
A Hotspot Detection Method Based on
Approximate String Search

Shuma Tamagawa∗, Ryo Fujimoto†, Masato Inagi‡, Shinobu Nagayama∗, Shin’ichi Wakabayashi∗
∗‡Graduate School of Information Sciences, Hiroshima City University

†Faculty of Information Sciences, Hiroshima City University
3-4-1 Ozuka-higashi, Asaminami-ku, Hiroshima, 731-3194 Japan

Email: ‡inagi@hiroshima-cu.ac.jp

Abstract—In this paper, we propose an approximate string search-
based method for detecting hotspots on mask patterns used
in very-large-scale integration (VLSI). In mask patterns for
manufacturing VLSI chips, there are some local patterns which
induce open/short circuits and thus failures. Such patterns are
called hotspots. They are detected by optical simulation before
manufacturing. Since it, however, requires very long time, it is
desirable to detect hotspot candidates in order to limit the target
regions of optical simulation. For the detection, methods which
check matching between each pattern from a pre-defined hotspot
library and the mask pattern are attracting attention. At first,
our proposed method transforms the mask pattern and the pre-
defined hotspot patterns, which are two-dimensional, into one-
dimensional strings. Then, it finds hotspot candidates by using
approximate string search to detect patterns similar to hotspot
patterns. The transformation is performed in a particular way to
efficiently realize quasi-two-dimensional search by using string
search. In addition, we focus on the distance between wires
as a metric to find hotspot candidates, and give a priority to
patterns which have wires with a shorter distance. To evaluate
the effectiveness of our method, we conducted some experiments.

Keywords–lithography; hotspot; optical simulation; approximate
string matching.

I. INTRODUCTION

In recent decades, the density of semiconductor chips
has greatly been increased with advances in very-large-scale
integration (VLSI) technology. In lithography process for man-
ufacturing VLSI chips [1], the circuit pattern (mask pattern)
drawn on a photomask is transferred to a silicon wafer using
photolithography machine. While 193nm wave length laser is
currently used for the lithography process, the minimum pitch
between wires is becoming smaller and has reached 14nm.
Thus, because of diffraction during exposure, transfer of the
mask pattern drawn on the photomask to the wafer sometimes
fails. Hotspot is a place on the mask pattern where such a
failure of transfer is likely to occur.

For manufacturing VLSI chips, a photomask is necessary.
However, the manufacturing cost of the photomask is very
high. To avoid remanufacturing photomasks, it is desirable to
remove hotspots before manufacturing the photomask. Thus,
optical simulation is conducted to detect hotspots. However,
it takes very long time to conduct the optical simulation to
the entire mask pattern. It is possible to shorten the simulation
time by applying the optical simulation only to the hotspot
candidates on the mask pattern. Thus, some methods for
detecting hotspot candidates have been studied [2]-[6].

The method proposed in [2] is based on pattern matching
[7]. The others [3]-[6] build a decision model, such as artificial

neuron network, by learning hotspot/non-hotspot patterns, and
detect hotspot candidates based on the model. [8] summarized
related work including most of the methods.

In this study, we consider a method which conducts two-
dimensional pattern matching by using string matching. In
string matching, there are a lot of variation problems. String
search problems are its variations to find the substrings same
to a given pattern in a given string. An algorithm proposed
by Knuth et al. [7] is well-known as an algorithm for the
basic problem of string search. Hardware algorithms for the
problems also have been proposed [9]-[11]. Our proposed
method is based on approximate string search [12][13], which
is a variation of string search and in which substrings similar
to a given pattern are searched in a given string. Our method
conducts approximate string search by transforming the two-
dimensional mask pattern and the two-dimensional hotspot
patterns into one-dimensional strings. When transforming these
patterns, it is necessary to pad a lot of don’t care characters to
the hotspot patterns in order to match the widths of the mask
and hotspot patterns. For efficient string search, we introduce
a quantitative don’t care character which represents a number
of consecutive don’t care characters. In addition, we confirmed
that a pattern (in the mask pattern) similar to a hotspot pattern
is more likely to be a hotspot if there are two wires in
the pattern whose distance is smaller than that between the
corresponding wires in the hotspot pattern. Thus, we propose
a hotspot detection considering the distance between wires.
Finally, we confirm the effectiveness of our proposed method
comparing with a method based on two-dimensional simple
matching.

The rest of this paper is organized as follows. First, in
Section II, lithography, hotspot detection problem and related
work, approximate string search problem, and an algorithm
for the string matching problem are explained. Section III
presents our hotspot detection method based on approximate
string search. In Section VI, experimental results are shown.
Finally, conclusions are described in Section V.

II. PRELIMINARIES

A. Lithography
Lithography (photolithography) is one of the processes for

VLSI manufacturing, and a technology to transfer a circuit
pattern drawn on a photomask, which is the master to replicate
the circuit pattern, to a silicon wafer using a photolithography
machine (exposure device).

The basis of lithography is shown in Figure 1. In lithog-
raphy process, light is shed on the photomask and the mask

6Copyright (c) IARIA, 2016. ISBN: 978-1-61208-496-1

CENICS 2016 : The Ninth International Conference on Advances in Circuits, Electronics and Micro-electronics

Figure 1. Lithography

(1) (2)

Figure 2. Hotspot: (1) a hotspot pattern, (2) transferred image

pattern drawn on the photomask is transferred to the wafer
via lenses. While 193nm wave length laser is currently used
for the lithography process, the minimum pitch between wires
is becoming smaller and has reached 14nm. Thus, diffraction
occurs during exposure. For this reason, there are cases in
which the mask pattern drawn on the photomask cannot be
correctly transferred to the wafer. Hotspot is a place on the
mask pattern where such a failure of transfer is likely to
occur. Let us consider a pattern (1) in Figure 2 as an example.
Figure 2 (2) is a transferred image of the pattern (1). In the
image (2), wires are fused at an unintended position. Thus, the
pattern (1) is a pattern which induces a failure and considered
as a hotspot.

B. Hotspot Detection Problem
There exist two problems relating to hotspots: hotspot deci-

sion and hotspot detection (hotspot search). Hotspot decision
problem is to determine whether a given small pattern is a
hotspot (candidate) or not, while hotspot detection problem is
to detect hotspots (hotspot candidates) from a given large mask
pattern. In hotspot detection problems, a mask pattern and a
known hotspot pattern (or a set of known hotspot patterns) are
given, and patterns similar to the known hotspot pattern (or
one of the known hotspot patterns) are searched in the mask
pattern.

C. Related Work
Most existing methods [2]-[6] solve a hotspot detection

problem by scanning the mask pattern and solving hotspot
decision problems.

The existing methods can be classified into [2], [3][4],
and [5][6]. The main difference among the three groups is
the information used for detection. In [2], a binary image of

a pattern is encoded to a vector and used for detection. In
[3][4], information such as the length and width of each wire is
extracted from the pattern, and encoded to a vector. In [5][6],
a pattern is encoded as a density-based data, and used for
detection.

From another viewpoint, the existing methods can briefly
be explained by their base algorithms: [2] is based on pattern
matching, [3] is based on machine learning, [4] is a hybrid
method combining machine learning and pattern matching, and
[5][6] are based on fuzzy matching.

Here, we explain the overview of each group of the existing
methods. In this paragraph, we describe the flow of a pattern
matching-based method [2]. First, overlay a coarse grid on the
mask pattern. Then, grid points on wire segments are colored.
The coloring of the grid is transformed into a matrix, and
then it is again transformed into a vector. Each hotspot pattern
is transformed into vector in the same way. Then, the mask
pattern vector and a hotspot pattern vector are matched by
using the Knuth-Morris-Pratt (KMP) string matching algorithm
[2][7]. If a hotspot pattern vector matches a part of the mask
pattern vector, range pattern matching (RPM) is performed to
them using a finer grid. In RPM, users can specify the ranges
of the length and width of a segment of a wire in the hotspot
pattern, etc., and thus flexible matching can be realized. This
method realizes high accuracy by the hierarchical matching,
in addition to low memory usage by the coarse global grid.

Second, we describe the flow of a machine learning-based
method [3]. First, extract feature quantities for each known
hotspot pattern considering the length, width, etc. of wire
segments in the pattern, and construct a compact vector from
the feature quantities of each pattern. Then, hierarchically build
both artificial neural network (ANN) models and a support
vector machine (SVM) models training by the vectors for
accurate and robust decision-making. Then, a target pattern
is applied hierarchical machine learning-based matching using
the hierarchical model. This method realizes high accuracy,
high robustness and low false-alarm ratio by the hierarchical
model, in addition to short runtime by their compact feature
vectors.

Next, we describe the flow of a hybrid method [4]. First,
perform pattern matching for a target pattern and the hotspot
patterns. If it matches one of the hotspot patterns, they
conclude that it is a hotspot. Otherwise, matching based on
machine learning is performed to the pattern. A pattern which
is determined as a non-hotspot pattern in this stage is con-
cluded to be a non-hotspot. A pattern which is determined as
a hotspot pattern is applied machine learning-based matching
again, using a different machine learning model to accurately
examine if it is likely to be a hotspot or not. Only if it is
determined as a hotspot by the second machine learning-based
matching, they conclude that it is a hotspot. This method
realizes high accuracy and short runtime by its hybrid strategy.

Then, we explain the common flow of fuzzy matching-
based methods [5][6]. First, divide the mask and pre-defined
hotspot patterns into tiles and calculate the density of wires in
each tile as a feature quantity of the tile. Next, build a fuzzy
matching model from the vectors of the feature quantities of
the hotspot patterns. To build the model, calculate a distance,
called city block distance (CBD), between every two hotspot
patterns. If the CBD between two hotspot patterns is smaller

7Copyright (c) IARIA, 2016. ISBN: 978-1-61208-496-1

CENICS 2016 : The Ninth International Conference on Advances in Circuits, Electronics and Micro-electronics

than a threshold, they are placed in the same hotspot group.
Next, a fuzzy region is extracted from each hotspot group in the
fuzzy space. Then, fuzzy regions are expanded as far as they
are legal as fuzzy regions. This is necessary to divide the fuzzy
space into hotspot regions and non-hotspot regions in a fuzzy
manner. Finally, determine if a given pattern is a hotspot or not,
using the fuzzy matching model. If an inequality is satisfied on
the model with a given pattern, it is determined as a hotspot.
When building and using the model, a heavy weight is imposed
to the center area of each pattern, because failures occur in
the center area of hotspot patterns with a higher possibility
than outside the center area. For hotspot detection in [5][6],
candidate patterns, which include suspicious polygons (wires),
are extracted and applied fuzzy matching. This method realizes
high accuracy and low false-alarm ratio when using fine tiles.

Our proposed method is based on string matching. In the
method, every pixel image of the mask and known hotspot
patterns is sliced and converted into a string, and then approx-
imate string search is performed. We expect that approximate
string search realizes more flexible hotspot search since it can
find not only the substrings exactly same as the given pattern
but also similar substrings. Before approximate string search,
each known hotspot pattern is analyzed, and congested areas,
where wires are close to each other, are given heavy weights
to find severe patterns in priority. We consider a hierarchical
approach, which most existing methods employ, is promising.
Therefore, this study is the first step of an attempt to develop
a better method to replace a stage of hierarchical methods.

D. Approximate String Matching Problem
Approximate string matching problem [12][13] is one of

the string matching problems, and is a problem to determine if
two given strings are similar or not. In this study, the similarity
between strings is measured by the edit distance explained in
the next subsection. If the edit distance is less than or equal
to a given threshold, we consider they are similar each other.

E. Edit Distance
Let us consider a pair of characters (a, b)(̸= (ϵ, ϵ)), where

ϵ is an empty character, which represents nonexistence of any
character. The operation transforming character a in a string
into b is called an edit operation, and is denoted by a → b.
For example, let us consider a string A = gzh. If an edit
operation g → f is applied to the first character of A, we
get A

′
= fzh as the resultant string of the operation. If an

edit operation z → ϵ is applied to the second character of A,
we get A

′
= gh. If an edit operation ϵ → j is applied to

the empty character between the second and third characters
of A, we get A

′
= gzjh. Hereinafter, we call an operation

a → b a substitution if a ̸= ϵ and b ̸= ϵ. Likewise, we call
an operation a → ϵ a deletion, and call an operation ϵ → b
an insertion. Any string can be transformed into an arbitrary
string by applying the edit operations. An edit operation has
its cost denoted by γ(a → b). We assume the costs of edit
operations satisfy the equation below.

γ(a → a) = 0

γ(a → b) + γ(b → c) ≥ γ(a → c)

Suppose strings A and B on alphabets Σ are given. A sequence
of edit operations to transform A into B is denoted as S =

s1, s2, . . . , sm. The cost of S is defined as

γ(S) =
m∑
i=1

γ(si).

The minimum value among the costs of all the sequences each
of which transforms A into B is defined as the edit distance
between A and B [12].

F. Approximate String Search Problem

Approximate string search is to find substrings similar to
a given pattern in a long input sequence. More precisely,
approximate string search is to find all the substrings whose
edit distance to the pattern P are the minimum among all the
substrings (or less then the given threshold k), in the input
sequence S.

We here explain a dynamic programming-based algorithm
for approximate string search [12][13]. Prepare an (n + 1) ×
(m + 1) two-dimensional array D, where n is the length of
the pattern P = a1a2 · · · an, and m is the length of the input
sequence S = b1b2 · · · bm. The element D(i, j) of D is defined
by the equation below. Then, D(n, j)(1 ≤ j ≤ m) give the
edit distances of substrings from the pattern. If the value is the
minimum among all the D(n, j)(1 ≤ j ≤ m) (or less than the
user-defined threshold k), substrings whose terminal is bj are
considered as those similar to the pattern. The initials of the
substrings can be found by backtracing on D. The details of
the identification of similar substrings of our proposed method
are explained later.

D(0, 0) = 0, D(0, j) = 0,

D(i, 0) = D(i− 1, 0) + del(ai),

D(i, j) = min{D(i− 1, j) + del(ai),

D(i, j − 1) + ins(bj),

D(i− 1, j − 1) + sub(ai, bj)}

sub(ai, bj) = γ(ai → bj),

where the function ins, del, and sub denote the insertion,
deletion, and substitution costs.

Let us consider an example of searching substrings of
S = tttytzmy similar to P = tyzm. Here, we set the every
cost of the insertion, deletion and substitution operations to
1. Then, we obtain an array D shown in Figure 3 from the
recursive definition of D(i, j). Next, we search the minimum
element of the bottom row of D. In this example, D(4, 7) = 1
has the minimum value. Next, we trace the edit operations
back from the element. If a deletion operation was applied
there, i.e., the minimum function in the recursive definition
chose a deletion operation, we move to the upper element.
Likewise, if an insertion (substitution) operation was applied
there, we move to the left (upper-left) element. Finally, we
obtain S < 3, 7 >= tytzm as a substring similar to the pattern
P , where S < i, k >= bib2 · · · bk. As shown in the example,
in approximate string search, substrings similar to the pattern
are found by calculating the edit distances from the middle of
the input sequence. The time-complexity of this algorithm is
O(nm).

8Copyright (c) IARIA, 2016. ISBN: 978-1-61208-496-1

CENICS 2016 : The Ninth International Conference on Advances in Circuits, Electronics and Micro-electronics

Figure 3. Edit distance array D

Figure 4. Image data and its corresponding array

III. HOTSPOT DETECTION BASED ON APPROXIMATE
STRING SEARCH

In this section, we present our hotspot detection method
based on approximate string search. In this method, the mask
pattern and a hotspot pattern, which are both two-dimensional
data, are transformed into one-dimensional strings to apply
approximate string search calculating array D by dynamic
programming. In addition, we propose an extension of the
method to give priority to be picked up to patterns more likely
to be hotspots.

A. Transformation into One-dimensional Data
Mask patterns and hotspot patterns are image data. We

transform them into two-dimensional array of characters, in
which wire area is represented by 1 and empty area is
represented by 0.

An example is shown in Figure 4. In the left image in it,
white areas show wires, and black areas show empty areas.

We transforms the two-dimensional arrays into one-
dimensional data. In the transformation of the mask pattern,
the two-dimensional array of the mask pattern is divided into
rows. Then, the tail of the first row and the head of the
second row is connected. And, the tail of the second row is
connected to the head of the third row. Connecting all the
rows according to the procedure, the two-dimensional mask
pattern data is transformed into one-dimensional data. Next, we
explain how to transform the two-dimensional hotspot pattern
into one-dimensional data. The procedure of the transformation
is shown in Figure 5. First, the array of the hotspot pattern is
divided into rows, like the transformation of the mask pattern.
Next, don’t care characters are inserted to each row to fit the
width of the hotspot pattern to that of the mask pattern. Then,
the rows are connected into one-dimensional data, like the
procedure of the mask pattern.

The insertion of don’t care characters virtually realizes two-
dimensional matching by one-dimensional matching. Figure 6
illustrates hotspot search with don’t care characters. A don’t
care character can be represented by setting its substitution

Figure 5. Transformation of hotspot data

Figure 6. Matching after inserting don’t care characters

cost to 0. To make the explanation simple, let us consider the
case of matching the two-dimensional data (i.e., not searching
but matching). By padding don’t care characters to the one-
dimensional data of the hotspot pattern in order to fit the width
of the hotspot pattern to that of the mask pattern, the values
of the elements of the hotspot pattern and the values of the
elements in the corresponding area of the two-dimensional
mask pattern are matched (i.e., compared). In the figure, the
values from the third element to the fifth element in the first
row of the mask pattern are matched with the inserted don’t
care characters in the hotspot pattern. (That is, the values from
the third element to the fifth element of the mask pattern
are ignored.) Therefore, the values from the first element to
the second element in the second row of the two-dimensional
mask pattern are appropriately matched with the values from
the first element to the second element in the second row
of the two-dimensional hotspot pattern by one-dimensional
matching. This way, the hotspot pattern is matched with the
corresponding area of the two-dimensional mask pattern.

B. Dynamic Programming
In our method, since hotspot candidates are searched by

using approximate string search, array D is calculated by
using the dynamic programming shown in the previous section.
Except the first row and column, the value of each element of
the array D is calculated by using the value of its upper, left
and upper-left elements. These calculations are done line by
line from the top to the bottom.

Let us focus on the calculation of the element where
the character of the hotspot pattern is don’t care. In the
case, consecutive x don’t care characters require x rows of
the calculations. Figure 7 illustrates the calculation of array

9Copyright (c) IARIA, 2016. ISBN: 978-1-61208-496-1

CENICS 2016 : The Ninth International Conference on Advances in Circuits, Electronics and Micro-electronics

Figure 7. Calculation of array D with consecutive don’t care characters

Figure 8. Calculation of array D with a large don’t care character

D with consecutive don’t care characters. In our method,
such consecutive x don’t care characters are merged to one
character, called a large don’t care. If the character of the
hotspot pattern is a don’t care character, each element of the
corresponding row is equal to its upper-left element. (Each
element of the leftmost column is equal to its upper element.)
On the other hand, if the character of the hotspot pattern is with
a large don’t care character, each element of the corresponding
row is equal to the element at the x-th left column at the
upper row. In this way, x lines of calculations of don’t care
characters are realized by a line of calculations of a large don’t
care character. Figure 8 illustrates the calculation of array D
with a large don’t care character.

C. Detection of Hotspot Candidates
After calculating array D, substrings similar to the hotspot

pattern are detected as hotspot candidates. To detect hotspot
candidates, first, we focus on the elements with the minimum
value in the bottom row of D. Each of these elements is
considered as the terminal character of a hotspot candidate.
Since we assume the hotspot candidate has the length same as
the hotspot pattern, the initial character can be identified from
the terminal character. The assumption is based on the fact
that a hotspot pattern and candidates similar to the pattern are
originally two-dimensional images, and have the same size or
almost same sizes. Next, we focus on the elements with the
minimal values in the bottom row of D. The elements whose
values are less than or equal to a use-defined value (threshold)
k are chosen from the elements with the minimal values, and
processed in the same way.

Figure 9. Detection of hotspot candidate

Figure 9 illustrates an example of hotspot candidate detec-
tion. First, the minimum values in the bottom row of array D
are found. In Figure 9, the value 0 of the 6th column is the
minimum. The column with the minimum value corresponds
to the character f of the mask pattern. Thus, the substring
ef which has the terminal character f and the length same
as the pattern ef is detected as a hotspot candidate. Next, the
minimal values no more than the threshold k in the bottom
row of array D are found. In this example, we set k = 1.
The second and third columns in the bottom row satisfy the
condition. Thus, the substring e(= ϵe) whose terminal is in
the second column is found as a hotspot candidate. Likewise,
the substring ek whose terminal is in the 3rd column is found
as a hotspot candidate.

It seems that array D requires a large amount of memory
area. However, since we need only the bottom raw of D to
detect the hotspot candidates, the memory area for each raw
(except the bottom raw) can be released after the calculation
of the next raw. That is, we need to memorize only the current
and previous rows at a time.

D. Detection of Severe Patterns Considering Distance between
Wires

Hotspot patterns are those which induce short or open
circuits. If there exist patterns in the mask pattern similar to
a hotspot pattern, they are likely to be hotspots. We focus
on the distance between wires as a measure to determine the
criticality of hotspot candidates. We performed simulations for
two patterns by using an optical simulator [14]. The results
of the simulations for the patterns (1) and (2) in Figure 10
are shown in Figure 11 (1) and (2), respectively. In Figure 10,
pattern (1) and (2) are variations of the original hotspot pattern.
In pattern (1) ((2)), the horizontal distance between the left
and right wires is shorter (longer) than the original one (the
horizontal segment of the right wire is longer (shorter) then that
of the original one). As shown in Figure 11, pattern (1) clearly
caused a short circuit, and thus it is a hotspot. Although pattern
(2) might be a hotspot, too, it is not clear from the simulation.
These results indicate that among patterns which have the
same similarity to the original hotspot pattern, patterns with
shorter distances between wires are more critical. Therefore,
we propose an extension of our hotspot detection method to
detect more critical patterns in priority among patterns with
the same similarity, considering the distances between wires.

Let us consider two hotspot candidates similar to a hotspot

10Copyright (c) IARIA, 2016. ISBN: 978-1-61208-496-1

CENICS 2016 : The Ninth International Conference on Advances in Circuits, Electronics and Micro-electronics

Figure 10. Patterns

(1) (2)

Figure 11. Transferred images

pattern. There exists the (horizontally) shortest distance be-
tween wires in the hotspot pattern. One of the hotspot candi-
dates (shown in Figure 12(1)) has the shorter distance between
wires at the corresponding area than the hotspot pattern, and
the other (shown in Figure 12(2)) has the longer distance be-
tween wires at the corresponding area with the same difference.
As mentioned above, the candidate with shorter distance is
more likely to be a hotspot. However, these candidates have
the same similarity (i.e., edit distance) to the hotspot pattern.
In our extension, more critical hotspot candidates are found by
considering the distance between wires and increasing the costs
of the edit operations around the corresponding area (between
wire segments with the minimum distance). Although there
are vertical and horizontal distances, it is difficult to consider
both the distances at the same time because our method is
base on one-dimensional matching. Thus, we here discuss only
horizontal distance between wires. Vertical distance can be
handled in the same way.

The procedure is as follows. First, find the place where
the distance between wires is the minimum in the hotspot
pattern, by scanning the hotspot pattern. Then, calculate the
threshold by multiplying the minimum distance and a user-
defined coefficient. The threshold decides if the distance is
short or not. Next, find the places where the distance between
wires is less than or equal to the threshold in the hotspot
pattern, by scanning the hotspot pattern again. We assume the
places are likely to cause short circuits. Next, decrease the
substitution costs of the places (between wires). If the places
of the hotspot pattern are applied substitution operations, the
non-wire pixels (= 0s) are substituted by wire pixels (= 1s).
Thus, patterns more likely to be hotspots with shorter distance
between wires can be found. The procedure is depicted in
Figure 13.

IV. EXPERIMENTAL EVALUATION

We performed experiments to evaluate the effectiveness of
our method. We evaluated the runtime of a two-dimensional
template matching-based method and our one, and evaluated
the hotspot candidates detected by ours. The two-dimensional
template matching-based method is a method to detect hotspot
candidates by matching the hotspot pattern and the mask
pattern moving the hotspot pattern from the top-left corner
to the bottom-left corner on the mask pattern pixel by pixel.

Figure 12. Hotspot pattern and its candidates

Figure 13. Detection of severe patterns

TABLE I. RUNTIME

Runtime (sec)
2D matching 152.02

Non-LD method 906.54
Proposed method 512.41

In addition, we also evaluated the runtime of non-LD method
which is based on our method but without large don’t care
characters, to evaluate the effectiveness of large don’t care
characters. The experiments are conducted on a Linux PC
(CentOS release 6.3) equipped with Intel(R) Core(TM) i7-3770
CPU @ 3.40GHz CPU.

A. Comparison of Runtime
To evaluate runtime, we performed detection of hotspot

candidates with a 1020x1020-pixel mask pattern and a
250x250-pixel hotspot pattern.

The runtime of each method is shown in Table I. The
runtime of our method was longer than that of two-dimensional
matching. However, we confirmed that large don’t care char-
acters improved the runtime.

Two-dimensional template matching starts its matching at
the first column at the first row of the mask pattern, and moves
to the next column until the right edge of the hotspot pattern
reaches the right edge of the mask pattern. When the right
edge of the hotspot pattern reaches the right edge of the mask
pattern, it moves to the first column at the next row. This
is repeated until the bottom-left corner of the hotspot pattern
reaches that of the mask pattern. Thus, the time-complexity of
two-dimensional matching is ((the width of the mask pattern)
- (the width of the hotspot pattern)) × ((the height of the mask
pattern) - (the height of the hotspot pattern)) × (the number
of characters of the hotspot pattern)). On the other hand, the
time-complexity of our proposed method is (the number of
characters of the hotspot pattern) × (the number of characters

11Copyright (c) IARIA, 2016. ISBN: 978-1-61208-496-1

CENICS 2016 : The Ninth International Conference on Advances in Circuits, Electronics and Micro-electronics

Figure 14. Pseudo patterns

Figure 15. Detected candidates

of the mask pattern). In addition, in the dynamic programming
in our proposed method, three elements are referenced in
the calculation of each element, and thus it takes time to
calculate the value of an element compared to the case of
template matching. They are the reasons why the runtime of
our proposed method was longer than that of two-dimensional
matching.

B. Comparison of Detected patterns
Next, we confirmed that if the detection of severe hotspot

candidates considering the distances between wires is realized
by our extension or not, using a pseudo mask pattern (60x60)
and a pseudo hotspot pattern (10x20).

The standard cost of edit operations was set to 10, and the
cost of each substitution operation at the places with distance
between wires which is no more than the threshold was set
to 5. The mask and hotspot patterns are shown in Figure 14,
and the detected hotspot candidates are shown in Figure 15.
The pattern (1) shown in Figure 15 is the same as the hotspot
pattern, and thus their edit distance was 0. The edit distance of
the pattern (2) is less than that of the pattern (3). As a result,
the pattern (2) was detected in priority.

V. CONCLUSIONS

In this paper, we proposed a hotspot detection method
based on approximate string search, and an extension which
detects severe hotspot candidates in priority. Our future work
includes more in-depth experiments using open benchmark
data, comparison with other existing methods, analysis of
patterns more likely to be hotspots, and extensions of our
method based on the analysis.

REFERENCES

[1] Tatsuhiko Higashiki and Yasunobu Onishi, “Trends in semiconductor
lithography technologies and Toshiba’s approach,” TOSHIBA review,
Vol.67, No.4, 2012, pp.2–6．

[2] H. Yao, S. Sinha, J. Xu, C. Chiang, and X. Hong, “Efficient range pattern
matching algorithm for process-hotspot detection,” in Proc. IET Circuits
Devices Syst., 2008, pp. 2–15.

[3] D. Ding, A. J. Torres, F. G. Pikus, and D. Z. Pan, “High performance
lithographic hotspot detection using hierarchically refined machine learn-
ing,” in Proc. 16th Asia South-Pacific Design Autom. Conf. (ASP-DAC),
Yokohama, Japan, 2011, pp. 775–780.

[4] Jen-Yi Wuu, Fedor G. Pikus, and M. M-Sadowska, “Efficient approach to
early detection of lithographic hotspots using machine learning systems
and pattern matching,” in Proc. SPIE 7974, Design for Manufacturability
through Design-Process Integration V, 79740U, April 04, 2011.

[5] S.-Y. Lin, J.-Y. Chen, J.-C. Li, W.-Y. Wen, and S.-C. Chang, “A novel
fuzzy matching model for lithography hotspot detection,” in Proc. Design
Autom. Conf. (DAC), Austin, TX, USA, 2013, pp. 1–6.

[6] W. Wen, J. Li, S. Lin, J. Chen, and S. Chang, “A fuzzy-matching model
with grid reduction for lithography hotspot detection,” IEEE Trans. on
CAD, Vol. 33, No. 11, Nov. 2014, pp.1671–1679.

[7] D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt, “Fast pattern matching in
strings,” SIAM J. Comput., vol.6, no.2, 1977, pp.323–350.

[8] Jhih-Rong Gao, Bei Yu, Duo Ding, and David Z. Pan, “Lithography
Hotspot Detection and Mitigation in Nanometer VLSI,” in Proc. IEEE
International Conference on ASIC (ASICON), 2013, pp.1–4.

[9] J. T. L. Ho and G. G. F. Lemieux, “PERG: A scalable FPGA-based
pattern-matching engine with consolidated bloomier filters,” in Proc.
2008 IEEE International Conference on Field Programmable Technology,
Dec. 2008, pp.73–80.

[10] Y. Sugawara, M. Inaba, and K. Hiraki, “Over 10Gbps string matching
mechanism for multi-stream packet scanning system,” in Proc. Inter-
national Conference on Field Programmable Logic and Applications,
Aug. 2004, pp.484–493.

[11] B. C. Brogie, R. K. Cytron, and D. E. Taylor, “A scalable architecture
for high throughput regularexpression pattern matching,” in Proc. 33rd
International Symposium on Computer Architecture, 2006, pp.191–202.

[12] Yuichiro Utan, Shin’ichi Wakabayashi, and Shinobu Nagayama, “An
FPGA-based text search engine for approximate regular expression
matching,” in Proc. International Conference on Field-Programmable
Technology, Dec. 2010, pp.184–191.

[13] Yuichiro Utan, Shin’ichi Wakabayashi, and Shinobu Nagayama, “A
systolic algorithm for approximate regular expression matching and its
FPGA implementation”, IEICE Journal D, Vol. J94-D, No.6, June 2011,
pp.935–944．(in Japanese)

[14] Zhuo Li, et al., “ICCAD 2013 Contest,” http://cad-
contest.cs.nctu.edu.tw/CAD-contest-at-ICCAD2013/problem c/
[retrieved: June 2016].

12Copyright (c) IARIA, 2016. ISBN: 978-1-61208-496-1

CENICS 2016 : The Ninth International Conference on Advances in Circuits, Electronics and Micro-electronics

