
Custom Hardware Integration into DBT-based Processor Simulation

Steffen Köhler and Rainer G. Spallek
Institute of Computer Engineering

Technische Universität Dresden
01062 Dresden, Germany

Email: steffen.koehler, rainer.spallek@tu-dresden.de

Abstract—High performance simulation of processor architec-
tures at instruction set / behavioral level often utilizes Dynamic
Binary Translation (DBT) techniques to achieve an efficient map-
ping to the simulation host. While the behavior of most standard
processor operations can be directly translated into host proces-
sor instructions due to their similarities, the behavior of complex
application specific instructions or peripheral components are less
suitable for host processor execution. In this paper we discuss
the migration of application specific behavioral processor model
partitions to field programmable accelerator hardware to achieve
an overall co-simulation speedup. For an in-depth evaluation, the
integration of an off-the-shelf Field Programmamble Gate Array
(FPGA) into our DBT-based processor simulation framework
RUBICS (Retargetable Universal Binary Instruction Conversion
Simulator) was considered. RUBICS is a flexible behavioral
modelling and simulation platform framework for embedded
processor architectures and complete Systems-on-a-Chip (SoC).
In a case study, we show the behavior model migration of an
application specific peripheral co-processor into a synthesizable
hardware description mapped to the FPGA accelerator. Only
minor changes are required to the original ARMv7 processor
model description given in RUBICS’s dedicated Architecture
Description Language (ADL). An overall simulation speedup
between 300% and 540% has been achieved by migrating the
main calculation partition of a numeric transform peripheral to
the FPGA accelerator. Challenges of the communication-driven
model partitioning as well as the achievable simulation speedup
are discussed.

Index Terms—Processor Simulation; Dynamic Binary Trans-
lation; FPGA Accelerator.

I. INTRODUCTION

The behavioral simulation of embedded processor cores is
essential for a successful design of System-on-a-Chip (SoC)
architectures. Beside the processor core behavior, a detailed
analysis of interaction and communication between processor
core and peripheral/dedicated components plays an important
role in the SoC test/verification process.
The current complexity of hardware- and software-components
requires an analysis of the SoC as a whole at an early
stage of the design process. Contrary to performance-oriented
approaches that focus on peripherally observable behavior
(emulation), the behavioral simulation additionally has to
provide a short modeling turn-around cycle as well as the
demanded observability of the relevant model state. To achieve
this, a behavioral processor simulator should provide rapid
modeling capabilities at a high abstraction level (instruction
set, instruction behavior, IO behavior), visibility of internal
flow (registers, data path), as well as a high simulation
speed. As an increased state visibility introduces additional

modelling, execution and data recording effort, the simulation
model has to be carefully adapted to the particular observation
requirements. This can be achieved e.g. by injecting selective
debug operations into the behavioral model specification.
Beside the early design stage requirements the simulation
environment could also be used to reconstruct the execution
profile of embedded software modules. Through architecture
model instrumentation, a detailed control- and data-flow trace
may be obtained for an in-depth software analysis.
The most essential part of the processor simulation is a model
description that provides information for equivalent mapping
the target instruction flow to the simulation host. The quality
of the translation process and the resulting fitness to the host
processor architecture determines the achievable simulation
performance. Common methods used for high speed behavior
level processor simulation utilize binary translation techniques
[1]. The trade-off between translation effort amortization and
available performance can be effectively improved by apply-
ing just-in-time (JIT) compilation, where target instruction
sequences are dynamically mapped to the host processor at
runtime. Common approaches of JIT-based simulators and
emulators use widely available runtime environments, such as
Java Virtual Machine (JVM) [2], Common Language Runtime
(CLR) [3] or PyPy [4] as well as dedicated compilers like Tiny
Code Generator (TCG) [5]. As a matter of fact, the translation
quality essentially depends on the degree of similarity of
both target and host processor architectures. This problem
especially involves the mapping of dedicated custom target
instruction set extensions or peripheral models. It can be
overcome by supplying a more flexible mapping platform on
the simulation host, thus allowing a higher degree of adaption
as a result of the translation. A promising platform extension
approach is the integration of FPGA hardware in conjunction
with a partitioning of the simulation model.
In this work, we focus on static translation of the FPGA
partition, although it might also be possible to benefit from
just-in-time utilization of the FPGA.
Among different available simulation environments, we have
chosen the RUBICS [6] platform framework, which utilizes the
open ECMA International Common Language Runtime (CLR)
[7] standard platform. Advanced retargetability and modeling
capabilities are provided through a dedicated architecture
description language (ADL), whereas extensibility is granted
by the underlying CLR language support (C#, VB, etc.).
External component libraries (DLL) facilitate the integration
of complex peripheral model descriptions as well as FPGA-

49Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

Architecture Loader

Parser Resolver

Simulation

LoopCache Compiler

Memorysystem / IO

Device Models

Ext. Model

ELF Loader

IR

Program
Data

RW via

Memory Access

Simulation Console

User FeedbackCommands

Figure 1. RUBICS Platform Framework

based model partitions into the ADL description without any
changes to the simulation core.
In this paper, sections II and III introduce the RUBICS simula-
tion platform and the provided processor architecture descrip-
tion methodology. Section IV outlines the binary translation
based simulation process. A detailed description of custom
hardware mapping to an FPGA accelerator and its performance
evaluation is given in sections V and VI respectively. Finally,
a summarized discussion and generalization of the achieved
results is given in section VII.

II. SIMULATION PLATFORM

The chosen simulation platform framework RUBICS pro-
vides the underlying infrastructure for high-performance pro-
cessor simulation. It allows both structural and behavioral
architecture description in a dedicated architecture description
language (ADL) and supports embedding external core or
peripheral models. Enhanced test and debug capabilities enable
versatile control/observation of the simulation process. The
framework is composed around a core component, that can be
dynamically extended by loading simulation model or support
libraries at runtime. Any Common Language Runtime (CLR)
[7] compatible module can be made available to the RUBICS
platform framework. Beside the behavioral model description
in a supported language the CLR, it also grants direct access
to the native system resources of the simulation host. This
significantly simplifies both the integration of custom hardware
models into the core model as well as extending the simulation
host by additional FPGA-hardware. The CLR furthermore
implements a dynamic execution interface to host processor
which complies to the Common Intermediate Language (CIL)
bytecode specification. The versatile bytecode interface is not
only used for CLR module representation, but is also target
by the dynamic binary translation process. Figure 1 gives an
overview of the basic structure of the RUBICS framework.

The integration of FPGA hardware into the simulation host and
its application as processor simulation accelerator is generally
supported by the RUBICS platform framework in two different
variations.

• Loose coupling by a bus interface for peripheral or co-
processor models

• Tight coupling by a plugin interface for direct access from
the ADL behavioral model

Although both possibilities could have been considered for
further investigations, we focus on the bus interface integration
for partitioning reasons. The plugin access would require
advanced low latency communication properties, which the
available interface of the chosen FPGA hardware platform
unfortunately could not offer.

III. ARCHITECTURE MODEL

The main concept of a retargetetable processor simulator by
mean of combining a generic infrastructure with a dedicated
architecture description language (ADL) was already sug-
gested in [2]. Contrary to a programming language or hardware
description language, an ADL model can be specified using a
common structural template. The remaining description work
only requires the specification of unique structure and behav-
ior, such as processor state, instruction set, and instruction
behavior. The architecture description is composed of different
sections:

• import References to CLR library models,
• bus Bus-oriented loosely coupled devices
• plugins Tightly coupled plugins,
• context, Context state variables,
• decoder, Instruction decoder description,
• behavior, Instruction behavior description,
• interrupts, Interrupt description.

50Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

1 bus mem {
2 unit = 8;
3 endian = LITTLE;
4 access {
5 byte = 1;
6 short = 2;
7 word = 4;
8 }
9 devices {

10 ram mem {
11 base = 0;
12 size = 0x40000000;
13 }
14 fpga fpga_dev {
15 base = 0x40000000;
16 size = 0x10000000;
17 }
18 }
19 }
20 plugins {
21 plugin.fpga fpga_plug;
22 }
23 context {
24 uint pc;
25 }
26 decoder {
27 fetch {
28 bus = mem;
29 pc;
30 }
31 context {
32 uint instruction_word;
33 }
34 operation oper {
35 instruction_word = fetch.word;
36 IPC;
37 }
38 }
39 behavior {
40 operation IPC {
41 fpga_plug.ExecFunc();
42 pc += 4;
43 }
44 }

Figure 2. Architecture Description Language

Figure 2 shows a simplified architecture model with both
tightly and loosely coupled model components mapped to an
FPGA accelerator. The description consists of structural and
behavioral specifications. For demonstration reasons, the in-
struction behavior only includes a program counter increment
followed by a plugin function ExecFunc() invocation.
The declaration of the memory bus mem not only describes
the main memory and peripheral mappings, but also specifies
an embedded FPGA based accelerator device fpga_dev.
Detailed access pattern sizes and alignment hints are given
in the access section, that makes the bus interface avail-
able to the behavioral operations as named expression, e.g.
mem.byte[<address>]. Through the unit attribute the
data granularity (smallest addressable data unit) can be set.
Although the general execution flow is implicitly determined
by the RUBICS core, the fetch environment has to provide
the information about the proper instruction memory interface
(mem) and the fetch address (pc) of the next instruction. The
decoder may maintain its own global context context, which
is especially favorable when decoding complex instruction
sets.
The ADL makes the standard CLR data types available to

the decoder and instruction behavior descriptions. Unique type
conversions will be done automatically. A huge selection of
support functions is available for specifying dedicated bit-level
and floating point operations. Fixed point literals are handled
with arbitrary length upon its use in a particular variable
operation or assignment. This significantly simplifies constant
propagation and reduces the number of required range checks.
The architecture description will be translated into an internal
Intermediate Representation (IR), which holds the information
needed for the binary translation and the JIT compilation
process.

IV. BINARY TRANSLATION

The binary translation is the main task prior execution
on the simulation host. After the target architecture and the
application binary have been loaded and the Program Counter
(PC) has been set to the appropriate start address, execution
flow is transferred to the main simulation loop. According to
the decoder specification in the IR, the instruction stream gets
decoded and behavioral IR operation are issued and executed
until the flow hits a break condition. A simplified simulation
flow is outlined in Figure 3.
As behavioral operations are tied directly to particular address
ranges, they can be cached to avoid redundant decode opera-
tions. In case of a cache-miss, a decode operation is invoked,
which stores a new behavioral block to the simulation cache.
The decode operation can be avoided in case of a cache-hit
and the behavioral operation block is directly available for
execution. Only instructions on consecutive addresses can be
mapped to a single cache entry. The size of the behavioral
operation block (dynamic block) is limited by application bi-
nary control flow transfer instructions (e.g. branches). Special
handling of non-contiguous control flow is reflected by the
exit keyword (end of dynamic block) inside the decoder
specification. A sufficiently high dynamic block size is vital
of a low cache lookup rate and thus for a high simulation
performance.
In a first step, the binary translation creates a sequence of
instruction tailored copies of the behavioral IR, which will then
be optimized to eliminate redundant operations and variable
access. The additional optimization effort (flow analysis) can
easily be amortized, except for very short simulation runs.
During the translation of the IR, native interface and plugin
invocations are directly handled using native CLR calls for
low overhead. A lookup-based memory delegator offers low
latency access to multi-device bus interfaces with nearly con-
stant time aperture access. Target memory blocks are directly
mapped to virtual user address space of the simulation host
by operating system functions utilizing copy-on-write pages.
Furthermore, hot-spot compilation [8] is applied to the simu-
lation process, which delays the translation of the behavioral
IR copies into CIL bytecode until they have reached a certain
execution count threshold. The final translation of the CIL
bytecode into host machine instructions is transparently main-
tained by the CLR-internal JIT compiler.

51Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

compile

Program
in Memory Decoder Dynamic

Block

Compiled
Block

Simulation
Cache

Decoder IR Behavior IR

Simulator

Commands

at PC Operations

Mapped

Byte
Code

execute

PC, CacheBlock

CacheBlock (hit)

PC
(miss)

Figure 3. Simulation Cycle

V. EMBEDDING CUSTOM HARDWARE

For a reasonably complete behavioral processor description,
the core architecture ADL model has to be extended by addi-
tional peripheral or plugin models. This is already supported
by the RUBICS platform framework by its library concept.
The behavior of a loadable library component can easily be
specified using any CLR compatible programming language
(C#, VB, etc.). Depending on the communication pattern and
resource requirements, a migration of any RUBICS library
component to an FPGA accelerator is basically possible. To
achieve this, a synthesizable Register Transfer Level (RTL)
model partition has to be manually created and described using
a Hardware Description Language (HDL). The FPGA mapping
decision is driven by the availability of such a HDL description
(or the effort to create this description) and the potential
performance gain including the communication overhead.
As FPGAs can only be accessed by the simulation host using
a limited scale of available processor interfaces, inter-partition
communication overhead directly relates to the simulation host
platform. Although it would be possible to consider tightly
coupled processor/FPGA host platforms, the best cost/perfor-
mance trade-off can be achieved by integrating an inexpen-
sive PCIe-based FPGA-board into a PC/workstation environ-
ment. Unfortunately, PCIe-based inter-partition communica-
tion heavily depends on the available PCIe transfer profiles,
thus limiting the influence on communication latency and
throughput. Therefore, only a streaming-based communication
approach could be considered in this work.
Figure 4 illustrates the embedding of a custom behavioral
model into the simulation process using FPGA hardware.

VI. PERFORMANCE ANALYSIS

In a particular case study, the FPGA hardware integration
into the simulation host and its utilization as execution plat-
form for a custom peripheral model can be demonstrated. The

Host

Device Library

Model

P
C

Ie
 D

M
A

PCIe MSI

Architecture Device
Model

Write
Thread
Read

Thread

Simulation
Core

Device
Driver

Memory

CPU PCIe Core

Device Model

RUBICS

OS

FPGA

Figure 4. Simulation Environment with FPGA-Hardware

host system is composed of a fairly recent Intel Core-i5 6500
(SkyLake) with 16GB DDR4 memory. Through a standard
PCIe expansion connector a Terasic DE5-Net FPGA board
(Altera/Intel Stratix V FPGA) [9] is plugged into the main
board. Only four PCIe-Lanes are used for communication.
The system runs Debian Linux using an unpatched Kernel

52Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

FFT 16k FFT 64k FFT 256k

R
u

n
ti
m

e
 [

u
s]

Host (C#/CLR)

750

3450

14850 FPGA+XFER

250
740

2750

Figure 5. Simulation Runtime

v4.10.1. All performance measurement were carried out on
an ARMv7 Thumb2 instruction set model [10] in a RUBICS
v0.6 platform framework on top of MONO CLR v4.8. The
peripheral model chosen for FPGA mapping has been selected
with main emphasis on implementation simplicity and inter-
face fitness to the available PCIe IP-core. A decimation-in-
frequency Fast Fourier Transform (FFT) model [11] with three
different block sizes was evaluated using both a C#-based CLR
thread as well as a coupled FPGA-based implementation. The
description of the FPGA partition not only includes Verilog
HDL RTL modules, but also structural component declarations
required for automated FFT IP-core generation using QSys
wizard of Quartus Prime v15.1. A XILLYBUS PCIe streaming
controller IP-core [12] supplies the underlying communication
infrastructure including a Linux OS device driver. Although
the intended optimization goal was performance-oriented, the
available FFT pipeline capabilities could not be fully utilized
due to a maximum clock frequency of 250 MHz limited by
the XILLYBUS PCIe-core.
Figure 5 summarizes the achievable overall simulation runtime
reduction resulting from the FPGA accelerator using different
FFT block sizes. A more detailed impression on particular
calculation and transfer effort can be obtained from Figure 6.
To neglect JIT amortization effects, the measurement results
have been averaged over a total of 1000 FFT runs respectively.
The overall simulation performance gain including transfer
overhead reaches between 300% with an FFT block size of
16384 points and 540% with an FFT block size of 262144
points. The latter is the maximum FFT size that could be
implemented using Quartus QSys wizard.
The FPGA resource consumption is dominated by the FFT
component and reaches 25. . . 30% of the available DSP and
RAM blocks, whereas the remaining logic including XILLY-
BUS glue components utilizes only 2-4% of the chip capacity.

 0

 500

 1000

 1500

 2000

 2500

 3000

FFT 8k FFT 64k FFT 256k

R
u

n
ti
m

e
 [

u
s]

FPGA
XFER

250

740

2750

Figure 6. FPGA Calculation vs. Transfer

VII. CONCLUSION AND FUTURE WORK

In this paper, we have shown the integration capabilities of
application specific custom hardware models into the RUBICS
behavioral simulation flow. An acceleration of the simula-
tion process could be achieved by the utilization of coupled
FPGA hardware on the simulation host. This approach is
especially useful for complex behavioral models of peripheral
components of processor-based SoC. Furthermore, the em-
bedding of external models into the architecture description
was demonstrated, which allows tight or loose coupling of
external custom models to the core architecture. Through
the selected migration of a custom FFT model partition to
a loosely PCIe-coupled FPGA board a simulation perfor-
mance improvement compared to the standalone mapping to
the simulation host has been demonstrated. The achievable
runtime-benefit increases with the mapping advantage of the
FPGA compared to the host processor and the reduction of
transfer overhead between the FPGA- and host-partitions. The
selected FFT example does not fully comply these demands,
thus resulting in a comparatively low performance gain. Espe-
cially the communication latency of the throughput-oriented
XILLYBUS IP-core lowers the achievable overall simulation
performance significantly. A definition of more realistic par-
titioning properties and goals would therefore be desirable.
Beside the computational resource specification, this would
also include precise knowledge about the request/response
communication round-trip time. Also, the availability of a
low-latency PCIe IP-core would be generally preferable for
obtaining an increased overall integration efficiency of tightly
coupled custom hardware models on FPGA. Furthermore, the
communication latency can be entirely neglected by breaking
the request/response scheme and avoid stalling the simulation
progress while waiting for any hardware response. The case
is most relevant to uni-directional fire-and-forget transfers like
execution flow trace recording, which is subject of prospective
investigations.

53Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

REFERENCES

[1] “High speed cpu simulation using jit binary translation,” 2007, URL:
http://homepages.inf.ed.ac.uk/npt/pubs/mobs-07.pdf [accessed: 2017-03-
21].

[2] M. Kaufmann, M. Häsing, T. Preußer, and R. G. Spallek, “The java
virtual machine in retargetable, high-performance instruction set simula-
tion,” in Proc. 9th Int’l Conf. on Principles and Practice of Programming
in Java (PPPJ). ACM, 2011.

[3] P. A. Wright, “Dynamic binary translation on the .net platform,” Master
Thesis, Victoria University of Wellington, New Zealand, 2014.

[4] D. Lockhart, B. Ilbeyi, and C. Batten, “Pydgin: generating fast instruc-
tion set simulators from simple architecture descriptions with meta-
tracing JIT compilers,” in IEEE Int’l. Symposium on Performance
Analysis of Systems and Software (ISPASS), March 2015.

[5] F. Bellard, “Tiny code generator (tcg readme),” 2016, URL:
http://wiki.qemu.org/Documentation/TCG/.

[6] S. Köhler, T. Frank, M. Häsing, and R. G. Spallek, “Rubics: Ein
retargierbares framework zur modellierung von prozessorarchitekturen
auf der basis von .net clr,” in Dresdner Arbeitstagung Schaltungs- und
Systementwurf (DASS). Fraunhofer Verlag, 2016.

[7] ECMA-335: Common Language Infrastructure (CLI). ECMA Interna-
tional, June 2012, 6th edition.

[8] A. Aho, R. Sethi, and J. Ullmann, Compiler Construction. Addison–
Wesley Publishing Company, 1988.

[9] DE5-Net User Manual v1.04, 2017, URL: http://www.terasic.com.tw
[accessed: 2017-03-21].

[10] ARMv7-M Architecture Reference Manual, 2010, dDI 0403D,
ID021310, URL: http://www.arm.com.

[11] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Mathematics of Computation, April 1965.

[12] “An fpga ip core for easy dma over pcie,” 2017, URL:
http://xillybus.com.

54Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

