
Improving the Performance of a SOM-Based
FPGA-Placement-Algorithm Using SIMD-Hardware

Timm Bostelmann and Sergei Sawitzki

FH Wedel (University of Applied Sciences)
Wedel, Germany

Email: bos@fh-wedel.de, saw@fh-wedel.de

Abstract—Programmable circuits and nowadays especially field-
programmable gate arrays (FPGAs) are widely applied in de-
manding signal processing applications. In a previous work, we
have introduced a method to improve the results of the netlist-
placement for FPGAs with a self-organizing map (SOM). How-
ever, the presented algorithm conveys a comparably high com-
putational effort. Considering modern, agile hardware / software
codesign approaches, a slow design automation process can act as
a kind of show-stopper, because software compilation is already
distinctly faster. Thus, in this conceptual work, we present and
evaluate different approaches to exploit the inherent parallelism
of the SOM to increase the computation-speed. These approaches
are based on using the single instruction multiple data (SIMD)
capabilities of the central processing unit (CPU) and the graphics
processing unit (GPU) for vector operations. Furthermore, we
present benchmark results of an optimized implementation, based
on using the CPU’s SIMD units and introduce a concept for a
GPU-accelerated implementation as work in progress.

Keywords–FPGA; netlist placement; GPU computing; paral-
lelization; SIMD.

I. INTRODUCTION AND BACKGROUND

The ever-growing complexity of FPGAs has a high impact
on the performance of electronic design automation (EDA)
tools. A complete compilation from a hardware description
language to a bitstream can take several hours. One step
highly affected by the vast size of netlists is the NP-complete
placement process. It consists of selecting a resource cell (po-
sition) on the FPGA for every cell of the applications netlist.
Many current solutions optimize the placement iteratively. The
academic EDA toolchain Verilog-to-Routing (VTR) Project for
FPGAs [1] for example utilizes the simulated annealing [2]
algorithm to solve the placement problem. Roughly described
it starts with a random initial placement and applies random
changes iteratively. The key of simulated annealing is the
gradual reduction of the probability to keep disadvantageous
changes over the time. Thereby the algorithm is able to leave
local optima in early stages as well as to provide a fine
optimization in later stages.

In [3], we have proposed a method to improve the place-
ment results for FPGAs. Therefore, we have used a special
SOM [4] to generate an initial placement optimized by a
low temperature simulated annealing schedule. The placement
generation consists of three stages (Figure 1). Initially for
every cell of the netlist a training vector is generated. To
guarantee that highly connected cells are represented by similar
vectors, we use a hyperbolic distance function. The SOM is
trained with these vectors in a random order. It consists of

Vector
Generation

SOM
Training

Placement
Export

Figure 1. Flowchart of the SOM-based placement algorithm.

Select a
Rand. Vector

Test
Vector

Learn
Vector

Done?

N

J

Figure 2. Flowchart of the internal SOM training.

a two-dimensional competition layer and a one-dimensional
input layer. During the training the SOM clusters these vectors
by similarity, so that the vectors of highly connected cells
will cluster together on the competition layer of the map,
thus reducing the prospective connection-lengths between the
respective cells. Finally after the training has completed, the
placement learned by the SOM is exported. Figure 2 shows
the details of the training process. In the test stage, the neuron
with the smallest Euclidean distance to the selected vector is
determined. It is called the winning neuron. In the learning-
stage the weights of the winning neuron and its neighbors
are pulled towards the current stimulation. This makes them
more susceptible to similar stimulations in the future and
thereby induces the clustering of similar vectors. To prevent
illegal placement results – which contain multiple occupations
of a single resource cell – we temporarily block former
winning neurons in the test process, so that they can not win
again. The learning process is not affected by this measure.
Consequentially the clusters of highly connected cells grow
and displace other cells until they occupy the necessary space.

In [3], we have compared this method (including the final
low temperature simulated annealing) to the regular simulated
annealing process of VPR [5]. We were able to reduce the
clock-rate determining critical path by six percent in average,
for a set of common benchmark netlists. However – as
mentioned in our previous work – we did not consider the
computation time yet, knowing that our prototypic “proof of
concept” implementation was not competitive regarding speed.
In fact the proposed method – and especially the training of
the SOM – conveys a high amount of computational effort.
Fortunately, it has also a high amount of inherent parallelism,
which makes a parallel computation approach very promising.

The rest of this paper is organized as follows. In Section II,
we analyze the necessary computation time of our original im-

13Copyright (c) IARIA, 2016. ISBN: 978-1-61208-496-1

CENICS 2016 : The Ninth International Conference on Advances in Circuits, Electronics and Micro-electronics

TABLE I. Profiling results of the unoptimzed SOM implementation.

Netlist FPGA Relative Computation Time
Name Size Size Test Learning Others

net16 256 16 × 16 69.0 % 29.0 % 2.0 %

ex5p 1064 33 × 33 73.9 % 25.8 % 0.3 %

ex1010 4598 68 × 68 75.4 % 24.6 % 0.0 %

Average 72.8 % 26.5 % 0.7 %

plementation, as basis for further optimization. In Section III,
we present the results of an optimized implementation, which
we have created based on our findings and give a prospect
to further optimizations using GPU-computation with OpenCL
[6]. Finally in Section IV, we summarize our findings and give
a prospect to further work.

II. PARALLELIZATION

Table I summarizes profiling results of the unoptimized
SOM implementation for different netlists from a Micro-
electronics Center of North Carolina (MCNC) benchmark-
set [7]. It shows the relative computation times of the steps
introduced above. Especially for larger netlists, the test and
learning functions together consume almost 100 percent of
the computation time. In this work, we focused on the test
process because (with in average 73 percent) it consumes the
highest amount of time. In the test process, the Euclidean
distance between the stimulating vector and every neuron is
determined. The neuron with the lowest distance is selected
as winning neuron. The subfunction for the calculation of the
distance consumes more than 99 percent of the test process
(for example 368 seconds out of 369 seconds for the ex5p
netlist). Based on these numbers, we have identified two levels
of parallelism that could be exploited:

1) The vector operation to determine the distance d
between the stimulating vector ~v and a neuron’s
weight ~w as described in (1), assuming ~v and ~w have
N elements.

2) The calculation of all the distances and the selection
of the lowest distance.

d =

N∑
i=0

(~vi − ~wi)
2 (1)

In a first attempt, we have optimized our SOM implemen-
tation by exploiting the parallelism of the vector operations.
Therefore, we have created two alternative, parallel implemen-
tations of the distance function used heavily in the test loop.
One implementation is using the processor’s Streaming SIMD
Extensions (SSE) for vector operations, the other is delegating
the vector operations to the GPU using OpenCL.

III. RESULTS

Table II shows the results of the parallel implementations
for different vector sizes. As this is only a preliminary test,
we have used a desktop computer with an “Intel® Core™2
Duo E8400” processor. For a rough lower-bound approxima-
tion of the expectable GPU performance, we have used a
“NVIDIA® GeForce® GTX 650” GPU. In comparison to the
unoptimized implementation, the SSE implementation breaks
even between vector sizes of 100 and 1000 cells, whereas

TABLE II. Time consumption of the parallel implementations of the
distance function (1) for different vector sizes.

CPU CPU SSE GPU OpenCL
Vector Size Time Time Speedup Time Speedup

100 cells 27 µs 64 µs 0.4 170 µs 0.2

1000 cells 200 µs 74 µs 2.7 300 µs 0.7

10000 cells 2000 µs 112 µs 17.9 400 µs 5.0

100000 cells 23 ms 458 µs 50.2 454 µs 50.7

1000000 cells 238 ms 7000 µs 34.0 669 µs 355.8

TABLE III. Comparison of the computation times for one training cycle of
our original SOM implementation and an improved version using

SSE-accelerated vector operations.

Netlist FPGA Computation Time
Name Size Size SOM CPU SOM SSE Speedup

net16 256 16 × 16 5 s 2 s 2.5

e64 273 33 × 33 23 s 7 s 3.3

ex5p 1064 33 × 33 350 s 31 s 11.3

seq 1750 42 × 42 1476 s 95 s 15.5

ex1010 4598 68 × 68 27211 s 1259 s 21.6

the GPU implementation brakes even between 1000 an 10000
cells. The SSE implementation and the GPU implementation
break even at a vector size of 100000 cells. Even tough there
are commercial FPGAs available with more than a million
CLBs today, the netlists are typically partitioned to a smaller
size before the placement and need much faster placement
algorithms anyways. Further analysis has shown that the main
problem of the tested OpenCL implementation lies in the small
complexity of a single distance calculation. This causes a
relatively large overhead for the memory transfer between host
and GPU memory.

Based on these findings, we have improved our prototypic
SOM implementation by using SSE for all vector operations.
Table III shows the computation times of both SOM implemen-
tations for a subset of the netlists used in our previous work.
The time is given for one training cycle, meaning the training
of every vector. We have increased the overall speed of the
training process by a factor of up to 20. Especially the larger
netlists benefit from the parallelization, because the wider vec-
tors give a better utilization of the SIMD hardware. However,
the simulated annealing algorithm of VPR is still about one
hundred times faster then our proposed SSE implementation.
To bridge this gap, we propose to utilize the higher level of
parallelism described above with an OpenCL implementation
on a GPU. Thereby, we create bigger chunks of computational
work and minimize the overhead for memory transfer between
host and GPU. Ideally the complete training loop takes place
on the GPU, so that a memory transfer is only necessary after
the vector generation and for the placement export.

IV. CONCLUSION

We have presented an evaluation of different approaches
to exploit the inherent parallelism of a SOM-based FPGA-
placenment-algorithm to increase the computation-speed.
These approaches are based on using the SIMD capabilities
of the CPU and the GPU for vector operations. Furthermore,
we have present benchmark results of an optimized SOM-
implementation based on using the CPUs SIMD units and

14Copyright (c) IARIA, 2016. ISBN: 978-1-61208-496-1

CENICS 2016 : The Ninth International Conference on Advances in Circuits, Electronics and Micro-electronics

outlined a concept for an even faster GPU-accelerated im-
plementation. In the future, we are planing to evaluate the
latest OpenCL to FPGA synthesis approaches [8]. Those are
especially auspicious because of the flexible memory structure
and extended inter-kernel communication.

Another promising lead has been published recently in
[9]. The authors present a fast SOM-based FPGA-placement-
algorithm, that is using the Shimbel Index [10] for the vector-
generation and thereby reduces the vector-size distinctly. We
will evaluate if the optimizations presented in this paper are
fitting to speedup this new approach even further.

REFERENCES

[1] J. Rose et al., “The VTR project: Architecture and CAD for FPGAs
from Verilog to routing,” in ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA), 2012, pp. 77–86.

[2] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, May 1983, pp. 671–680.

[3] T. Bostelmann and S. Sawitzki, “Improving FPGA placement with a
self-organizing map,” in International Conference on Reconfigurable
Computing and FPGAs (ReConFig), Dec 2013, pp. 1–6.

[4] T. Kohonen, Self-Organizing Maps. Springer, 1995.
[5] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool

for FPGA research,” in International Conference on Field Programmable
Logic and Applications (FPL). Springer, 1997, pp. 213–222.

[6] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel program-
ming standard for heterogeneous computing systems,” IEEE Des. Test,
vol. 12, no. 3, May 2010, pp. 66–73.

[7] S. Yang, “Logic synthesis and optimization benchmarks user guide
version 3.0,” Microelectronics Center of North Carolina, Tech. Rep.,
1991.

[8] T. S. Czajkowski et al., “From OpenCL to high-performance hardware
on FPGAs,” in International Conference on Field Programmable Logic
and Applications (FPL), Aug 2012, pp. 531–534.

[9] M. Amagasaki, M. Iida, M. Kuga, and T. Sueyoshi, “FPGA placement
based on self-organizing maps,” International Journal of Innovative
Computing, Information and Control, vol. 11, no. 6, 2015, pp. 2001–
2012.

[10] A. Shimbel, “Structural parameters of communication networks,” The
bulletin of mathematical biophysics, vol. 15, no. 4, 1953, pp. 501–507.

15Copyright (c) IARIA, 2016. ISBN: 978-1-61208-496-1

CENICS 2016 : The Ninth International Conference on Advances in Circuits, Electronics and Micro-electronics

