-button.

Figure 19. User interface print screen

VII. CONCLUSION

In this work, FPGA-Raspberry Pi communication is
developed using the SPI protocol. A high level application is
developed using this link. This demonstrates a solution that
works by using a low level technique (VHDL) on the FPGA
side and using a high level technique on the user interface
side.

We have limited the application to digital inputs /
outputs. The work can be extended to other functions of the
FPGA. This opens the possibility of modifying the behavior
of an FPGA dynamically. The job can also be completed in
the sense of increasing the transmission speed, which is
somehow proportional to the Master's clock frequency.

REFERENCES

[1] https://circuitdigest.com/tutorial/what-is-fpga-
introduction-and-programming-tools (9/2019)

[2] N.Q.B.M. Noor and A. Saparon, "FPGA
implementation of high speed serial peripheral interface
for motion controller," in Proc. 2012 IEEE Symposium
on Industrial Electronics and Applications (ISIEA),
pp.78-83, Sept. 2012.

[3] Raspberi Pi official site: https://www.raspberrypi.org/
documentation/hardware/raspberrypi/spi/ (1/2019)

[4] Rapberry Pi 3 board - Official documentation
https://www.raspberrypi.org/products/raspberry-pi-3-
model-b-plus/ (1/2019)

[5] Altera DE2-115 Development and Education Board -
https://www.intel.com/content/www/us/en/programmab
le/solutions/partners/partner-profile/terasic-inc-
/board/altera-de2-115-development-and-education-
board.html

[6] Python documentation, https://www.python.org/
(1/2019)

[7] https://www.php.net/manual/fr/ (1/2019)

[8] Quartus II Handbook:
http://www.altera.com/literature/hb/qts/quartusii_handb
ook.pdf (4/2019)

[9] GPIO Raspberry installation and usage :
https://www.raspberrypi-spy.co.uk/2012/05/install-rpi-
gpio-python-library/ (6/2019)

[10] SPI Tutorial – COREIS https://www.corelis.com/
education/tutorials/spi-tutorial/ (5/2019)

12Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

