
A Log-Tool Suite for Embedded Systems

Harald Schuster, Martin Horauer, Michael Kramer
University of Applied Sciences Technikum Wien

Vienna, Austria
e-mail: {schuster, horauer, kramer}@technikum-wien.at

Heinz Liebhart, Josef Büger
Kapsch TrafficCom AG

Vienna, Austria
e-mail: {heinz.liebhart, josef.bueger}@kapsch.net

Abstract—Logging is a common method to monitor the
operation of a system and to identify failures of services and
system components. When developing software for an embedded
system there are stricter restrictions that result from the limited
hardware resources. The performance of the hardware as well
as the available memory is limited. Furthermore, embedded
systems are often not accessible for a long period of time. This
paper presents tools to improve existing logging methods without
compromising existing development flows. Essentially, these tools
on one hand transparently pre-process the source code in order to
optimize logging instructions and add on the other hand a post-
processing step when analyzing log-files. The presented tools were
evaluated by integrating them to an industrial project where they
show a significant improvement of the logging performance.

Keywords—Logging; Embedded Systems; Memory Limitation;
Log Analysis.

I. INTRODUCTION

Electronics paired with software is a key enabler for many
modern products and systems. For example, it allows to add
new features and functionalities, improve reliability, safety,
environmental efficiency, or comfort. At the same time the
complexity of these systems is steadily increasing mandating
more efforts and new approaches for verification. In practice,
various processes and approaches are in use — very common
are static analyses, code reviews paired with testing and
sometimes even formal methods. For embedded systems this
problem is aggravated since usually different environmental
conditions, limited controlability, and observability need to
be taken into consideration. Thus, rigorous verification is a
challenging task that is often limited by economical aspects.

In the field of embedded systems, Embedded Linux gained
momentum in recent years due to plummeting costs of avail-
able hardware resources, the maturity and the feature rich
functionality of the open-source code-base. Here, as with
desktop operating systems, logging is a common approach
to identify problems of an operational system. Services and
applications can write information, warnings and encountered
errors to log-files in a chronological fashion. Analyzing these
logs can help to identify problems and hint to their sources.
Especially when dealing with long-running server applications
logging is a common practice. For example, [1] observed
that on average common server programs provide one logging
instruction every 30 code lines and that 18% of all committed
revisions are due to modifications of the respective logging
messages. In contrast, to desktop and server systems, memory
is still a limiting and costly factor for embedded systems.
Hence, for such systems a trade-off between the time a log-file
is accumulated, the number of log messages, their frequency
and verbosity is important. On one hand, lowering these values
is necessary when the amount of available memory is limited –

this will typically reduce the expressiveness and usefulness of
the logs. On the other hand, frequent and verbose log-messages
will also impair on the available processing power — the latter
being another limited factor.

The main contribution of this paper is to present some
tools and a flow that improves the efficiency of existing
logging practices. In particular, it optimizes the length, ver-
bosity and performance of the logs without impairing the
existing log facilities and requires only a marginal adaption
of the development flow. We evaluate our approach using an
industrial strength Embedded Linux device that is executing a
communication stack used for road-pricing systems.

The remainder of this paper is structured as follows: Sec-
tion II provides an overview of existing tools and approaches
to improve the performance of logging on embedded systems.
Then we present our modified tool flow before we provide
some implementation details of our LogEnhancer and the
LogAnalyzer tools. Afterwards, we describe how we evaluated
our tools before we conclude the paper giving an outlook on
future directions.

II. RELATED WORK

Logging is a common approach to identify problems in a
computing solution [2][3][4]. When looking at Linux, for ex-
ample, multiple different logging methods are available. In the
majority of these cases, however, these methods are designed
for standard desktop or server systems. Widespread in use
are syslog [5] and their forks rsyslog and syslog-ng.
Another common logging method is Journal which is in-
cluded in the system and service manager Systemd. All these
systems, however, are not optimized for embedded targets.

For these systems dedicated logging methods exist that
improve several aspects when compared to the “standard”
methods, cf. [6]. For example, Amontamavut et al. [7] de-
scribes a logging mechanism that is optimized for embedded
systems with small memory. Their approach is to split the
logging mechanism into two parts. One part is executed on
the embedded device and sends reduced log messages via
Ethernet to a server. The second part is the server and consists
of different monitoring and debugging tools. One of these
tools is a log analyzer to generate readable log messages.
Overall, this approach reduces the log-file size and improves
the log performance, however, it requires an active network
connection to a remote host when the system is operational; a
requirement that rules this approach out for our intended field
of application.

Jeong et al. [8] describe a logging mechanism to improve
the message throughput and to speed up the latency. They
achieved their goals by avoiding the message transfer between

16Copyright (c) IARIA, 2014. ISBN: 978-1-61208-379-7

CENICS 2014 : The Seventh International Conference on Advances in Circuits, Electronics and Micro-electronics

the user and the kernel space. The message is stored in a shared
memory and forwarded to flash memory or a remote host by a
message collector. The developer can use the normal logging
API. This changes increases the message throughput but does
not affect the log-file size.

III. APPROACH

The motivation of our work is to improve the logging
functionality of an Embedded Linux device. In particular our
approach intends to optimize memory usage and performance
without impairing on the existing development process, in
particular, how log messages are coded. To that end we first
describe existing approaches and development flows used by
our industrial partner before we detail our new concept and
implementation.

A. Status Quo
We implemented and evaluated our approach on code

provided by our industrial partner used for embedded devices
in the field of road pricing around the globe. In fact, there
is already a very large base of devices running in the field;
for instance, most commercial road vehicles in the European
Union are equipped with these devices. Hence, similar to
automotive electronics even small savings have a significant
impact on the costs thus simply expanding available resources
(computing power, memory size) is critical. Here, next to
elaborate testing, logging and off-line analysis of the log-files
is a common approach to tackle runtime mis-behavior.

The target employs OpenWRT a Linux distribution for
embedded devices as operating system. The application mostly
uses C code along with CMake as build system. The employed
logging method employs macros to emit log-messages and
define statements to set the logging level. The logging levels
are ERROR, WARNING, NORMAL, INFORMATION,
DEBUG and TRACE. Furthermore, using logging masks it
is possible to filter the kind of messages that are logged (e.g.,
communication related log-messages, layer 2 messages, layer
3 messages).

The source-files consist of roughly 150k lines (counted
using the tool cloc) of source-code targeting 3 different targets;
Table I lists the log messages found therein separated by their
logging level. In total, the source-files hold 2259 log messages;
thats on average about one log message every 67 lines of
code. Compared to several open-source projects listed in [1]
this code contains roughly 2-3 times less log messages. One
reason therefore, might be that the code at hand targets an
embedded platform, whereas the listed references are aimed at
server applications.

TABLE I. LOG MESSAGE STATISTICS

LOG ERR LOG WARN LOG INFO LOG DBG LOG LOG HEX

517 262 340 53 1085 2

Logging is implemented as follows: The developer uses
a logging macro to insert log messages into the source
code. Furthermore, he has to define the logging level (e.g.,
LOG ERROR) and the logging mask (e.g., LM COM). The
logging level is set by a macro – there exists one for every
level. The logging mask is the first parameter of the macro
followed by the message and the arguments that should be

/* logging macro */
ret = 12;
LOG_ERR(LM_ALL, "layer2_init returned %d %s\n", ret,

time_buffer);

/* logging macro resolved */
log_(LL_ERR, LM_ALL, "layer2_init returned %d %s\n",

ret, time_buffer);

/* log message */
<E>LM_ALL: layer2_init returned 12 2014-02-16_13

.52.14.012

Figure 1. The ‘present’ logging approach.

logged. The text string of the message is often put together
using several ANSI/ISO C functions and finally output to
stdout. In order to get a coherent logging style, the use of
these macros is enforced by a strict development process using
various approaches like code-reviews or static code analysis.
Hence, our approach must comply with the same rules.

Figure 1 depicts an example of a typical logging macro
and how it is resolved. The last line of this listing illustrates
a log message entry produced by this code.

B. Requirements
The requirements for our approach are based on the above

analysis of the source code, the physical limitations of the
embedded target as well the existing development flow. The
detected requirements are as follows:

(i) File Size: A significant reduction of the file-size
of the log-files shall have top most priority. This
will make room for more and more verbose logging
instructions and longer logging intervals before the
logs get rotated.

(ii) Performance: Improve the performance or at least
keep the penalty on the performance as low as pos-
sible. Note that this requirement rules out computing
intense (run-time) compression approaches.

(iii) Tool Flow: Keep modifications to the existing tool-
flow and especially the way logs are generated as low
as possible. The developers should not be affected
by our approach requiring that the tools must be
integrated in the standard build process in use.

(iv) Log Information: Enhance the log messages in a
way so that the time and origin of the message is
better traceable to locations in the source-code of the
respective revision.

(v) Filtering: Allow for a better, more efficient filtering
of relevant messages that led to erroneous log-entries.
The aim here is to help in the investigation of causes
that were leading to this message.

(vi) Revision Management: Typically many embedded
devices are operational in the field using different
revisions of the respective application. Thus proper
bug tracking and revision management are essential
in order to correlate the log-files with the correct
revision of the source-code.

C. Design Concept
Our design approach first runs as a pre-step to the build

process and is as follows:

17Copyright (c) IARIA, 2014. ISBN: 978-1-61208-379-7

CENICS 2014 : The Seventh International Conference on Advances in Circuits, Electronics and Micro-electronics

http://cloc.sourceforge.net/

/* replaced logging macro */

log_ts_(LL_ERR, LM_ALL, "1 %d\n", ret);

/* log message */
1 12 <ts>

Figure 2. The ‘new’ logging approach.

<E>LM_ALL: layer2_init returned 12 [l2_state_machine
@ layer2.c(368)]

Figure 3. Reconstructed log message.

(1) Enumerate found logging-commands in the source-
code and store the messages in a separate decoder-
file.

(2) Replace the logging commands with the enumerator
from step (1) along with the values of variables found
in the logging command separated by a white-space.

(3) Build the program and deploy the binary to the target
system and set the latter into operation.

When the log-files are analyzed the following steps are
performed:

(4) Retrieve the log-files from the host; therefore the tar-
get must be connected to the respective workstation.

(5) Reconstruct the original log-messages using the
logged enumerator and variables along with the
decoder-file.

By logging only a simple number instead of an entire text
string the logging becomes more efficient and the log-files
get smaller. Furthermore, the code on the embedded target
becomes slightly more efficient as well, since we offload the
bulk of the work (putting the log-commands together) to a host
computer.

Figure 2 illustrates our new logging approaches produced
by our LogEnhancer tool; the first code line shows the log
command as replaced by our tools. The last line again shows
the log message written to the log-file; note that for readability
we replaced the binary time-stamp with <ts> in this example.

Filename, and source-line of the log-command that pro-
duced a log-entry is stored along with the enumerator in the
decoder-file. Figure 3 shows the log-message that was recon-
structed by our LogAnalyzer tool. Note that this log message
additionally contains the name of the function, the file-name
and the source-code line where the log-entry originated.

IV. TOOL IMPLEMENTATION

As described in Section III, the tool is split into two
parts the LogEnhancer used prior to the build process and
the LogAnalyzer used when log-messages get inspected and
analyzed. Both tools were implemented using Python.

A. LogEnhancer
The detailed work flow of the LogEnhancer is illustrated

in Figure 4. This process is transparent and hidden from the
developer and works as follows:

start the CMake
build process

executable
binary file

preprocess and parse the
source code to find log
messages and replace them

used by LogAnalyzer
copying source directory,

archive source code
Source
Files

*.c, *.h

start the LogEnhancer
on host PC

1

2

3

2

Patched
Source
Files

*.c, *.h

Decoder
File

Figure 4. Workflow of the LogEnhancer.

1. The tool creates a copy of the source code in a tempo-
rary sub-directory and additionally creates an archive
file for backup purposes. For proper identification
purposes both the directory and file-name use date,
time-stamp, and version information in their name.

2. Next, the code is pre-processed using the compiler
infrastructure. Based on the pre-processed files, the
C-code is parsed using the Python module PYCParser
that supports almost the entire C99 language standard.
The parser generates a structured tree representation of
the source-code that allows convenient identification
of all logging commands. The module provides a
function to locate specific function calls. Furthermore,
the function calls are represented as a node in the
tree and also includes information about the exact
position of the logging-command within the source-
code. This location information and the logging mes-
sage is written to a decoder-file. The file-name of the
decoder-file follows the same naming convention as
in step 1 in order to provide a convenient mapping to
the respective source-files. Furthermore, the file-name
is added as an ERROR log-command to the source-
code that gets executed once when the system is put
into operation. A small additional tweak of the script
that is responsible for the rotation of the log-files is
necessary in order to retain this information. Next,
the logging-command is modified in a way so that a
single enumerator is output along with the values of
the variables (if there are any logged at the particular
location), cf. Figure 2.

3. The modified source-files are built by invoking the
standard build process — our industrial partner uses
CMake therefore. As a result, we obtain the executable
binary that can be deployed to the target system.

All these steps are transparent to the developer.

B. LogAnalyzer
The LogAnalyzer is run whenever a recorded log-file is

analyzed in order to obtain readable log-files, cf. Figure 3.
The involved steps are:

a. Scan the log-file for the file-name in order to map the
correct decoder-file and source-tree to the log-file, cf.

18Copyright (c) IARIA, 2014. ISBN: 978-1-61208-379-7

CENICS 2014 : The Seventh International Conference on Advances in Circuits, Electronics and Micro-electronics

Figure 5. Graphical User Interface of the LogAnalyzer.

Section IV-A. In case no suitable files are available, a
respective notification is output to the developer.

b. Next, the LogAnalyzer parses the log-file line by
line and decodes the messages with the help of the
decoder-file.

Using various options this tool allows to apply convenient
filters to the log-file analysis. The LogAnalyzer tool itself is
available both as a command-line tool and a program with a
graphical user-interface (GUI), see Figure 5 for a screen-shot.
The GUI variant, additionally supports a colored highlighting
mode for a more convenient overview. The reconstructed
output can be saved as a simple text-file.

V. EVALUATION

In order to evaluate our approach, we applied the tool suite
on a industrial embedded systems project in the field of road
pricing systems. One part of the project is a communication
stack that handles the communication between an on-board
vehicle unit and an observer unit located at defined way-points
along traffic routes.

A. Setup
In order to evaluate our logging approach, we chose the

setup in a way so that we are able to control the frequency
the communication is triggered in order to test the system in a
reasonable time frame. To that end, the communication stack
runs in a loop and produces frequent log-entries.

The primary focus of our evaluation was on the log-file
size, however, we additionally monitored also the impact on the
required computational resources. To that end we automated
the tests using scripts and executed them multiple times for
different time spans in order to avoid impacts due to the
initialization process of the stack. The following presentation
illustrates the results using test-runs spanning 10 and 30
minutes, respectively. As expected (and also evaluated by
additional experiments) longer test-runs yield the same results.

10 min 30 min

10

20

30

40

50

60

70

80

90

100

110
cur. Log

enh. Log I

enh. Log II

D
a
ta
si
ze
[%
]

Figure 6. Log File Size with different Log Methods.

In addition we conducted the test-runs using different
development stages of our implementation:

• cur. Log: These tests represent the reference runs
where we executed the unaltered source-code using
the standard logging method.

• enh. Log I: The first development stage of the tool
suite replaces the entire text string of the log messages
by a unique ID, thus only this ID along with a time-
stamp is written to the log-file.

• enh. Log II: The second development stage includes
an alteration of the time-stamp. Here the time-stamp is
written in binary format without loss of information,
whereas it is written in a readable format in both stages
before.

B. Results
Figure 6 presents the results of two test-runs spanning 10

and 30 minutes, respectively, using the most verbose logging
level. The run with the current log method (cur. Log) is the
reference run and represents 100% log-file size. Using our
tool suite at the first development stage (enh. Log I) we are
able to reduce the log-file size by 59%. Performance wise
we could monitor a very small almost negligible reduction
of the required processing power. The second development
stage (enh. Log II) reduces the file-size even further down
to an average of 69%. In particular, the time-stamp is reduced
from 23 bytes in readable format to 7 bytes in binary format.
This reduction of the needed bytes has no significant effect
on the somputing performance. A field test shows that the
current logging method generates a log-file with a size of 48
MB within one day. By using the LogEnhancer in the second
development stage the size of the log-file is reduced to 19 MB
without any loss of information.

Summarizing, the results show a high potential to save
memory space by replacing the text string with a unique
number and by modifying the time-stamp. The solution has
only a marginal impact regarding the improvement of the
performance.

VI. CONCLUSION AND FUTURE WORK

This paper presents an approach and some tools to improve
the efficiency of logging in embedded systems with minimal

19Copyright (c) IARIA, 2014. ISBN: 978-1-61208-379-7

CENICS 2014 : The Seventh International Conference on Advances in Circuits, Electronics and Micro-electronics

alterations on an existing design flow, i.e., how a designer adds
logging commands to the source code and how the log-files
get analyzed. The solution reduces the log-file sizes, slightly
optimizes required computing resources, and even adds more
verbosity to the log-messages like file, function and line-
number where a logging message emanated without further
ado. As a benefit logging times can be increased before they
get rotated and more verbosity can be added, thus improving
the chances to catch rare or unlikely problems encountered in
the field.

The solution was designed for an industrial road pricing
solution in mind, is however, applicable ‘as is’ for any other
kind of Embedded Linux application. It can be improved even
further in various different ways. For example, in practice
many log-messages recur multiple times, thus instead of log-
ging the message one could simply log the message once
and how often they recur. Furthermore, a tool that guides the
designer where to insert logging commands and what messages
shall be logged could help to further improve the chances to
catch problems. Additionally, tighter integration with test- and
version-management systems would be advantageous.

ACKNOWLEDGMENT

This work has been supported by Kapsch TrafficCom AG
and by the public funded R&D project Josef Ressel Center
for Verification of Embedded Computing Systems (VECS)

managed by the Christian Doppler Gesellschaft (CDG).

REFERENCES
[1] D. Yuan, S. Park, and Y. Zhou, ”Characterizing Logging Practices in

Open-Source Software”, 1em 34th International Conference on Software
Engineering (ICSE), June 2012, pp. 102–112.

[2] J. H. Andrews, ”Testing using log file analysis: tools, methods, and
issues, Proceedings of the 13th IEEE International Conference on
Automated Software Engineering, Oct. 1998, pp. 157–166.

[3] J. H. Andrews and Y. Zhang, ”General test result checking with log file
analysis”, IEEE Transactions on Software Engineering, vol. 29, no. 7,
July 2003, pp. 634–648.

[4] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, ”Improving software
diagnosability via log enhancement”, ACM Transactions on Computer
Systems (TOCS), April 2012, pp. 3–14.

[5] R. Gerhards, The Syslog Protocol, http://tools.ietf.org/html/rfc5424,
2009, [retrieved: Sept., 2014].

[6] Y. Shi, L. Renfa, L. Rui, and X. Yong, ”Log analysis for embedded real-
time operating system based on state machine”, International Conference
on Mechatronic Science, Electric Engineering and Computer (MEC),
Aug. 2011, pp. 1306–1309.

[7] P. Amontamavut, Y. Nakagawa, and E. Hayakawa, ”Separated Linux
Process Logging Mechanism for Embedded Systems”, 18th IEEE Inter-
national Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), Aug. 2012, pp. 411–414.

[8] J. Jeong, ”High Performance Logging System for Embedded UNIX and
GNU/Linux Application”, 19th IEEE International Conference on Em-
bedded and Real-Time Computing Systems and Applications (RTCSA),
Aug. 2013, pp. 310–319.

20Copyright (c) IARIA, 2014. ISBN: 978-1-61208-379-7

CENICS 2014 : The Seventh International Conference on Advances in Circuits, Electronics and Micro-electronics

	Introduction
	Related Work
	Approach
	Status Quo
	Requirements
	Design Concept

	Tool Implementation
	LogEnhancer
	LogAnalyzer

	Evaluation
	Setup
	Results

	Conclusion and Future Work
	References

