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Abstract—This paper presents a dynamically partially recon-
figurable network on chip (NoC) on a field-programmable gate
array (FPGA) for double-precision floating-point Fast Fourier
Transforms (FFTs). This is one of the first published examples
of a practical system using a dynamically reconfigurable NoC
that has been implemented in existing FPGA technology. Up to
16 parallel double-precision floating-point processing elements
(PEs) can be implemented on the FPGA. Using dynamic partial
reconfiguration, a user can change the number of running
PEs to choose an optimal power-performance operating point.
The design provides much better performance than i7-3.4GHz
CPUs running Matlab and competitive performance with static-
only FFT systems and the Xilinx FFT IP core, but it has the
advantage of saving power and releasing hardware resources
when maximum FFT performance is not required. With all
16 PEs running, the design can process an FFT of up to
131072 points and achieves its maximum throughput of of 33.5
FLOPs/cycle on a Xilinx Virtex-7 XC7VX485T FPGA.

Keywords—Network-on-chip, partial reconfiguration, floating
point, FFT, parallel architecture, FPGA.

I. INTRODUCTION

Dynamically partially reconfigurable FPGAs allow hard-
ware modules to be placed and removed at runtime while
other parts of the system keep working [1]. This permits a
radical departure from the way application-specific hardware
is usually designed. In a static system, there must be a fixed
set of processing resources sufficient to meet performance
requirements under worst-case load conditions. If the workload
changes, processing resources sit idle. A system that moves
through modes with distinctly different processing needs,
should provide different resources for each mode. Dynamic
partial reconfiguration can: reduce power consumption by
removing resources not currently required; achieve better
utilization by changing the mix of processing resources as
the requirements of the system change; and deliver better
performance by using heterogeneous processing resources
optimized for particular stages in an algorithm, rather than
making do with static generic processing resources that must
serve all stages.

To exploit this new capability, there is a need for efficient,
dynamically adaptive communication infrastructure that auto-
matically adapts as modules are added to and removed from
the system. Many network-on-chip architectures have been
proposed in the last decade to exploit dynamic reconfiguration
on FPGA technology. Examples include DyNoC (Dynamic
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Network on Chip) [2], CuNoC (Communication Unit Network
on Chip) [3], CoNoChi (Configurable Network on Chip)
[4], DRNoC (Dynamic Reconfigurable Network on Chip) [5]
and OCEAN (On-Chip Efficiently Adaptive Network) [6].
However, most of these have been described in theory only or
evaluated using general traffic models. Few have been realized
in a practical application. To the best of our knowledge, only
DyNoC has been applied to a traffic light controller and
CoNoChi has been demonstrated in a dynamically reconfig-
urable network coprocessor called DynaCORE. However, they
have not been fully realized and validated.

While dynamic reconfiguration offers clear benefits in the-
ory, more application experiments are required to understand
the benefits and limitations of dynamically reconfigurable
NoCs and to guide their further development. The aim of this
paper is to begin to address this research gap by using an
adaptive NoC to connect parallel Processing Elements (PEs)
in a dynamically reconfigurable implementation of the Fast
Fourier Transform (FFT) on an FPGA. We have chosen to
begin with the FFT because it is widely used in a diverse va-
riety of applications in engineering, science and mathematics
[7]. It is also commonly implemented using FPGAs, which
can exploit parallel hardware to achieve power-efficient, high-
speed performance.

The main contributions of this paper are:

1) To the best of our knowledge, this is the first pub-
lication that fully realizes a dynamically partially re-
configurable NoC in a specific application, a double-
precision floating-point FFT. The system is implemented
on an FPGA platform and evaluated for latency, area
and power consumption. We compare it with static-only
systems, software implementation on CPUs and Xilinx
FFT IP core.

2) We show that using dynamic partial reconfiguration
of the FPGA allows the user to efficiently change
between power-performance operating points while still
maintaining competitive performance with the static-
only systems. In fact, the real-time performance of the
system is among the fastest FFTs published so far.

The rest of the paper is organized as follows. In Section II,
an overview of the FFT algorithm and its hardware implemen-
tation are presented. The proposed FFT architecture is detailed
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in Section III. Section IV presents the implementation results
and design performance. Finally, the paper is concluded in
Section V.

II. FFT ALGORITHM AND HARDWARE IMPLEMENTATION

In this paper, we use the radix-2 decimation in frequency
variation of the FFT Cooley-Tukey algorithm [7]. This algo-
rithm is composed of butterfly operations, as in Figure 1.
The signals are represented by complex variables and for
our implementation, they all use double-precision floating
point representation. Radix-2 is chosen due to its simplicity
and flexibility. Figure 2 shows an example of these butterfly
operations arranged in a decimation in frequency architecture.

Many different hardware architectures for the FFT have
been proposed. These include the parallel architecture
[8], pipelined architecture [9]-[12], and combined parallel-
pipelined architecture [13][14]. In this paper, the parallel archi-
tecture is chosen in preference to the more common pipelined
architecture as it proves a good match with the dynamic
NoC approach, achieving efficient hardware utilization without
excessive memory bandwidth requirements.

III. DYNAMICALLY RECONFIGURABLE FFT
ARCHITECTURE

A. Processing Elements

A PE performs a radix-2 butterfly operation. Each PE con-
sists of: four floating-point multipliers and six floating-point
adders as in Figure 3 for the full radix-2 butterfly operation;
memory storage for input data, twiddle phase factors and in-
termediate results; a local controller; and a NoC interface. The
local controller coordinates the read/write memory operation
and defines which PE to communicate with at each stage. The
NoC interface works as a bridge between the PE and the NoC.
The floating-point multipliers and adders support IEEE 754
double-decision floating-point normal and abnormal numbers.
They are deeply pipelined to improve speed.

The floating-point multiplier is based on the design in [15].
Its operation includes multiplying the mantissas, adding the
exponents, calculating the result sign, normalizing and finally
rounding the result according to the IEEE 754 double-decision
floating-point standard. The multiplier consists of 17 pipeline
stages.

The floating-point adder is also based on [15]. It consists of
several steps as follows: ensure that the exponents of the two
operands are equal by increasing the smaller one and shifting
right its corresponding mantissa; add/subtract the mantissas if
they have the same/opposite signs; normalize and finally round
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Figure. 1. Radix-2 butterfly datapath.
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Figure. 2. Decimation in frequency diagram of 8-point radix-2 FFT.
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Figure. 3. Radix-2 butterfly implementation.

the result according to the IEEE 754 double-decision floating-
point standard. The adder is implemented with 10 pipeline
stages. The subtractor can be simply implemented using an
adder by inverting the sign of the second operand.

The on-chip memory storage of each PE is determined
according to the number of block RAMs available on the
FPGA and the number of PEs implemented. A single PE
synthesized for a Xilinx Virtex-7 XC7VX485T FPGA occu-
pies 8739 register slices, 13022 LUT slices and 36 DSP48El
slices. This accounts for 1%, 4% and 1% of the available
registers, LUT and DSP slices respectively. The PE achieves
a maximum operating frequency of 364 MHz. Up to 25 PEs
could be implemented on the device but the number of PEs
in a parallel architecture must be a power of two; hence only
16 PEs are implemented. There are a total of 1030 x 36Kb
block RAMs; hence each PE can include up to 64 block
RAMs. The total on-chip memory required for an N-point
FFT is approximately 2N elements (including data elements
and twiddle phase elements). With elements of 128 bits for
double precision complex numbers (64 bits for the real part
and 64 bits for the imaginary part), the maximum FFT size the
design can process is (1030 x 36 x 1024)/(2 x 128) = 148320
points. The actual maximum size is 131072 (2!7) points due
to the use of a radix-2 design.

B. Data Scheduling

Data scheduling is based on the decimation-in-frequency
variation of the FFT Cooley-Tukey algorithm. The twiddle
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phase factors are pre-calculated and stored in the external
ROM. The input data and twiddle phase factors are loaded
from the external memory to the on-chip memory of each PE
by a global controller. To ensure the parallel operation of PEs,
all input elements are transferred to the PEs before they start
their operation. The number of elements transferred per cycle
depends on the bandwidth of external memories. In this case,
one element is transferred per cycle. If the system runs at 200
MHz, the transfer of one 128-bit element per cycle requires a
memory bandwidth of 25.6 Gbps. This can be easily obtained
by current memory technology.

With an N-point FFT and P PEs, PE; (0 <i< P —1)is
scheduled with the {x; : Ni/P < j < N(i+1)/P—1}. With
this scheduling strategy, there is no communication among the
PEs in the first (loga(N/P) — 1) stages; PEs feedback their
own results to their inputs for the next stage. In the next logs P
stages, PEs transfer their results to each other as given in Table
I. At each stage, the twiddle phase factors are read in a manner
so that they can be reused. Communications among PEs and
between PEs and external memory use the NoC.

C. Network-on-chip Communication

The FFT implementation involves complex routing infras-
tructure for transferring input data and twiddle phase factors
from external memory to the PEs, transferring intermediate
results among PEs and outputting the final results from each
PE to the external memory. These can all be efficiently
implemented by a light-weight 2-D mesh NoC. The modularity
and scalability of a NoC can reduce interconnect routing
complexity and maintains sustainable performance. The NoC
uses small routers, circuit switching and deterministic routing.
Circuit switching is used for flow control because it does not
require input buffers on the NoC routers. Deterministic routing
is used to maximize the throughput of the NoC.

Each router has five input/output ports as in Figure 4. Four
from the four cardinal directions (North, East, South and West)
and one from the local PE. There are no input buffers at
the input ports. Each output port consists of an arbiter and
a crossbar switch. The arbiter determines which input port
is selected to proceed in the next stage. Then, the crossbar
switch matches the successful input port with the desired
output port. Each router is connected to its neighbors and
local PE through a bidirectional link with 130 bits for each
direction. The synthesized single router occupies 758 register
slices and 1442 LUT slices, which is relatively small compared
with 8739 register slices and 13022 LUT slices for a PE. The

TABLE I
COMMUNICATIONS AMONG PES IN EACH STAGE

Stage
log2(N/P)

H Communications among PEs

|
log2(N/P) +1 |

|

|

PE; = PEiy (i=2j,0<j <7)
PE; & PE;5 (i=0,1,4,5,8,9,12,13)
PE; = PE;44 (i=0,1,2,3,8,9,10,11)

PE; = PEi,5 (0<i<T)

log2(N/P) +2
log2(N/P) +3
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router achieves a maximum operating frequency of 522 MHz,
which is much higher than 364 MHz for the PE.

In circuit switching flow control, a link between source
and destination PEs is set up before a transfer is performed
and it is maintained throughout the transfer. Data transferred
in the NoC is in 130-bit flit format. When a PE wants to
communicate to another, it will assert a Send signal and send
a set-up flit to its target PE through the NoC. If the target
PE accepts the request, it will assert an Accept signal and a
channel is constructed between the two PEs. Data is transferred
and the channel is released when the last flit is received. There
are 4 types of flits defined by the two most significant bits:
set-up flits, data flits, tail flits and control flits.

In the deterministic routing algorithm, the route is defined
by the source PE and stored in the set-up flit, beginning with
the least significant bit. The routing information is a set of
2-bit directions, beginning with the source to the destination:
00 for North, 01 for South, 10 for East and 11 for West.
When a router receives a set-up flit, it extracts the two least
significant bits to find out the routing direction and then shifts
the set-up flit two bits to the right before sending the flit to
the next router. When the output direction is equal to the input
direction, the flit is transferred to its attached PE. To ensure the
highest throughput and no collision of the NoC, the position
of each PE is given in Figure 5.

D. The Dynamic Partial Reconfiguration System

To support dynamic partial reconfiguration, the system is
divided into two areas: a static area with functionality un-
changed during system operation; and a dynamic area. This
arrangement is shown in Figure 5. The dynamic area is divided
into partial reconfiguration regions which can be configured
as a PE or a router. Each region must contain sufficient
resources—such as slices, block RAMs, and DSP slices—to
implement the modules assigned to it.

Based on the user’s power-performance requirement, 1, 2,
4, 8 or 16 PEs and their attached routers can be implemented
in the dynamic region. The maximum FFT size that each
design variation can handle is given in Table II. With dynamic
partial reconfiguration, time and power consumption for the
reconfiguration process can be reduced significantly and the
system can keep running during reconfiguration. For example,
when the design is running with 4 PEs and the user wants to
upgrade to 8 PEs, only 4 additional PEs are configured. This
can save half of the time and power consumption required to

Accept
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Flit 130
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Figure. 4. Router datapath and interface.
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Figure. 5. FFT architecture.

fully configure a system with 8 PEs. In addition, the 4-PE
design can keep running until the 8-PE design is completely
configured. It is much simpler when the design is changed
from a large number of PEs to a smaller one. In this case, the
unused PEs are reconfigured with blanking bitstreams.

The static area contains a configuration controller, a con-
figuration port, interfaces with external memories, a serial
interface with an external host, and the global controller. The
reconfiguration controller is responsible for loading the partial
configuration bitstreams stored in the configuration memory
through the configuration port. We chose to implement it
using a MicroBlaze soft-core processor on the FPGA. The
configuration port transmits the configuration data to the
assigned region. The internal configuration access port (ICAP)
primitive is used in this case since it provides the access to the
configuration logic of the FPGA from within the FPGA fabric.
The terminal program with the external host allows users to
select the number of running PEs. The global controller is
responsible for data scheduling and informing PEs when the
design is changed.

IV. IMPLEMENTATION RESULTS AND DESIGN

PERFORMANCE
A. Implementation Results

The design has been implemented in Verilog and verified
using Modelsim. Synthesis and power analysis were performed

TABLE 11
MAaXIMUM FFT S1ZE OF EACH DESIGN VARIATION

Design Variation || Maximum FFT size

1 PE H 8192 (213)

2 PEs [ 16384 2™
4 PEs [ 32768 (21)
8 PEs [ 65536 (219
16 PEs [ 131072 2'7)
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with the Xilinx ISE Design Suite, targeting a Xilinx Virtex-
7 XC7VX485T FPGA. Table III shows the results. Synthesis
and power analysis of static-only FFT systems are also per-
formed for comparison. Static-only FFT systems here are five
design variations (1, 2, 4, 8, 16 PEs) based on point-to-point
connections only. Figure 6 compares the power consumption
of five differently sized static configurations with that of the
new dynamically reconfigurable design with different numbers
of active PEs.

Without dynamic partial reconfiguration, the user can
choose between two options. The first one is using a fixed
design of 16 PEs to perform all FFT sizes. This option is
simple and does not require hardware reconfiguration but is
not power-efficient since the biggest design is used for all FFT
sizes. It can be seen from Figure 6 that the power consumption
of the static 16-PE design is only smaller than the dynamic
16-PE design and much higher than the rest all four dynamic
design variations.

The second option is using a static design appropriate
for each FFT size. The system is fully reconfigured when
changing between design variations. With this option, each
design variation is smaller and more power-efficient than the
corresponding variation with dynamic partial reconfiguration.
However, the time and power consumption for reconfigura-

TABLE III
SYNTHESIS AND POWER ANALYSIS RESULTS

H A single PE H A single router
Number of Slice Registers H 8739 H 758
Number of Slice LUTs [ 13022 | 1442
Number of DSP48EIs slices || 36 I 0
Number of 36Kb Block RAMs || 62 I 0
Maximum Frequency [ 364458MHz || 522.575MHz
Estimated Power at 200MHz || 1418W || 0443w
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Figure. 6. Power comparison of new design and static-only design

tion process is higher, which is a disadvantage for real-time
applications.

Partial reconfiguration is performed using Xilinx PlanA-
head. The partial bitstream of a single PE is 1212000 Bytes
and that of a single router is 132512 Bytes. If the ICAP inter-
face is 32-bit wide and clocked at 100 MHz, the configuration
time of a single PE and a single router is 3.03 ms and 332
us respectively. The partial reconfiguration time of n PEs is
3.362n ms.

B. Design Performance

The total number calculation cycles of the dynamic system
is slightly higher than the static system due to the NoC latency.
The NoC latency (L) can be calculated as:

L=S+I+T (D

Here, S is the link set-up time. It depends on the hop number
(h) of the link. For each hop, it takes two cycles to process a
Send signal and one cycle to process an Accept signal, hence
S = 3h. The second term, /, is the initial latency, which is
equivalent to the hop number. The last term, 7, is the transfer
time, which is the largest contribution to the NoC latency. The
transfer time is equivalent to the number of flits in each packet.
However, it is overlapped with the calculation time. Therefore,
the NoC latency in this case is only 4h, which is insignificant
compared to the total number of calculation cycles.

The performance of the design in terms of floating point
operations per cycle (FPOPs/cycle) with different numbers of
PEs is as shown in Figure 7. Computing an N-point FFT
takes 5/Nloga N floating-point operations. With the number
of calculation cycles (C) obtained from simulation, the per-
formance of the design is 5Nlogs N/C (FPOPs/cycle). It can
be seen that the performance increases with an increase in
the number of running PEs and the FFT size. The highest
performance of 33.5 FPOPs/cycle is achieved by the 16-
PE design with the 131072-point FFT. However, there is an
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Figure. 7. Performance comparison of different design variations.

insignificant difference in the performance of different designs
when the FFT size is smaller than 256 points. This difference
increases with larger FFT size. In other words, for small FFT
size, a small number of PEs should be used. This will ensure
power efficiency while obtaining satisfactory performance. For
larger FFTs, users can select a design between different power-
performance operating points.

A performance comparison in terms of calculation time
between two design variations (1 PE and 16 PEs) running at
200 MHz and an Intel i7-3.4GHz CPU running Matlab R2014
is as shown in Figure 8. The calculation time of the Matlab
program is determined using the ‘tic’ and ‘toc’ functions of
Matlab. It can be seen that the calculation time of both design
variations is much smaller that of the i7 CPU. The dynamically
reconfigurable 16-PE design finishes the 131072-point FFT
in 1.66 ms while the i7 CPU takes more than 6 ms. This
proves that FPGAs can outperform software implementation
on a general purpose processors for the FFT.

The performance of the design is also compared with the
Xilinx FFT IP core [16] in terms of calculation cycles. The
Xilinx FFT IP core supports the transformed size of N = 2™
(3 <m < 16), data precision of 8 to 34 bits, and fixed-point
and block floating-point data format. The core provides four
architectures: Radix-2, Radix-2 Lite, Radix-4 and Pipelined
Radix-2. The Radix-2 Lite and Radix-4 architectures are not
considered here because they have different butterfly struc-
tures, either lighter or heavier than the Radix-2.

The new 1-PE design has similar performance to that of
the Xilinx Radix-2 FFT core. For example, the 1-PE design
processes a 1024-point FFT in 7538 cycles; and the Xilinx
Radix-2 FFT core needs 7367 cycles. The performance com-
parison between the dynamically reconfigurable 16-PE design
and the Xilinx Pipelined Radix-2 FFT core is shown in Figure
9. However in making this comparison it should be noted that
the number of PEs in the Xilinx Pipelined Radix-2 architecture
in this case is smaller than 16. For example, only 13 PEs are
used in the Pipelined Radix-2 architecture to perform the 8192-
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point FFT. This comparison aims to illustrate the advantage
of the parallel architecture over the pipelined architecture, in
which more than n PEs can be used to perform a 2"-point
FFT to achieve smaller latency.

V. CONCLUSION

In this paper, we have presented a practical system using
a dynamically reconfigurable network on chip. Our imple-
mentation demonstrates that dynamically reconfigurable NoCs
are feasible and can deliver power and performance benefits.
In this case power is saved by only implementing sufficient
hardware resources to meet current processing requirements.
We have also shown how a dynamically reconfigurable NoC
can be realized within the constraints of existing FPGA
technology.

Our system, a double-precision floating-point FFT unit
using network-on-chip communication and dynamic partial
reconfiguration has been implemented on a Xilinx Virtex-7
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XC7VX485T FPGA. The design provides much better perfor-
mance than i7-3.4GHz CPUs running Matlab and competitive
performance with static-only FFT systems and a Xilinx FFT
IP core but with double-precision floating-point data format
and the ability to adapt power-performance to suit the current
workload. It can be concluded that the use of a dynamically
partially reconfigurable NoC is a feasible and potentially
beneficial solution for systems with all homogeneous PEs like
the FFT system. This allows the system to scale performance
at an acceptable cost of additional on-chip hardware. However,
effectively exploiting dynamically reconfigurable systems re-
quires a change in design practice. Designers conventionally
craft algorithms to make good utilization of a fixed set of
processing resources. Future work to demonstrate the benefit
of dynamic reconfiguration will need to begin with algorithms
redesigned for the new approach, which can take advantages
of a changing set of heterogeneous processing elements.
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