
Evaluating Heterogeneous Architectures based on Zynq AP SOC for Real-Time

Video Processing

Fanny Spagnolo, Stefania Perri, Pasquale Corsonello

Department of Electronics, Computer Sciences and Systems

DIMES - University of Calabria

Arcavacata di Rende, Italy

e-mail: f.spagnolo@dimes.unical.it, perri@dimes.unical.it, p.corsonello@unical.it

Abstract—Embedded systems are known as valid

candidates to efficiently support image and video processing

algorithms. Their high flexibility, speed performances and low

power consumption are mainly due to the joint design of their

software and specific hardware portions. The Zynq All

Programmable System on Chip, that integrates ARM

processor and high performance programmable logic

resources, is nowadays often preferred to the more traditional

realization platforms, such as Application Specific Integrated

Circuits (ASICs) and Digital Signal Processors (DSPs). In this

paper, we evaluate two different design strategies, each with its

own Zynq-based support platform, giving to the designers

useful hints on how to identify the best design choices for the

target application. The first support platform presented here

also makes use of an embedded operating system (OS); it

significantly limits the required design efforts and time-to-

market. The second architecture is realized without the OS

support, and of course reaches much higher performances

than the former, but requiring higher development and

verification times. Both platforms exploit a hardware

accelerator for the function of interest. As a case study, a

simple but complete image processing architecture has been

designed by using both the above platforms. Performances

measurements revealed that an approximate speed

improvement between 4 and 52 times could be obtained with

respect to an all-software implementation.

Keywords–Embedded Systems; Image Processing; Zynq .

I. INTRODUCTION

In the last few years, the development of even more

complex and computationally intensive video processing

algorithms has been made possible due to the ever-

increasing technology progress. Many of these algorithms

are adopted in a large variety of applications where real-

time performances play an important role. In these cases,

software-oriented implementations, running on general

purpose CPUs, might not satisfy the tight speed constraints.

Faster and more efficient implementations can be achieved

with the aid of hardware accelerators that allow exploiting

proper computational parallelisms. Embedded systems are a

well known approach to speed up image and video

processing algorithms by conjunct software/hardware

special designs [1]. Such heterogeneous architectures allow

trading off the advantages offered by the flexible software

and the high performance hardware portions of the design

[2]. Nowadays, among several possible realization

platforms, the FPGA-based is the most interesting one. Its

reduced design efforts and time-to-market make such an

approach more appreciated than those based on ASICs

fabrication [3]. The lower power dissipation and higher

speed performances attainable by using such realization

strategy make it preferable with respect to the DSP-based

counterparts [4].

Usually, designing an embedded system for video

processing, the designer must take into account that most

algorithms perform both pixel-level and frame-level

computations. Due to their higher computational

complexity, pixel-level processing have a great benefit by

the inclusion in the embedded system of a dedicated

hardware accelerator. On the contrary, frame-level

elaborations often process only few frame descriptors. Thus,

they do not represent a bottleneck for the overall

application. In this case, a pure software implementation can

be easier, more flexible and does not compromise the

system performances. It is then clear why, in order to

conjugate the high-speed capability of a hardware

implementation with the flexibility provided by a software

design, heterogeneous System-on-Chips (SoCs) based on

FPGA have been recently recognized as the most promising

approach [5].

However, hardware-software (HW/SW) co-design

shows several challenges for the designer. Not only the

application has to be partitioned into software and hardware

tasks, but also the communication between them has to be

efficiently managed.

In this paper, we evaluate two different design strategies

for the design and the implementation of real-time

embedded systems for image and video processing based on

a FPGA SoC. Each of the two designs presented here has its

own strengths and weaknesses. The former shows an

extreme flexibility and a moderate performance, whereas

the latter requires more design efforts but allows much

higher speed performance to be reached. As a case study, a

complete image processing architecture, which includes

image capturing from a webcam, Sobel filtering and output

visualization on a monitor, has been implemented. All

experiments have been performed by using a Zedboard

1Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

equipped with the Xilinx Zynq XC7Z020-CLG484 SoC.

Performance measurements revealed that the frame rates of

such designed embedded systems range between 4 and 52

times the frame rate attainable by a pure software

counterpart. The rest of the paper is organized as follows. In

Section II, a brief background and the most relevant state of

the art related works are reviewed. The first evaluated

architecture is introduced in Section III, whereas Section IV

describes an example of application to perform fair

comparisons. A different design approach is then

investigated in Section V. Finally, some conclusions are

drawn in Section VI.

II. BACKGROUND AND RELATED WORKS

The essence of embedded systems design is

implementing a specific set of functions in order to

accomplish constraints on performance, costs, emissions,

power consumption, etc [6]. Figure 1 shows the typical

architecture of a generic embedded system. In general, one

or more programmable processing units (CPUs) are used.

Depending on the application domain, the embedded

systems can have external memory blocks, communication

interfaces and several I/O peripherals. While CPUs are

traditionally software programmed, custom application

specific circuits accelerate more time consuming processes.

The first preliminary design step is the efficient HW/SW

partitioning of the target application. It consists of splitting

the application into computational tasks to be executed

either by software routines or by hardware modules.

Depending on this partitioning, speed performances and

design complexity can be traded off. The generally used

approach is to profile the application by means of specific

CAD tools [7] in order to indentify its computational loads.

Speed performances can be optimized allocating the

processing of the most time-consuming tasks to custom

hardware accelerators. The remaining non-critical tasks are

executed by software routines running on the host general

purpose processor. To avoid communication bottlenecks, in

a similar approach, the host processor and the hardware

accelerators must exchange and transfer data to each other

with high throughput and low latency.

The emerging approach based on heterogeneous

programmable SoCs is stimulating many application fields

[8]. In this section, a group of significant related works are

briefly reviewed.

A prototyping environment for heterogeneous

CPU/FPGA systems is described in [9], in which a host

machine is coupled to a Xilinx Virtex 6 FPGA through the

PCI Express Bus. As shown in [10], the limited bandwidth

of the communication bus reduces the achievable

performances.

A Cadence virtual platform modeling the Xilinx Zynq-

7000 SoC is adopted in [11] to implement an Adaptive

Cruise Control Unit. This virtual prototyping environment

allows using the SystemC language for the portable

implementation of software and hardware modules, thus

Figure 1. The typical structure of an Embedded System.

avoiding VHDL designs and speeding up the simulation of

the overall system. A similar approach is adopted also in

[12], where a very high abstraction design approach, based

on the use of OpenCV and SystemC, is proposed as an

efficient strategy to design embedded systems.

A study about the portability of the OpenCL

programming model is, instead, presented in [13]. OpenCL

is a framework for targeting heterogeneous platforms based

on the C/C++ language.

This approach allows a HW/SW co-design that is

independent of the adopted hardware platform to be

obtained. Thus, the code can be easily re-targeted to

different platforms. In [13], experiments conducted by using

the Altera SDK for OpenCL (AOCL), however, demonstrate

that the same test code performs differently on different

platforms, thus requiring specific optimizations.

In [14], several real-time image processing algorithms

are implemented on a Zynq-based hardware platform. This

study exploits a task partitioning of the target application

based on performances improvements. Linux operating

system is hosted on the ARM CPU inside the Zynq to easily

manage the video acquisition by software routines. An

efficient communication strategy between hardware

accelerators and the host CPU is realized through the

AMBA Advanced Extensible Interface (AXI).

With the main objective of reducing the time-to-market

of the developed system, the approach described in [15]

exploits the Xillybus IP core to guarantee a fast

communication between hardware and software components

of the overall system. To this aim, the communication is

managed by software thanks to some useful functions

included in the Xillybus library.

In the next section, we evaluate such an approach as a

generally valid support to design heterogeneous embedded

system architectures for real-time image processing. The

Xillinux open source operating system is hosted on the CPU

and it manages the communication with the hardware

implemented into the FPGA portion of the Zynq chip as a

regular peripheral.

III. THE XILLYBUS-BASED PLATFORM

The main target of the platform described below is to

furnish an efficient hardware support to develop real-time

External

Memory Block

Central Processing Unit

(CPU)

Input

devices

Output

devices

Communication

Interfaces
Application-

specific circuitry

2Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

Figure 2. Xillybus-based platform. The PS section hosts the OS

components, whereas the PL section implements hardware accelerators and

Xillybus IP core.

image and video processing applications in embedded

systems, with reduced implementation time.

The platform evaluated in this section is structured as

depicted in Figure 2. The Zynq processing system (PS)

consists of a dual core ARM Cortex – A9 processor, while

the programmable logic (PL) is based on the Artix-7 FPGA

fabric for minimizing power consumption.

The ARM processor is able to host OSs such as Linux,

Real Time Operating System (RTOS), Windows, etc. The

 Zedboard is also equipped with 512 MB DDR3 memory

and a 256Mb 4-bit SPI Serial NOR Flash memory. The

latter supports speeds up to 400Mbps and hence it is suitable

for storing boot loaders and kernel of one of the above OSs.

 The system detailed below exploits a set of precompiled

sub-systems, namely the Xillybus package, able to facilitate

the communication tasks between the PS, the external

peripherals and the accelerators. The Xillybus package

makes also available the Xillinux open source OS that is a

complete graphical Ubuntu 12.04 LTS-based Linux

distribution, well suitable for rapid development of mixed

software/logic designs [16]. It is a collection of software

tools that supports roughly the same capabilities of a

personal desktop computer running Linux. Xillybus

distribution comes with two different synthesizable cores:

the XillyLite IP core that allows a simple direct address/data

transfer; and the Xillybus IP core that allows data streams to

be transferred to/from the custom hardware accelerator [17].

The designed architecture is illustrated in Figure 3. It

can be observed that a XillyLite core is used to access a

block RAM, whereas the Xillybus core is adopted to

transfer data from the PS to/from the custom hardware

accelerator [18]. All IP cores are also connected to the PS

by an AXI-Lite interface.

When connected to the Xillybus IP core, the hardware

accelerators can be accessed by the PS like a common

peripheral, which communicates with the OS through

specific device drivers.

The interface between the software drivers and the

software application is represented by the device files

provided by Xillybus. These files can be opened, read and

written like any files inside the user space application, so it

is possible to implement a high level abstraction for PS-PL

communication.

The PS manages the data transfer to capture the frames

from a webcam through the USB port and to store them into

the DDR3 external memory. Other memory accesses,

related to the data transfers to/from the custom hardware

accelerator, are governed by the Xillybus IP core through

the high performances ports in the PS section. The

acquisition operation is easily implemented in software by

using video libraries and camera drivers. Whereas, the PL

was used to hardware implement the following components:

• The Xillybus IP core that communicates with the PS

through the AXI full and AXI Lite interfaces;

• The XillyLite IP core that communicates with the PS

through the AXI Lite interface;

• The custom hardware accelerator;

• Two FIFOs, used as input and output interfaces between

the Xillybus core and the custom hardware accelerator;

• A VGA controller connected to an external monitor that

displays the output of the custom hardware accelerator

stored in the DDR3 external memory.

In the designed architecture, the processor works as

master during the configuration of the VGA controller, the

XillyLite IP core and the Xillybus IP core. This

configuration corresponds to a control signals transfer,

needed to inform the hardware IP cores about the image

resolution, the DDR memory addresses etc.

 Each data transfer through an AXI interface occurs as

summarized in the following:

• In a read process, the slave device address is sent by the

master interface over the read address channel. Then, the

addressed slave interface sends the corresponding data

over the read data channel to the master.

• In a write process, the master interface sends the slave

device address to which the data is to be written and

corresponding data. On successful write at the slave

interface, the slave sends a response over the write

response channel to flag the transfer completion.

Figure 3. Architecture used within the ZedBoard to evaluate the Xillybus-

based platform.

 Programmable Logic

Processing

System

USB

DDR

Controller

M_GP

S_H

S_ACP

AXI

AXI

 M_AXI TO_VGA

VGA CONTROLLER

S_AXI_LITE

S_AXI_LITE

XILLYLITE IP CORE

XILLYBUS IP CORE

PL Block

Memory

S_AXI_LITE

M_AXI

M_AXI S_AXI

Data_in

Wr_en

Full

 Data_out

Rd_en

Empty

AXI

 OUT FIFO

IN

FIFO

CUSTOM

HW

WEBCAM

PS

PL

Kernel Space User Space Device drivers Custom

application

Device file

Custom hardware

Xillybus IP core

A
X

I

3Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

An AXI Interconnect IP core multiplexes the access by

the master to the three slaves and the Xillybus IP core acts

as an interface between the PS and the custom hardware

accelerator. This architecture can be easily customized to

perform virtually any image and video processing algorithm

without re-design either the top-level architecture or the

interface modules required to acquire input images/videos

and to display/store the resulting frames.

Data transferred to/from the PS from/to the hardware

accelerator flows through the input and output FIFOs, as

shown in Figure 3. FIFOs can be configured according to

the applications requirements, but they must comply with

the constraints of the device drivers provided by Xillybus.

As an example, the Xillybus drivers can be configured to

transfer 8, 16 or 32-bit data words so the data width of the

FIFOs must be set accordingly. The wr_en, rd_en, full and

empty control signals manage the synchronization between

the Xillybus IP core and the hardware accelerator.

The complete data flow implemented within an

embedded system designed by using our platform is

described in the following:

• The PS converts the RGB frame, captured by the

webcam, into the 8-bit grayscale format and,

subsequently, it transfers the pixels to the external

DDR3 block memory. The frame is transferred from the

DDR3 memory to the PL through the Xillybus interface.

This operation is performed by the software routine

running on the PS, which communicates with the

Xillybus drivers through the available “open” and

“write” functions applied on the specific device file, as

shown in Figure 4. Then, the pixel transfer from PS to

the Xillybus IP core occurs through the high

performance S_AXI_ACP port. As a response, the

Xillybus IP core activates the write enable (wr_en)

signal of the input FIFO.

• If the input FIFO is not empty and the hardware

accelerator is ready to receive the input pixels, the read

enable (rd_en) signal is asserted and a stream of pixels is

sent to the hardware accelerator.

• When valid data is available on the output port of the

hardware accelerator, the latter asserts the write enable

(wr_en) signal of the output FIFO, which receives a

stream of data produced by the user-defined

computational logic. The output data stream continues

until the output FIFO becomes full. If this condition

occurs, the output FIFO asserts its full signal and the

hardware accelerator temporarily stalls the transfer.

 Figure 4. Use of "open" and "write" functions in the software routine.

 Figure 5. Use of "open" and "read" functions in the software routine.

• The software running on the PS invokes the “open” and

“read” functions of the Xillybus driver, as described in

Figure 5, so data stored in the output FIFO is transferred

to the DDR3 through the S_AXI_ACP/Xillybus

connection. In hardware, this operation corresponds to

assert the rd_en signal of the output FIFO.

• The output image is finally transferred from the DDR3

to the VGA controller that is connected to an external

monitor. The PS is involved in this operation only to

send the control signals to the VGA controller through

its M_AXI GP port. Pixels to display are transferred

from the DDR3 to the VGA controller through the high

performance S_AXI_HP port of the PS. The latter is not

involved during the data transfer so it can run the next

software routine.

In the proposed design support platform, the Xillybus IP

core and the custom hardware accelerator work with the

same clock, so the write/read operations to/from the input

and output FIFOs occur at the same rate. The clock is

produced by the PS with a frequency of 100MHz, which is

the highest frequency supported by the Xillybus IP core

[19]. The usage of synchronous streams is the preferred

choice when tight synchronization is needed between the

software running on the PS and the hardware implemented

in the PL. However, in order to increase performances,

multiple clock domains can be adopted if the hardware

accelerator can run at clock frequencies higher than

100MHz. In such a case, asynchronous FIFOs with different

input and output clock frequencies have to be employed. In

particular, the write (read) operation into (from) the input

(output) FIFO is performed at the Xillybus clock rate,

whereas the write (read) operation into (from) the output

(input) FIFO is performed at the clock rate of the hardware

accelerator.

IV. THE CASE STUDY: A SOBEL FILTER IMPLEMENTATION

As an example of application, the above described

design platform has been used to implement an embedded

system which filters digital images. The 3×3 Sobel filter

[20] is hardware implemented and applied to 320×240

pixels frames captured by the external camera. Image

filtering has been chosen as the case study since it has a

computational complexity sufficiently high to highlight the

advantages offered by the HW/SW co-design over the all-

software counterpart.

The hardware accelerator has been developed with the

Vivado High Level Synthesis (HLS) tool that allows

describing the hardware circuit in a high level programming

 int fdr;
 unsigned char *buffer;

 //Open Xillybus interface to transfer data from PL to PS

 fdr=open(“/dev/Xillybus_read_device”, O_RDONLY);
 read(fdr, buffer, sizeof(buffer));

 //Close Xillybus PL-to-PS interface

 close(fdr);

 int fdw;
 unsigned char *buffer;
 //Open Xillybus interface to transfer data from PS to PL

 fdw=open(“/dev/Xillybus_write_device”, O_WRONLY);

 write(fdw, buffer, sizeof(buffer));
 //Close Xillybus PS-to-PL interface

 close(fdw);

4Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

TABLE I. RESOURCE UTILIZATION.

language (C++) and converting the code into a

synthesizable RTL description. Input and output interfaces

of the custom hardware accelerator have been configured as

FIFOs, in order to guarantee the compatibility with the two

FIFOs connected to the Xillybus IP core. The FIFOs have a

data width and a depth of 8 bit and 2048 words,

respectively.

Table I summarizes the overall FPGA resources

utilization of the implemented architecture. The number of

the total used look-up tables (LUTs) is very limited, about

7% of the LUTs available in the XC7Z020-CLG484 chip;

the number of required flip-slops (FFs) and 32Kbyte block

RAMs (32K BRAMs) is even lower (3.5% and 2.8%,

respectively).

The software application, running on the PS, exploits

OpenCV library functions [21] to manage the input frames

captured by the USB camera. The input pixels are converted

from the RGB to the 8-bit grayscale format and transferred

to the DDR3 memory. The software application is

responsible for transferring the pixels to the Xillybus IP

core, retrieving the output pixels from the hardware

accelerator and storing them to the DDR3 memory. Finally,

the software application starts the data transfer from the

DDR3 to the VGA controller. Figure 6 shows two output

video frames obtained by the implemented architecture.

To measure execution time of each task, the appropriate

software timing library has been used. Since the data

transfer through the Xillybus can be performed by varying

the number of bytes transferred at each write/read function

call, we evaluated the execution time as a function of the

bytes packet size. As depicted in Figure 7, the total

execution time drastically decreases when the packet size

increases. But, the minimum execution time of about 118.3

ms is reached for a packet size of ≈5000 bytes and it is

maintained until 9600 bytes.

Figure 6. Some input and output video frames.

 Figure 7. Execution time vs. the packet dimension.

 TABLE II. EXECUTION TIMES.

This result suggests to adopt transfer of ≈5000 bytes each,

because this also limits the depth of the input and output

FIFOs.

Table 2 shows the timing breakdown that is split into

three main contributions: the hardware processing time

(Sobel filtering), the PL-PS communication time (“write,

“read” and “open” of the Xillybus driver) and the remaining

software execution time (RGB to grayscale conversion and

data streaming from/to the DDR3 managed by the PS) per

frame.

As expected, the software execution time represents the

highest contribution, mainly due to the OpenCV functions

for the management of input frame, the format conversion

and the output frame visualization. The hardware processing

and the communication between PS and Xillybus IP core

account only for the 15.5% of the overall execution time.
In order to estimate the speed-up obtained by the custom

hardware accelerator, a pure software routine performing
the same Sobel filtering has been characterized. The latter
has been executed by the ARM processor hosted in the PS,
which operates at a 666.66 MHz running frequency.
Measurements reported in Table 2 show the benefits
obtained by the heterogeneous design approach. A gain of
about 4x has been achieved.

Even though a direct comparison between our results
and those reported in [15] cannot be performed, due to the
different user application, a brief discussion is appropriate.
In [15], a Xillybus-based platform performing the Harris

Sobel accelerator Custom FIFOs Xillybus IP core VGA Controller IP

core

XillyLite IP core

LUTs FFs
32K

BRAMs
LUTs FFs

32K

BRAMs
LUTs FFs

32K

BRAMs
LUTs FFs

32K

BRAMs
LUTs FFs

32K

BRAMs

212

0.4%

172

0.1%

1

0.7%

90

0.1%

96

0.1%

1

0.7%

3011

 5.6%

2690

2.5%

1

0.7%

499

 0.9%

779

0.7%

1

0.7%

67

0.12%

94

0.1%

0

(0%)

Hardware

Sobel filter

Software

application

Communication All-software

Sobel filter

2.3 ms 100 ms 16 ms 490 ms

E
x
e
cu

ti
o

n
 T

im
e

(s
)

1.4

1.2

1

0.8

0.6

0.4

0.2

0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

packet size

5Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

Corner Detection function on 512x384 images has been
implemented and evaluated. When the PL is clocked at 100
MHz and the 32-bit Xillybus software interface is adopted,
the total communication and hardware processing time is
about 15 ms. The latter is approximately 3.3ms lower than
result reported in Table 2, which instead has been obtained
adopting the 8-bit Xillybus software interface. If the 32-bit
Xillybus software interface is used in the architecture of
Figure,3, the communication time is reduced
correspondingly.

V. THE VDMA-BASED ALTERNATIVE

The high level design approach used above employs a

ready-to-use communication solution between hardware and
software components. Due to this, it significantly reduces
design efforts, the development time and the hardware
design expertise required for realizing a complete embedded
system for video processing applications. Of course, such a
design strategy negatively impacts the overall speed
performances. In particular, some considerations can be
done in reference to the Xillybus bandwidth.

The FIFO configuration provided by Xillybus has a

maximum bandwidth of about 200 MB/s for each transfer

direction [17]. On the contrary, the Zynq PS high

performance ports are able to access the DDR3 memory

achieving a bandwidth of 1600 MB/s for a 64-bit transfer at

100 MHz clock rate [22].

In this section, we examine an alternative design, based

on the direct use of Video Direct Memory Access (VDMA)

IP cores [23]. Using this approach, much more architectures

design knowledge and digital system debugging practice are

required. The VDMA is a soft core, which provides high

bandwidth access to external memory and video processing

IP cores with AXI-Stream interface. The architecture

designed in accordance with this strategy is illustrated in

Figure 8. In this case the PS does not support an OS, thus

the system is oriented to bare-metal application

architectures. An OmniVision OV7670 CMOS Camera has

been connected through an I2C interface and an appropriate

frame capture control sub-system is required. The VDMA0

transfers captured frames to the DDR3 and, then, after the

elaboration, from the DDR3 to the VGA display port. The

VDMA1 transfers the video stream to the custom hardware

accelerator that performs the specific video algorithm. After

that, the VDMA1 writes back the filtered results into the

DDR3 memory.

Using High Performance AXI ports to access the

external memory allows the computational load of the

processor to be significantly reduced. Furthermore, by using

two different High Performance ports, parallel operations

to/from the DDR3 can be performed, thus obtaining a

further considerable performance improvement. In fact, a

new captured frame can be stored, or a result frame can be

displayed, while the VDMA1 transfers the pixel stream

to/from the hardware accelerator.

Figure 8. Architecture used within the ZedBoard to evaluate the
VDMA-based platform.

Due to the overlap between the two phases above

mentioned, this architecture reaches a processing rate much

higher than the structure exploiting the Xillybus IP Cores.

When the same Sobel filter accelerator is implemented

within this structure, a total execution time of only ≈9.2 ms

is achieved, thus leading to an overall performance ∼13

times higher. This result has been obtained with a clock rate

of 100MHz for the PL section, while the Video Capture IP

core operates at 30 frames per second in VGA resolution.

VI. CONCLUSIONS

In the development of an embedded system based on
heterogeneous SoCs, of course, the first important design
step is the efficient HW/SW partitioning of the target
application. After that, on the basis of the design
environment, several other significant choices have to be
done. When only high level description is desired, several
precompiled supports could be of great help. As shown in
this paper, an almost complete solution is offered by the
Xillybus package that contains appropriate communication
sub-modules and a light OS.

We designed a test architecture to evaluate the speed
improvement attainable with such supports and measured a
speed up of ≈4 times with respect to a pure software typical
image processing elaboration. Such an approach allows very
easy interface between the designed architecture and
peripherals.

On the contrary, when the speed performance is the
main concern, a direct and on-purpose design of the entire
architecture is preferable. In such a case, a further x13 speed
up has been observed, but at the expense of much more
design effort and verification time.

ACKNOWLEDGMENT

Authors wish to thank Dr. Fabio Frustaci and Dr.
Giovanni Staino for the helpful discussions during the
present work.

REFERENCES

[1] W. Wolf, “The Future of Multiprocessor Systems-on-Chips”

Proceedings of the 41st annual Design Automation

Conference (DAC ’04), pp. 681-685 , June 7-11 2004.

 PL

PS

Custom

hardware
Video

Capture

VGA

controller

VDMA0

DDR

controller
SHP0

SHP2

VDMA1

6Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

[2] B. Roux, M. Gautier, O. Sentieys, and S. Derrien,

“Communication-Based Power Modelling for Heterogeneous

Multiprocessor Architecture”, IEEE 10th International

Symposium on Embedded Multicore /Many-core Systems-on-

Chip (MCSoC 2016), pp. 209-216, Sep 2016.

[3] J.A. Kalomiros and J. Lygouras, “Design and evaluation of a

hardware/software FPGA-based system for fast image

processing”, Microprocessors and Microsystems, vol. 32,

issue 2, March 2008.

[4] R. J. Petersen and B. L. Hutchings, “An assessment of the

suitability of FPGA-based systems for use in digital signal

processing”. In: Moore W., Luk W. (eds) Field-

Programmable Logic and Applications. FPL 1995. Lecture

Notes in Computer Science, vol. 975, pp. 293-302.

Springer, Berlin, Heidelberg

[5] J. Teich, "Hardware/Software Codesign: The Past, the

Present, and Predicting the Future", Proceedings of the IEEE,

vol. 100, Issue: Special Centennial Issue, pp. 1411-1430, May

13 2012.

[6] A. Sangiovanni-Vicentelli and G. Martin, “Platform –based

Design and Software Design Methodology for Embedded

Systems”, IEEE Design & Test of Computers, IEEE press,

vol. 18, issue 6, pp. 23-33, Nov/Dec 2001, doi:

10.1109/54.970421.

[7] R. Ernst, “Codesign of Embedded Systems: status and

trends”, IEEE Design & Test of Computers, vol. 15, issue 2,

pp. 45-54, Apr-Jun 1998, doi: 10.1109/54.679207.

[8] D. Andrews, D. Niehaus, and P. Ashenden, “Programming

models for hybrid CPU/FPGA chips”, Computer, IEEE press,

vol. 37, issue 1, pp. 118-120, Jan. 2004, doi:

10.1109/MC.2004.1260732.

[9] G. Afonso, R.B. Atitallah, A. Loyer, J. Dekeyser, N.

Belanger, and M. Rubio, “A prototyping environment for high

performance reconfigurable computing” 6th International

Workshop on Reconfigurable Communication-centric

Systems-on-Chip (ReCoSoC), IEEE press, pp. 1-8, August

2011, doi: 10.1109/ReCoSoC.2011.5981497.

[10] Y. Li, X. Zhao, and T. Cheng, “Heterogeneous Computing

Platofrom Based On CPU+FPGA and Working Modes”, 12th

International Conference on Computational Intelligence and

Security (CIS), IEEE press pp. 670-672, December 2016, doi:

10.1109/CIS.2016.0161.

[11] P. Wehner, M. Ferger, D. Göhringer , and M. Hübner, “Rapid

Prototyping of a Portable HW/SW Co-Design on he Virtual

Zynq Platform using SystemC”, IEEE 26th International SOC

Conference (SOCC), IEEE press pp. 296-300, September

2013, doi: 10.1109/SOCC.2013.6749704.

[12] J. Anders, M. Mefenza, C. Bobda, F. Yonga, Z. Aklah, and K.

Gunn, “A hardware/software prototyping system for driving

assistance investigations” in Journal of Real-Time Image

Processing , vol. 11, issue 3, pp. 559-569, March 2016.

[13] S.O. Ayat, M. Khalil-Hani, and R. Bakhteri, “OpenCL-based

Hardware-Software Co-design Methodology for Image

Processing Implementation on Heterogeneous FPGA

Platform”, 2015 IEEE International Conference on Control

System, Computing and Engineering (ICCSCE), IEEE press

pp. 36-41, November 2015, doi:

10.1109/ICCSCE.2015.7482154.

[14] M.A. Altuncu, T. Guven, Y. Becerikli, and S. Sahin, “Real-

Time System Implementation for Image Processing with

Hardware/Software Co-design on the Xilinx Zynq Platform”,

International Journal of Information and Electronics

Engineering, vol. 5, no. 6, pp. 473-477, November 2015, doi:

10.7763/IJIEE.2015.V5.582.

[15] I. Stratakos, D. Reisis, G. Lentaris, K. Maragos, and D.

Soudris, “A Co-Design Approach For Rapid Prototyping Of

Image Processing on SoC FPGAs”Proceedings of the 20th

Pan-Hellenic Conference on Informatics (PCI ‘16), November

2016, ISBN: 978-1-4503-4789-1, doi:

10.1145/3003733.3003797.

[16] Getting started with Xillinux for Zynq-7000 EPP v. 1.3

[Online]. Available from:

http://xillybus.com/downloads/doc/xillybus_getting_started_z

ynq.pdf

[17] B.M. Kambalur, K. Kumar, and K.S. Athrey, “A Study of

Implementing Custom Application on Zynq AP SoC using

Xillybus IP Core”, ITSI Transactions on Electrical and

Electronics Engineering (ITSI-TEEE), vol.. 2 pp. 35-37 ,

issue 5-6, 2014.

[18] Getting started with the FPGA Demo Bundle for Xilinx v. 2.6

[Online]. Available from:

http://xillybus.com/downloads/doc/xillybus_getting_started_x

ilinx.pdf

[19] Xillybus FPGA Designer’s Guide v. 2.0 [Online]. Available

from:

http://xillybus.com/downloads/doc/xillybus_fpga_api.pdf

[20] N. Kanopoulos, N. Vasanthavada, R., and L. Baker, “Design

of an Image Edge Detection Filter Using the Sobel Operator”,

IEEE Journal of Solid-State Circuits, vol. 23, issue 2, pp. 358-

367, Apr 1988, doi: 10.1109/4.996.

[21] About OpenCV [Online]. Available from:

http://opencv.org/about.html

[22] Zynq-7000 All Programmable SoC Technical Reference

Manual, UG585 (v. 1.11) September 27, 2016 [Online].

Available from:

https://www.xilinx.com/support/documentation/user_guides/u

g585-Zynq-7000-TRM.pdf

[23] C. Kohn, “Partial Reconfiguration of a Hardware Accelerator

on Zynq-7000 All Programmable SoC Devices” XAPP1159

Xilinx Jan. 21, 2013.

7Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

