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Abstract—In Field-Programmable Gate Array (FPGA) design, the
coding style has a considerable impact on how an application
is implemented and how it performs. Many popular Very-
High-Speed Integrated Circuits Hardware Description Language
(VHDL) logic synthesis tools like Vivado by Xilinx, Quartus II by
Altera, and IspLever by Lattice Semiconductor, have significantly
improved the optimization algorithm for FPGA synthesis. How-
ever, the designer still has to generate synthesizable VHDL code
that leads the synthesis tools and achieves the required result for a
given hardware architecture. To meet the required performance,
VHDL based hardware designers follow their own rules of thumb,
and there are many research papers which suggest best practices
for VHDL hardware designers. However, as many trade-offs have
to be made and results depend on the combination of optimized
implementations and optimized hardware architectures, final
implementation decisions may have to change over time. In this
paper, we present a VHDL design tool flow that makes portability
of the design to new design requirements easier. It helps to
generate automated portable VHDL design implementations and
customized portable VHDL design implementations. This tool
flow helps the VHDL hardware designers to generate a single
VHDL design file, with multiple design parameters. It also
helps the end-users of VHDL hardware designs in choosing the
right parameter settings for a given hardware architecture and
generating the right bit file corresponding to these parameter
settings, according to their requirements.
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I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are attractive
platforms for custom hardware implementation. They have
been used in accelerating high-performance applications in
which the complexity is significantly reduced by employing
custom hardware to parts of the problem. They have been
attractive for many new applications in which their flexibility
and configurability are in high demand. The FPGA’s strength
comes from the fact that hardware developers can program it
to deliver exactly what they need for their design, and massive
spatial parallelism at low energy gives FPGAs the potential to
be core components in large scale High-Performance Comput-
ing (HPC).

Very-High-Speed Integrated Circuits Hardware Descrip-
tion Language (VHDL) is a Hardware Description Language
(HDL) that is used to program FPGAs. It describes the
behaviour of an electronic circuit or system, from which the
physical circuit or system can then be implemented. FPGAs
work on configuration bits that define the functionality. To
generate configuration bits from HDL, an FPGA tool flow is
used. An FPGA tool flow aims to produce a configuration for
the target FPGA that implements the functionality described in
the HDL design. The current FPGA tool flow consists of syn-
thesis, technology mapping, packing placement and routing. In

the synthesis step, the HDL code is translated from a human-
readable form to a gate-level logic circuit. The synthesis tool
is also responsible for optimising the circuits depending on the
needs of the designer. During technology mapping, the gate-
level circuit generated by the synthesis step is mapped onto the
resource primitives (ex. Lookup tables (LUTs), Flipflops (FFs),
DSP blocks (DSPs), BlockRAMs) available in the target FPGA
architecture. In packing, LUT primitives and FFs from the
mapped netlist are clustered into Configuration Logic Blocks
(CLBs) according to their interconnectivity. During placement
and routing, CLBs are assigned to physical logic blocks on
the FPGA, and these CLBs are connected using switch blocks
and wires. Finally, the configuration bitstream is generated.
Recently, increasing research has been performed in the field
of placement and routing, and also commercial FPGA tools
(Vivado by Xilinx, Quartus II by Altera, IspLever by Lattice
Semiconductor, Encounter RTL compiler by Cadence Design
Systems, LeonardoSpectrum, Precision by Mentor Graphics,
and Synplify by Synopsys) optimised their algorithm for better
results [1]–[3].

The tool flow proposed in this paper is mainly related to
targetting the synthesis step. The coding style can have a severe
impact on the resource utilisation of an FPGA architecture,
and how it performs on the target board. The designer can
write HDL code that forces the synthesis step to make use of
available FPGA resources or not to use the specific resources.
The designer can also write HDL code that has higher or lower
throughput or a different design operating frequency. There
are many research papers and books [4]–[6] which suggest
best practices and techniques; also, each commercial FPGA
vendor has their own coding guidelines [7] [8]. Apart from
all these guidelines, each designer and company follows their
own rules of thumb in order to achieve the required results
according to the design requirements.These techniques and
guidelines are specific to the particular FPGA architecture
and model. As we can see in the current market, FPGA
architectures and models keep changing to fulfill a new market
need (e.g., currently, most FPGA vendors are designing their
boards to target machine learning, deep neural networks, and
data server requirements). From the above discussion, we can
categorize these coding techniques and methods into three
main categories: i) technology independent coding styles, ii)
performance driven coding, iii) technolonology specific coding
techniques.

In this paper, we present a method to combine all possible
coding techniques, methods, and rules of thumb in a single
VHDL design file. The tool flow processes the VHDL design
file with all possible techniques, methods, and rules of thumb,
which is independent of the FPGA vendor and the architecture.
In Section II and Section III, we present different types of
VHDL coding techniques and methods and describe a method
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to combine all possible techniques in a single VHDL design
file. In Section IV, we present the portable tool flow integrated
with a synthesis tool to process input VHDL design files. In
Section V, we give results and a conclusion.

II. VHDL CODING TECHNIQUES AND METHODS

In this section, we will discuss three main coding tech-
niques and methods with an example. In the end, we describe
a method to combine these techniques and methods in a single
VHDL design file.

A. Technology independent coding styles
As the name suggests, technology independent coding

techniques are independent of the FPGA architecture, vendor,
and technology. Here, we will discuss a few techniques [9]–
[12].

1) Sequential devices design techniques: In sequential de-
vices, we have two main types of memory devices: a latch and
a flip-flop. A latch is a level-sensitive memory device and a
flip-flop is an edge triggered memory device [3] [13].

Data-Latches: Here we will see different ways, of using
Data-latches (D-latches).

D-Latch with data and enable:

begin
process (enable, data) begin

if (enable= '1') then
y<=data;

D-Latch with gated asynchronous data:

process (enable, gate, data) begin
if (enable = '1') then

q <= data and gate;

D-Latch with gated enable:

process (enable, gate, d) begin
if ((enable and gate) = '1') then

q <= d;

D-Latch with asynchronous reset:

process (enable, data, reset) begin
if (reset = '0') then

q <= '0';
elsif (enable = '1') then

q <= data;

2) Datapath: Datapath logic is a structured repetitive func-
tion. These structures can be modelled in a different imple-
mentation depending upon timing and area constraints. The
following synthesis tools generate optimal implementations for
the target technology depending upon the datapath model used
in the VHDL code [9] [13].

(i) Using if-then-else and case statement: An if-then-else
statement is used to execute sequential statements based on a
condition. Each of the if-then-else statements is checked until
a true condition is found. Statements associated with a true
condition are executed and the rest of the statement is ignored.
Using if-then-else statements in VHDL code forces synthesis
tools to realize the circuit in a way shown in Figure 1.

A case statement implies parallel encoding and a case
statement is used to select one of several alternative statement

Figure 1. Effect on synthesis tool using an if-then-else statement

sequences based on the value of a condition. The condition
is checked against each choice in the case statement until the
match is found. Using case statements in VHDL code forces
synthesis tools to realise the circuit in a way shown in Figure
2.

Figure 2. Effect on synthesis tool using a case statement

While writing VHDL code, it is difficult to predict how
using an if-then-else statement or a case statement will effect
the critical path of the final design or the design throughput or
design requirements. The optimisation level of each statement
varies from one synthesis tool to the other. In such cases,
we can define both statements in a VHDL design file using
the keyword - -# using case and - -#using if else. Later,
we can make choices at the synthesis step depending upon
requirements using the tool flow presented in the next section.

(ii) Designing Multiplexers: While writing VHDL code,
we can force the synthesis tool to make use of 4:1 or 6:1
or 12:1mux. The LUT inputs vary with the architecture, thus
optimizing for different mux types can affect the synthesis to
architecture step [10] [14].

(iii) Counters: Counters count the number of occurrences
of an event that occurs either at regular intervals or randomly.
Counters can be designed in one of the following ways: i)
a counter with count enable and asynchronous reset, ii) a
counter with load and asynchronous reset, and iii) a counter
with load, count enable, and asynchronous reset. However,
most synthesis tools cannot find the optimal implementation of
counters higher than 8- bits. If the counter is in the critical path
of a speed and area critical design, it is better to redesign using
one of the ways mentioned above or to use a pre-instantiated
counter provided by the vendor [9] [10].

3) Input-output buffers: We can infer or instantiate an
Input/Output buffer in the VHDL design depending upon
design requirements. The usage of inference and instantiation
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Figure 3. Example circuit designs

has its own advantages and disadvantages. For example, in
the inference method, we define a tri-state buffer using an
entity port in the design, whereas in the instantiation method,
we make use of the tristate component design provided by
synthesis tools [4] [9].

B. Performance driven coding
In the FPGA, each logic level used in the design path can

add a delay. As a result, meeting timing and area constraints
on a critical path with many logic levels becomes difficult.
Using an efficient coding style is important because it dictates
the synthesis logic implementation. In this section, we will
discuss a few essential techniques [9] [15].

1) Reducing logic levels on critical paths: Consider a small
circuit design, as shown in Figure 3. Here, we have two circuit
designs with the same functionality but designed differently.

In circuit 1 of Figure 3, the signal ”critical” goes through
two logic gates.

if (clk'event and clk ='1') then
if (non_critical and critical) then

out1 <= A
else

out1 <= B
end if;

end if;

To reduce the logic gate usage on “critical” signals, multi-
plex inputs “A” and “B” based on “non critical” and call this
output “out temp”. Then multiplex “out temp” and “B” based
on “critical”. As a result, the signal “critical” goes through one
logic gate as shown in circuit 2 of Figure 3.

if (clk'event and clk ='1') then
if (non_critical and critical) then

out1 <= A
else

out1 <= B
end if;

end if;

2) Resource sharing: The resource sharing technique is
used to reduce the number of logic modules needed to imple-
ment VHDL operations. Here, we have two pieces of VHDL
code: one makes use of four adders and another uses two
adders.

--Example implementation with 4 Adders
if (...(siz == 1)...)

count = count + 1;
else if (...((siz ==2)...)

count = count + 2;
else if (...(siz == 3)...)

count = count + 3;
else if (...(siz == 0)...)

count = count + 4;
--Example implementation with 2 Adders
if (...(siz == 0)...)

count = count + 4;
else

count = count + siz

C. Technology specific coding techniques
These coding techniques are used to take advantage of

the specific FPGA architecture, to improve speed and area
utilization of the design. These techniques have their own
coding guidelines to take advantage of their FPGA architec-
tures [8] [16].

III. METHOD TO COMBINE ALL POSSIBLE DESIGN
TECHNIQUES IN A SINGLE VHDL DESIGN FILE

From the above discussions, we observe that the VHDL
coding style has a considerable impact on how an FPGA
design is implemented, and ultimately, how it performs. Here,
we present a method to combine all possible VHDL design
methods and techniques in a single design file. Let us consider
a VHDL design file where we have two processes in a
behavioral architecture and each process has to be described
with different pipeline stages. Later, before the synthesis step,
we plan to select the pipeline stages between each process,
and a method to combine this would be as follows:

architecture behavioral of <identifier> is
begin
process(<signal>) -- Process 1
begin
--#pipelined=0
-- < code>

--#pipelined=0
--#pipelined=1

< code >
--#pipelined=1
process(<signal>) --Process 2
begin
--#pipelined=0

< code>
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Figure 4. VHDL design tool flow for portable FPGA implementation

--#pipelined=0
--#pipelined=1
-- < code >
--#pipelined=1

Here, we make use of the keyword “- -#” followed by
a design parameter instance. We can use this keyword to
define any part of the code like input-output ports, signals,
or the architecture part of the code. We can use any possible
name to define the design parameter instance and there is
no syntax rule for the names. The only condition we put
forward for different parameter design parts is that they should
start and end with the same design parameter name (from
the above code design, a parameter means –#pipelined=1,
–#pipelined=2). From the above code, we can observe in
process 1 we commented the pipelined=0 and kept the
pipelined=1 as default. In process 2, we kept pipelined=0 as
default. It will help in processing the design files without our
tool flow.

IV. VHDL DESIGN TOOL FLOW FOR PORTABLE DESIGN
GENERATION

As seen in Section III, now we have a way to combine
multiple design techniques and methods in a single VHDL
design file. However, this type of VHDL design file cannot be
synthesised by regular synthesis tools. Therefore, we need a
tool flow which can guide the synthesis tool in implementing

combined VHDL design files, and which can allow the user
to decide and generate portable VHDL designs.

In Figure 4, we present our proposed tool flow. As it
can be observed, the tool flow is designed in two stages:
the portable stage and the generic stage. The portable stage
processes the input design files and allows the user to make
the selection between different design parameters. The generic
stage processes the new design files generated by the portable
stage and generates a synthesis report and a bit-file.

In the portable stage, the tool flow receives the input design
files. The tool flow scans for the design parameters available
in the design files and prints them to the user. Then, the
tool flow allows the user to select either automated design
or customised design. In the automated design, the user can
apply a selected set of design parameters or techniques to
all available design files. In the customised design selection,
the user can choose between different design files, for using
selected design parameters. After successful selection of the
design parameters available from the input design files, the
tool flow searches for the user selected design parameters in
each design file and extracts the design parameter content from
each design file. If the user selected design parameter does
not match with parameters in the design file, the tool flow
will keep the default design parameter. After this the tool flow
generates the new design files. The newly generated design
files are processed further with the generic stage to generate
a synthesis report. Next, the synthesis report is extracted and
displayed to the user, and finally, the bit-file is generated. The
portable tool flow proposed in this paper is independent of
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the used FPGA architecture. This can be integrated with any
FPGA architecture, just by changing the invoking statement
in the code. For example, to invoke the Xilinx Vivado design
suite, the following code is used:

vivado-mode batch -source design.tcl

One can think it is a lot of manual work to define all
possible design parameters in a design file, but as we discussed
in the introduction, our idea is to combine all possible coding
techniques, methods, and rules of thumb in a single design file.
It is easier for a designer to propose different smaller design
options in sub-parts of the design than to provide different
complete designs full of different choices. So the designer does
not have to worry about how different choices are combined
(as this is done automatically) but can focus on the individual
different options. This is a huge difference.

V. RESULTS AND DISCUSSION

In this section, we will evaluate the portable VHDL design
tool flow and present the results [17]. In our experiments,
we used an 8 core CPU system. We integrated our portable
VHDL design tool flow with the Xilinx synthesis tool (Vivado
2018.3) [18], to generate the synthesis report and the bit-file.

A. Evaluating the portable VHDL design tool flow for a single
design file (using technology independent coding styles)

Here, we considered the data flip-flop VHDL design file
with seven design parameters (techniques) in a single VHDL
design file. We compared our results with the standard VHDL
design with a single design parameter. These results are
tabulated in Table I.

TABLE I. RESULTS USING PORTABLE VHDL DESIGN TOOL FLOW
AND GRAPHICAL USER INTERFACE OF SYNTHESIS TOOL

From Table I, we can observe that we have two different
implementation results: one using our portable VHDL design
tool flow, and another one using the Graphical User Interface
(GUI) of Vivado design suite. In this experiment, we con-
sidered the seven design techniques (parameters) to design
a data flip-flop. These are i) rising edge flip-flop, ii) rising
edge flip-flop with asynchronous reset, iii) rising edge flip-
flop with asynchronous preset, iv) rising edge flip-flop with
asynchronous reset and preset, v) rising edge flip-flop with
synchronous reset, vi) rising edge flip-flop with synchronous
preset, vii) rising edge flip-flop with asynchronous reset and
clock enable. While using the GUI, we designed the data
flip-flop considering one design technique at a time and

subsequently edited the design for other parameters to get
the corresponding synthesis report and the bit-file. In the
second instance, we used the portable VHDL design tool flow,
combining all techniques in a single design file and generating
the synthesis report and the bit-file.

From the results in Table I, we can observe that writing a
combination of required VHDL design techniques in a single
file takes more time, but if we want to edit for other parameters
or design techniques, it will take an extra 15 minutes at later
stages without the use of our tool flow. Using our portable tool
flow, we can generate the synthesis results and the bit-file for
all seven design parameters at the same time, so we can easily
compare the results and choose the right implementation.
Otherwise, we need to edit the design file each time and run
the synthesis tool.

B. Evaluating the portable VHDL design tool flow for multiple
design files (H264 Video encoder design)

In this section, we evaluate our tool flow for the complete
hardware H264 video encoder design, which consists of 15
different design blocks, as shown in Table II. Here, we added
six design parameters in the design blocks. Using 6 different
design parameters in the H264 encoder design, we are able
to generate 8 different combinations, by selecting one design
parameter each time or multiple design parameters in various
combinations, which leads to different implementations and
results. Using our tool flow here, we have the option of
customisation by making parameter selections to a few design
blocks.

Apart from portability options, we provide the automation
option in running the complete synthesis steps. Using our tool
flow, we can check the resource utilization for each design
block. Our tool flow runs the synthesis step in parallel. A few
more comparisons are tabulated in Table III.

TABLE II. EVALUATION OF HARDWARE VIDEO ENCODER H264
USING PORTABLE VHDL DESIGN TOOL FLOW

VI. CONCLUSION

In this paper, we proposed a way to combine the dif-
ferent possible VHDL design techniques and methods in a
single VHDL design file. This can be evaluated into multiple
(functionally equivalent) design files, that can be compared to
allow the designer to choose between different implementation
techniques, based on the achieved trade-off between FPGA
resource utilisation and performance. In that way, by evaluating
the same VHDL design file, the designer can estimate which
design option is the better choice.

Additionally, we proposed a tool flow that allows the user
to generate the design bit-files of all possible combinations
automatically. This tool flow can be integrated into any other
synthesis tool. Hence, it forms a pre-synthesis step, that
provides the user with the flexibility of having multiple design
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TABLE III. COMPARISON OF PORTABLE VHDL DESIGN TOOL FLOW OVER USUAL TOOL COMMAND LANGUAGE (TCL) AUTOMATION

options, but without having to redesign them, only to generate
the new file, based on a set of parameters.

Using our tool flow, designers can easily redo the design
exploration when the underlying FPGA architecture for the
design changes. They do not have to delve into the VHDL
source code for this. For the final design parameter choice,
the tool can automatically generate the bitstream. Hence, this
tool flow significantly enhances the portability of designs to
new FPGA devices.
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