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Abstract—Embedded systems are known as valid 

candidates to efficiently support image and video processing 

algorithms. Their high flexibility, speed performances and low 

power consumption are mainly due to the joint design of their 

software and specific hardware portions. The Zynq All 

Programmable System on Chip, that integrates ARM 

processor and high performance programmable logic 

resources, is nowadays often preferred to the more traditional 

realization platforms, such as Application Specific Integrated 

Circuits (ASICs) and Digital Signal Processors (DSPs). In this 

paper, we evaluate two different design strategies, each with its 

own Zynq-based support platform, giving to the designers 

useful hints on how to identify the best design choices for the 

target application. The first support platform presented here 

also makes use of an embedded operating system (OS); it 

significantly limits the required design efforts and time-to-

market. The second architecture is realized without the OS 

support, and of course reaches much higher performances 

than the former, but requiring higher development and 

verification times. Both platforms exploit a hardware 

accelerator for the function of interest. As a case study, a 

simple but complete image processing architecture has been 

designed by using both the above platforms. Performances 

measurements revealed that an approximate speed 

improvement between 4 and 52 times could be obtained with 

respect to an all-software implementation. 

Keywords–Embedded Systems; Image Processing; Zynq . 

I. INTRODUCTION  

In the last few years, the development of even more 

complex and computationally intensive video processing 

algorithms has been made possible due to the ever-

increasing technology progress. Many of these algorithms 

are adopted in a large variety of applications where real-

time performances play an important role. In these cases, 

software-oriented implementations, running on general 

purpose CPUs, might not satisfy the tight speed constraints. 

Faster and more efficient implementations can be achieved 

with the aid of hardware accelerators that allow exploiting 

proper computational parallelisms. Embedded systems are a 

well known approach to speed up image and video 

processing algorithms by conjunct software/hardware 

special designs [1]. Such heterogeneous architectures allow 

trading off the advantages offered by the flexible software 

and the high performance hardware portions of the design 

[2]. Nowadays, among several possible realization 

platforms, the FPGA-based is the most interesting one. Its 

reduced design efforts and time-to-market make such an 

approach more appreciated than those based on ASICs 

fabrication [3]. The lower power dissipation and higher 

speed performances attainable by using such realization 

strategy make it preferable with respect to the DSP-based 

counterparts [4].  

Usually, designing an embedded system for video 

processing, the designer must take into account that most 

algorithms perform both pixel-level and frame-level 

computations. Due to their higher computational 

complexity, pixel-level processing have a great benefit by 

the inclusion in the embedded system of a dedicated 

hardware accelerator. On the contrary, frame-level 

elaborations often process only few frame descriptors. Thus, 

they do not represent a bottleneck for the overall 

application. In this case, a pure software implementation can 

be easier, more flexible and does not compromise the 

system performances. It is then clear why, in order to 

conjugate the high-speed capability of a hardware 

implementation with the flexibility provided by a software 

design, heterogeneous System-on-Chips (SoCs) based on 

FPGA have been recently recognized as the most promising 

approach [5].  

However, hardware-software (HW/SW) co-design 

shows several challenges for the designer. Not only the 

application has to be partitioned into software and hardware 

tasks, but also the communication between them has to be 

efficiently managed. 

In this paper, we evaluate two different design strategies 

for the design and the implementation of real-time 

embedded systems for image and video processing based on 

a FPGA SoC. Each of the two designs presented here has its 

own strengths and weaknesses. The former shows an 

extreme flexibility and a moderate performance, whereas 

the latter requires more design efforts but allows much 

higher speed performance to be reached. As a case study, a 

complete image processing architecture, which includes 

image capturing from a webcam, Sobel filtering and output 

visualization on a monitor, has been implemented. All 

experiments have been performed by using a Zedboard 
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equipped with the Xilinx Zynq XC7Z020-CLG484 SoC. 

Performance measurements revealed that the frame rates of 

such designed embedded systems range between 4 and 52 

times the frame rate attainable by a pure software 

counterpart. The rest of the paper is organized as follows. In 

Section II, a brief background and the most relevant state of 

the art related works are reviewed. The first evaluated 

architecture is introduced in Section III, whereas Section IV 

describes an example of application to perform fair 

comparisons. A different design approach is then 

investigated in Section V. Finally, some conclusions are 

drawn in Section VI. 

II. BACKGROUND AND RELATED WORKS 

The essence of embedded systems design is 

implementing a specific set of functions in order to 

accomplish constraints on performance, costs, emissions, 

power consumption, etc [6]. Figure 1 shows the typical 

architecture of a generic embedded system. In general, one 

or more programmable processing units (CPUs) are used. 

Depending on the application domain, the embedded 

systems can have external memory blocks, communication 

interfaces and several I/O peripherals. While CPUs are 

traditionally software programmed, custom application 

specific circuits accelerate more time consuming processes. 

The first preliminary design step is the efficient HW/SW 

partitioning of the target application. It consists of splitting 

the application into computational tasks to be executed 

either by software routines or by hardware modules. 

Depending on this partitioning, speed performances and 

design complexity can be traded off. The generally used 

approach is to profile the application by means of specific 

CAD tools [7] in order to indentify its computational loads. 

Speed performances can be optimized allocating the 

processing of the most time-consuming tasks to custom 

hardware accelerators. The remaining non-critical tasks are 

executed by software routines running on the host general 

purpose processor. To avoid communication bottlenecks, in 

a similar approach, the host processor and the hardware 

accelerators must exchange and transfer data to each other 

with high throughput and low latency. 

The emerging approach based on heterogeneous 

programmable SoCs is stimulating many application fields 

[8]. In this section, a group of significant related works are 

briefly reviewed. 

A prototyping environment for heterogeneous 

CPU/FPGA systems is described in [9], in which a host 

machine is coupled to a Xilinx Virtex 6 FPGA through the 

PCI Express Bus. As shown in [10], the limited bandwidth 

of the communication bus reduces the achievable 

performances.  

A Cadence virtual platform modeling the Xilinx Zynq-

7000 SoC is adopted in [11] to implement an Adaptive 

Cruise Control Unit. This virtual prototyping environment 

allows using the SystemC language for the portable 

implementation of software and hardware modules, thus  

 

 
Figure 1. The typical structure of an Embedded System. 

avoiding VHDL designs and speeding up the simulation of 

the overall system. A similar approach is adopted also in 

[12], where a very high abstraction design approach, based 

on the use of OpenCV and SystemC, is proposed as an 

efficient strategy to design embedded systems. 

A study about the portability of the OpenCL 

programming model is, instead, presented in [13]. OpenCL 

is a framework for targeting heterogeneous platforms based 

on the C/C++ language. 

This approach allows a HW/SW co-design that is 

independent of the adopted hardware platform to be 

obtained. Thus, the code can be easily re-targeted to 

different platforms. In [13], experiments conducted by using 

the Altera SDK for OpenCL (AOCL), however, demonstrate 

that the same test code performs differently on different 

platforms, thus requiring specific optimizations.  

In [14], several real-time image processing algorithms 

are implemented on a Zynq-based hardware platform. This 

study exploits a task partitioning of the target application 

based on performances improvements. Linux operating 

system is hosted on the ARM CPU inside the Zynq to easily 

manage the video acquisition by software routines. An 

efficient communication strategy between hardware 

accelerators and the host CPU is realized through the 

AMBA Advanced Extensible Interface (AXI).   

With the main objective of reducing the time-to-market 

of the developed system, the approach described in [15] 

exploits the Xillybus IP core to guarantee a fast 

communication between hardware and software components 

of the overall system. To this aim, the communication is 

managed by software thanks to some useful functions 

included in the Xillybus library. 

In the next section, we evaluate such an approach as a 

generally valid support to design heterogeneous embedded 

system architectures for real-time image processing. The 

Xillinux open source operating system is hosted on the CPU 

and it manages the communication with the hardware 

implemented into the FPGA portion of the Zynq chip as a 

regular peripheral.  

III. THE XILLYBUS-BASED PLATFORM 

The main target of the platform described below is to 

furnish an efficient hardware support to develop real-time  
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Figure 2. Xillybus-based platform. The PS section hosts the OS 

components, whereas the PL section implements hardware accelerators and 

Xillybus IP core. 

image and video processing applications in embedded 

systems, with reduced implementation time.  

The platform evaluated in this section is structured as 

depicted in Figure 2. The Zynq processing system (PS) 

consists of a dual core ARM Cortex – A9 processor, while 

the programmable logic (PL) is based on the Artix-7 FPGA 

fabric for minimizing power consumption. 

The ARM processor is able to host OSs such as Linux, 

Real Time Operating System (RTOS), Windows, etc. The  

 Zedboard is also equipped with 512 MB DDR3 memory 

and a 256Mb 4-bit SPI Serial NOR Flash memory. The 

latter supports speeds up to 400Mbps and hence it is suitable 

for storing boot loaders and kernel of one of the above OSs. 

      The system detailed below exploits a set of precompiled 

sub-systems, namely the Xillybus package, able to facilitate 

the communication tasks between the PS, the external 

peripherals and the accelerators. The Xillybus package 

makes also available the Xillinux open source OS that is a 

complete graphical Ubuntu 12.04 LTS-based Linux 

distribution, well suitable for rapid development of mixed 

software/logic designs [16]. It is a collection of software 

tools that supports roughly the same capabilities of a 

personal desktop computer running Linux. Xillybus 

distribution comes with two different synthesizable cores: 

the XillyLite IP core that allows a simple direct address/data 

transfer; and the Xillybus IP core that allows data streams to 

be transferred to/from the custom hardware accelerator [17].  

The designed architecture is illustrated in Figure 3. It 

can be observed that a XillyLite core is used to access a 

block RAM, whereas the Xillybus core is adopted to 

transfer data from the PS to/from the custom hardware 

accelerator [18]. All IP cores are also connected to the PS 

by an AXI-Lite interface.   

When connected to the Xillybus IP core, the hardware 

accelerators can be accessed by the PS like a common 

peripheral, which communicates with the OS through 

specific device drivers.  

The interface between the software drivers and the 

software application is represented by the device files 

provided by Xillybus. These files can be opened, read and 

written like any files inside the user space application, so it 

is possible to implement a high level abstraction for PS-PL 

communication.  

The PS manages the data transfer to capture the frames 

from a webcam through the USB port and to store them into 

the DDR3 external memory. Other memory accesses, 

related to the data transfers to/from the custom hardware 

accelerator, are governed by the Xillybus IP core through 

the high performances ports in the PS section. The 

acquisition operation is easily implemented in software by 

using video libraries and camera drivers. Whereas, the PL 

was used to hardware implement the following components: 

• The Xillybus IP core that communicates with the PS 

through the AXI full and AXI Lite interfaces;  

• The XillyLite IP core that communicates with the PS 

through the AXI Lite interface; 

• The custom hardware accelerator; 

• Two FIFOs, used as input and output interfaces between 

the Xillybus core and the custom hardware accelerator; 

• A VGA controller connected to an external monitor that 

displays the output of the custom hardware accelerator 

stored in the DDR3 external memory. 

In the designed architecture, the processor works as 

master during the configuration of the VGA controller, the 

XillyLite IP core and the Xillybus IP core. This 

configuration corresponds to a control signals transfer, 

needed to inform the hardware IP cores about the image 

resolution, the DDR memory addresses etc.  

 Each data transfer through an AXI interface occurs as 

summarized in the following: 

• In a read process, the slave device address is sent by the 

master interface over the read address channel. Then, the 

addressed slave interface sends the corresponding data 

over the read data channel to the master. 

• In a write process, the master interface sends the slave 

device address to which the data is to be written and 

corresponding data. On successful write at the slave 

interface, the slave sends a response over the write 

response channel to flag the transfer completion.  
   

 
Figure 3. Architecture used within the ZedBoard to evaluate the Xillybus-

based platform. 
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An AXI Interconnect IP core multiplexes the access by 

the master to the three slaves and the Xillybus IP core acts 

as an interface between the PS and the custom hardware 

accelerator. This architecture can be easily customized to 

perform virtually any image and video processing algorithm 

without re-design either the top-level architecture or the 

interface modules required to acquire input images/videos 

and to display/store the resulting frames.  

Data transferred to/from the PS from/to the hardware 

accelerator flows through the input and output FIFOs, as 

shown in Figure 3. FIFOs can be configured according to 

the applications requirements, but they must comply with 

the constraints of the device drivers provided by Xillybus. 

As an example, the Xillybus drivers can be configured to 

transfer 8, 16 or 32-bit data words so the data width of the 

FIFOs must be set accordingly. The wr_en, rd_en, full and 

empty control signals manage the synchronization between 

the Xillybus IP core and the hardware accelerator. 

The complete data flow implemented within an 

embedded system designed by using our platform is 

described in the following: 

• The PS converts the RGB frame, captured by the 

webcam, into the 8-bit grayscale format and, 

subsequently, it transfers the pixels to the external 

DDR3 block memory. The frame is transferred from the 

DDR3 memory to the PL through the Xillybus interface. 

This operation is performed by the software routine 

running on the PS, which communicates with the 

Xillybus drivers through the available “open” and 

“write” functions applied on the specific device file, as 

shown in Figure 4. Then, the pixel transfer from PS to 

the Xillybus IP core occurs through the high 

performance S_AXI_ACP port. As a response, the 

Xillybus IP core activates the write enable (wr_en) 

signal of the input FIFO. 

• If the input FIFO is not empty and the hardware 

accelerator is ready to receive the input pixels, the read 

enable (rd_en) signal is asserted and a stream of pixels is 

sent to the hardware accelerator. 

• When valid data is available on the output port of the 

hardware accelerator, the latter asserts the write enable 

(wr_en) signal of the output FIFO, which receives a 

stream of data produced by the user-defined 

computational logic. The output data stream continues 

until the output FIFO becomes full. If this condition 

occurs, the output FIFO asserts its full signal and the 

hardware accelerator temporarily stalls the transfer.  

 

 

 

 

 

 

 

 
     Figure 4. Use of "open" and "write" functions in the software routine. 

                   

       Figure 5. Use of "open" and "read" functions in the software routine. 

• The software running on the PS invokes the “open” and 

“read” functions of the Xillybus driver, as described in 

Figure 5, so data stored in the output FIFO is transferred 

to the DDR3 through the S_AXI_ACP/Xillybus 

connection. In hardware, this operation corresponds to 

assert the rd_en signal of the output FIFO.  

• The output image is finally transferred from the DDR3 

to the VGA controller that is connected to an external 

monitor. The PS is involved in this operation only to 

send the control signals to the VGA controller through 

its M_AXI GP port. Pixels to display are transferred 

from the DDR3 to the VGA controller through the high 

performance S_AXI_HP port of the PS. The latter is not 

involved during the data transfer so it can run the next 

software routine. 

In the proposed design support platform, the Xillybus IP 

core and the custom hardware accelerator work with the 

same clock, so the write/read operations to/from the input 

and output FIFOs occur at the same rate. The clock is 

produced by the PS with a frequency of 100MHz, which is 

the highest frequency supported by the Xillybus IP core 

[19]. The usage of synchronous streams is the preferred 

choice when tight synchronization is needed between the 

software running on the PS and the hardware implemented 

in the PL. However, in order to increase performances, 

multiple clock domains can be adopted if the hardware 

accelerator can run at clock frequencies higher than 

100MHz. In such a case, asynchronous FIFOs with different 

input and output clock frequencies have to be employed. In 

particular, the write (read) operation into (from) the input 

(output) FIFO is performed at the Xillybus clock rate, 

whereas the write (read) operation into (from) the output 

(input) FIFO is performed at the clock rate of the hardware 

accelerator. 

IV. THE CASE STUDY: A SOBEL FILTER IMPLEMENTATION 

As an example of application, the above described 

design platform has been used to implement an embedded 

system which filters digital images. The 3×3 Sobel filter 

[20] is hardware implemented and applied to 320×240 

pixels frames captured by the external camera. Image 

filtering has been chosen as the case study since it has a 

computational complexity sufficiently high to highlight the 

advantages offered by the HW/SW co-design over the all-

software counterpart.  

The hardware accelerator has been developed with the 

Vivado High Level Synthesis (HLS) tool that allows 

describing the hardware circuit in a high level programming                                        

 int fdr; 
 unsigned char *buffer; 

 //Open Xillybus interface to transfer data from PL to PS 

 fdr=open(“/dev/Xillybus_read_device”, O_RDONLY); 
 read(fdr, buffer, sizeof(buffer)); 

 //Close Xillybus PL-to-PS interface 

 close(fdr); 

 int fdw; 
 unsigned char *buffer; 
 //Open Xillybus interface to transfer data from PS to PL 

 fdw=open(“/dev/Xillybus_write_device”, O_WRONLY); 

 write(fdw, buffer, sizeof(buffer)); 
 //Close Xillybus PS-to-PL interface 

 close(fdw); 
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TABLE I. RESOURCE UTILIZATION.

 

language (C++) and converting the code into a 

synthesizable RTL description. Input and output interfaces 

of the custom hardware accelerator have been configured as 

FIFOs, in order to guarantee the compatibility with the two 

FIFOs connected to the Xillybus IP core. The FIFOs have a 

data width and a depth of 8 bit and 2048 words, 

respectively.  

Table I summarizes the overall FPGA resources 

utilization of the implemented architecture. The number of 

the total used look-up tables (LUTs) is very limited, about 

7% of the LUTs available in the XC7Z020-CLG484 chip; 

the number of required flip-slops (FFs) and 32Kbyte block 

RAMs (32K BRAMs) is even lower (3.5% and 2.8%, 

respectively). 

The software application, running on the PS, exploits 

OpenCV library functions [21] to manage the input frames 

captured by the USB camera. The input pixels are converted  

from the RGB to the 8-bit grayscale format and transferred 

to the DDR3 memory. The software application is 

responsible for transferring the pixels to the Xillybus IP 

core, retrieving the output pixels from the hardware 

accelerator and storing them to the DDR3 memory. Finally, 

the software application starts the data transfer from the 

DDR3 to the VGA controller. Figure 6 shows two output 

video frames obtained by the implemented architecture. 

To measure execution time of each task, the appropriate 

software timing library has been used. Since the data 

transfer through the Xillybus can be performed by varying 

the number of bytes transferred at each write/read function 

call, we evaluated the execution time as a function of the 

bytes packet size. As depicted in Figure 7, the total 

execution time drastically decreases when the packet size 

increases. But, the minimum execution time of about 118.3 

ms is reached for a packet size of ≈5000 bytes and it is 

maintained until 9600 bytes.  

           
Figure 6. Some input and output video frames. 

 
         Figure 7. Execution time vs. the packet dimension. 

              TABLE II. EXECUTION TIMES. 

 

This result suggests to adopt transfer of ≈5000 bytes each, 

because this also limits the depth of the input and output 

FIFOs.   

Table 2 shows the timing breakdown that is split into 

three main contributions: the hardware processing time 

(Sobel filtering), the PL-PS communication time (“write, 

“read” and “open” of the Xillybus driver) and the remaining 

software execution time (RGB to grayscale conversion and 

data streaming from/to the DDR3 managed by the PS) per 

frame.  

As expected, the software execution time represents the 

highest contribution, mainly due to the OpenCV functions 

for the management of input frame, the format conversion 

and the output frame visualization. The hardware processing 

and the communication between PS and Xillybus IP core 

account only for the 15.5% of the overall execution time.    
In order to estimate the speed-up obtained by the custom 

hardware accelerator, a pure software routine performing 
the same Sobel filtering has been characterized. The latter 
has been executed by the ARM processor hosted in the PS, 
which operates at a 666.66 MHz running frequency. 
Measurements reported in Table 2 show the benefits 
obtained by the heterogeneous design approach. A gain of 
about 4x has been achieved.  

Even though a direct comparison between our results 
and those reported in [15] cannot be performed, due to the 
different user application, a brief discussion is appropriate.  
In [15], a Xillybus-based platform performing the Harris 
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Corner Detection function on 512x384 images has been 
implemented and evaluated. When the PL is clocked at 100 
MHz and the 32-bit Xillybus software interface is adopted, 
the total communication and hardware processing time is 
about 15 ms. The latter is approximately 3.3ms lower than 
result reported in Table 2, which instead has been obtained 
adopting the 8-bit Xillybus software interface. If the 32-bit 
Xillybus software interface is used in the architecture of  
Figure,3, the communication time is reduced 
correspondingly.  

V. THE VDMA-BASED ALTERNATIVE 

 
The high level design approach used above employs a 

ready-to-use communication solution between hardware and 
software components. Due to this, it significantly reduces 
design efforts, the development time and the hardware 
design expertise required for realizing a complete embedded 
system for video processing applications. Of course, such a 
design strategy negatively impacts the overall speed 
performances. In particular, some considerations can be 
done in reference to the Xillybus bandwidth.  

The FIFO configuration provided by Xillybus has a 

maximum bandwidth of about 200 MB/s for each transfer 

direction [17]. On the contrary, the Zynq PS high 

performance ports are able to access the DDR3 memory 

achieving a bandwidth of 1600 MB/s for a 64-bit transfer at 

100 MHz clock rate [22].  

In this section, we examine an alternative design, based 

on the direct use of Video Direct Memory Access (VDMA) 

IP cores [23]. Using this approach, much more architectures 

design knowledge and digital system debugging practice are  

required. The VDMA is a soft core, which provides high 

bandwidth access to external memory and video processing 

IP cores with AXI-Stream interface. The architecture 

designed in accordance with this strategy is illustrated in 

Figure 8. In this case the PS does not support an OS, thus 

the system is oriented to bare-metal application 

architectures. An OmniVision OV7670 CMOS Camera has 

been connected through an I2C interface and an appropriate 

frame capture control sub-system is required. The VDMA0 

transfers captured frames to the DDR3 and, then, after the 

elaboration, from the DDR3 to the VGA display port. The 

VDMA1 transfers the video stream to the custom hardware 

accelerator that performs the specific video algorithm. After 

that, the VDMA1 writes back the filtered results into the 

DDR3 memory. 

Using High Performance AXI ports to access the 

external memory allows the computational load of the 

processor to be significantly reduced. Furthermore, by using 

two different High Performance ports, parallel operations 

to/from the DDR3 can be performed, thus obtaining a 

further considerable performance improvement. In fact, a 

new captured frame can be stored, or a result frame can be 

displayed, while the VDMA1 transfers the pixel stream 

to/from the hardware accelerator. 

                
 

Figure 8. Architecture used within the ZedBoard to evaluate the 
VDMA-based platform. 

 

Due to the overlap between the two phases above 

mentioned, this architecture reaches a processing rate much 

higher than the structure exploiting the Xillybus IP Cores. 

When the same Sobel filter accelerator is implemented 

within this structure, a total execution time of only ≈9.2 ms 

is achieved, thus leading to an overall performance ∼13 

times higher. This result has been obtained with a clock rate 

of 100MHz for the PL section, while the Video Capture IP 

core operates at 30 frames per second in VGA resolution.  

VI. CONCLUSIONS 

In the development of an embedded system based on 
heterogeneous SoCs, of course, the first important design 
step is the efficient HW/SW partitioning of the target 
application. After that, on the basis of the design 
environment, several other significant choices have to be 
done. When only high level description is desired, several 
precompiled supports could be of great help. As shown in 
this paper, an almost complete solution is offered by the 
Xillybus package that contains appropriate communication 
sub-modules and a light OS. 

We designed a test architecture to evaluate the speed 
improvement attainable with such supports and measured a 
speed up of ≈4 times with respect to a pure software typical 
image processing elaboration. Such an approach allows very 
easy interface between the designed architecture and 
peripherals.  

On the contrary, when the speed performance is the 
main concern, a direct and on-purpose design of the entire 
architecture is preferable. In such a case, a further x13 speed 
up has been observed, but at the expense of much more 
design effort and verification time. 
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