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Abstract—Due to the number of cyber attacks targeting busi-
ness organisations daily, anomaly detection software generates
large numbers of alerts. While this information is invaluable to
Incident Response Teams, one problem is to prioritize these alerts
and to distinguish between those that signal a serious threat to
network enterprises and low priority alerts. One approach is
to use a model that relates an organisation’s missions, processes,
services and infrastructure. By predicting future events in existing
business processes, and subsequently using this model to identify
associated services and infrastructure, cyber security personnel
can prioritize critical alerts that threaten these assets. Long
Short Term Memory based deep learning models are suited
to modeling sequential data, and in particular can model long
term dependencies in sequences. This paper evaluates the use of
such models to predict subsequent events in ongoing cases. Two
training techniques are applied to four data sets. The techniques
are evaluated with respect to the accuracy of the predictions and
their performance on predicting frequent and infrequent events.

Keywords-Process Mining; Deep Learning; Recurrent Neural
Networks; LSTM; Cyber Security.

I. INTRODUCTION

Most business organisations are constantly targeted by cyber
security attacks. Anomaly detection software generates huge
volumes of alerts and Computer Security Incidence Response
Teams (CSIRT) struggle to follow up on all of these alerts.
They require means of distinguishing alerts that signal attacks
on critical business processes from low-priority alerts [1].

One way to do this is to predict future events in currently
executing business processes and with the aid of a mission
dependency model as outlined in Section II, identify critical
services and infrastructure in the organisation. Security alerts,
which target these critical services and assets can then be
prioritized for the attention of the CSIRTs.

The main aim of this paper is to investigate the application
of deep learning to process mining as a means to indicate
likely high priority security events. The objective is to use
Recurrent Neural Networks (RNN), in particular Long Short
Term Memory (LSTM) networks, to model event traces with a
view to using the resulting model to predict future events. The

use of process mining for cyber security attack and anomaly
detection has been demonstrated by the work of Mauser et al.
[2], Alvarenga et al. [3] and van der Aalst et al. [4]. Process
mining techniques have also been used for visualisation of
cyber attacks [1]. Recent research undertaken by Tax et al. [5]
and Evermann et al. [6] highlights that using deep learning
applications to model and predict process sequences is an
effective and increasingly popular approach.

In this paper, we investigate two methods to train LSTM net-
works, which model ongoing business processes. We evaluate
both methods and determine which one is the more effective
at training an LSTM network to predict subsequent events.
The first method generates prefixes from every sequence in
the data and trains the network to predict the next event
from these prefixes. The second method, Teacher Forcing [7],
trains the network at every time step as a case/sequence of
events is passed through the network. Both these methods are
applied to four data sets, the Business Process Intelligence
(BPI) challenges from [8]–[10], and the Helpdesk data set used
as supplementary material for Tax et al. [5].

The paper is structured as follows: Section II explores
previous related approaches to the use of deep learning
to monitor process sequences. Section III provides relevant
background information in Mission Dependency Modeling,
Process Mining and RNN/LSTM Neural Networks. Section
IV describes the two approaches to training a LSTM network
mentioned above. Section V outlines the experimental setup
and evaluation. Section VI presents the results obtained from
the experiment. Section VII is the conclusion.

II. RELATED WORK

Alvarenga et al., [1] addressed the concept of alert correla-
tion, as well as the issue that an Intrusion Detection System
(IDS) produces an unmanageable amount of alerts and most
are low-level annoying alerts incorrectly categorized as mali-
cious. The overwhelming number of alerts results in keeping
network administrators from responding appropriately to the
more critical attack forms used by cyber attackers. Alvarenga
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proposed a process mining method to produce process models
to assist administrators to identify and investigate multistage
cyber attacks.

Alvarenga et al., [3] carried out a study to discover cyber
attack strategies targeting networks using traditional process
mining and the open-source process mining framework ProM
[11]. A data log is generated and taken from an IDS de-
ployed at University of Maryland. The data was loaded into
the ProM framework and a process model was generated
to visualize the process paths extracted from the data set.
Further analysis identified the causal dependencies between
events by comparing different cases of sequential events in
the model. A benefit of this was that the discovered model
could be used to visualize alerts consistent with that of a
cyber attacker’s perspective when attempting to compromise
a targeted network.

Mauser et al., [2] used process mining discovery to detect
and identify cyber security attacks on enterprise systems.
Mauser identified cyber attacks by detecting anomalies in
process executions in a software system. By visualizing said
execution paths using Petri Nets, irregular processes paths
could be isolated by comparing them to a model of regular
process activity.

Tax et al., [5] applied LSTM networks to the BPI 2012
and Helpdesk data sets to learn from predicting both the
subsequent event and the time until the next event. They eval-
uate a number of different neural network architectures with
two or more network layers ranging from completely separate
networks to predict activity and time to various combinations
of shared and specific layers for both predictions. The method
used in this paper to train the neural network is the prefix
method. We re-implement this method and also implement the
alternative teacher forcing method, which results in substantial
improvements in training times.

Evermann et al., [6] also used an LSTM network to predict
future events in a case. Evermann’s approach is motivated by
identifying the associated resources for an event and detecting
the long-lasting dependencies within cases to subsequently
predict future events. Associated resources for an event include
the duration of an event, and the related resources (personnel,
attributes) assigned to them. Evermann applied this approach
to the BPI 2012 and 2013 data sets [8][9]. In addition, we
make predictions for the BPI 2014 data set [10]. To the best
of our knowledge, event prediction has not been previously
applied to this data set.

III. BACKGROUND INFORMATION

In this section, we first describe the mission dependency
metamodel we use in our machine learning approach. We then
provide an overview of the technologies used: process mining,
neural networks, recurrent neural networks and LSTM models.

A. Mission Dependency Metamodel

Mission dependency modelling is a technique used as part
of cyber risk assessment. This model makes explicit the

Figure 1. Mission Dependency Metamodel.

relationships between mission objectives, business processes,
IT services and computing assets of an organisation.

One such approach is the dependency model shown in
Figure 1 that was introduced in [12]. The four layers in
the model are the Mission, Operation, Application and the
Infrastructure Layers. We are focused on the Operation Layer
and are interested in predicting future events in currently
executing business processes. This information when mapped
through the dependency graph to the underlying layers can be
used to identify critical services and infrastructure that may be
liable to attack in the short term arising from the current cyber
security situation. This, in turn, can help security response
teams to prioritize security alerts in such a way as to best
protect critical processes in an organisation.

B. Process Mining

Process mining can be collectively defined as the analysis,
discovery and modeling of information extracted from process
data sets [2][13]. These data sets are comprised of cases, which
are process execution paths or sequences of events. Traditional
business process mining can discover process models from
event data using, e.g., the Alpha algorithm [14]. Graphical
models can be generated and observed using a variety of tools
including the open-source framework ProM. Once a model
exists, conformance checking can be carried out to determine
if logged cases conform to the model. Other insights include
the ability to audit and analyze the data process, as well as
how to improve it.

C. Neural Networks

An alternative to the traditional process mining approach
described above is to train a neural network model to learn
the behaviour of the event sequences, then use the trained
model to make predictions [6]. Neural networks are trained
using a set of data as follows. When a neural network outputs
a value in response to some input, this predicted output value
is then compared with the actual output value in the data.
A loss function is defined as the function for the difference
between the predicted and actual values. An algorithm called
back-propagation is used to minimize this loss value.
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A Dense layer in a neural network is a layer where all
the nodes are connected to all the nodes in the previous layer.
Normally, the output layer of a neural network will be a Dense
layer. In the case of a regression problem, with numerical
output, each node in the output layer outputs a numeric value.
For the case of classification, each node will correspond to a
different class, and the softmax activation function is used to
convert every numerical output to a probability of that class
occurring. In effect, the output layer outputs a probability
distribution vector over the number of different classes. The
loss function used for (non-binary) classification is known as
the categorical-crossentropy loss function.

D. Recurrent Neural Networks (RNN)

When processing sequences using a neural network, the
sequence is fed into the network over a number of time-
steps. The network is required to learn sequential behaviour,
how events at one time-step affect the subsequent events in
the sequence. An RNN is a neural network where the output
from the hidden layer is fed back into the hidden layer on the
subsequent time step as shown in Figure 2. In this way, the
occurrence of particular events in a sequence can affect the
likelihood of other events occurring later in the sequence.

Figure 2. RNN with a single hidden layer.

In order to train the RNN, the required input is a multi-
dimensional array of the shape (sequences, time-steps, fea-
tures). The length of the first dimension is the number of se-
quences, or cases, to train. The length of the second dimension
is the number of time steps within a case of chronological
ordered events. When the input is a categorical variable, (an
event type in this project), this categorical variable is one-hot
encoded and the length of the third input dimension is equal
to the total number of event types.

The shape of an RNN network is normally the size of a
probability distribution over unique event types for every se-
quence. Note that it is possible to configure a network to output
a prediction at each time step of a sequence. In that case, the
output is of the shape (sequences, time-steps, features) and is
essentially a sequence of predictions/probability distributions,
one for every time step in every sequence. In Keras, this is
achieved by including a TimeDistributed wrapper layer around
the Dense layer that produces a prediction at every time slice.

This is used in the teacher forcing method outlined in Section
IV below.

E. Long Short Term Memory (LSTM)

A LSTM model is a RNN model that supports long-term
dependencies in noisy, sequential data [15]. LSTM nodes are
no longer simple single nodes but rather a sub-network of
other nodes and activation functions. Long term dependencies
are captured using three gates in an LSTM node, an input
gate, a forget gate and an output gate. These gates control
how data from a previous time step is used, stored or thrown
away. The forget gate determines which data is to be discarded.
The output gate determines the output based on previous input
and the state of the LSTM node. Event sequences in process
mining data can contain long term dependencies and hence
LSTM networks are useful for modeling such data.

IV. MODEL TRAINING METHODS

We examine two approaches taken when training an LSTM
model to predict future events within a case, the prefix method
and the teacher forcing method.

A. The Prefix Method

This approach [5] generates a set of all possible prefixes
longer than the length of a single event from all sequences to
train the model. For example, for the sequence of event types
1,2,3,4,5 the input and output is shown in Table I.

TABLE I. INPUT PREFIXES AND OUTPUT.

X (input) y (target)
[1, 2] 3

[1, 2, 3] 4
[1, 2, 3, 4] 5

[1, 2, 3, 4, 5] !

Effectively, the network is trained to predict a target value
y given the input value X. Note that the model is trained to
predict a ! character, which denotes the completion of a case.
The trained model is then used to predict a single suffix event
following the prefix. Following the work of Tax et al. [5] the
shortest prefix used is of length two, so predictions start after
the second event.

The architecture for the model is shown in Figure 3.

Figure 3. LSTM network with a Dense output layer.

15Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-785-6

BUSTECH 2020 : The Tenth International Conference on Business Intelligence and Technology



B. Teacher Forcing Method

Teacher forcing uses the ground truth from a prior time step
in a sequence as input [7][16]. For the sequence 1,2,3,4,5, the
input and output for the neural network are shown in Table II.

TABLE II. INPUT AND OUTPUT FOR TEACHER FORCING.

X (input) y (target)
[1, 2, 3, 4, 5] [2, 3, 4, 5, !]

Notice that input sequence X is the event sequence with the
last event removed and output y is the sequence with the first
removed. For training, X is passed through the LSTM network
once. The input at each of these time steps is the ground truth
value at the previous time step. For example, while predicting
2 the input is 1, and so on.

The architecture of the model is as shown in Figure 3 except
that the output Dense layer has a TimeDistributed wrapper
layer. The existence of a TimeDistributed layer in the network
distributes the output Dense layer with the softmax activation
function to every time step in a sequence, resulting in a
prediction at every time step. Note that training can occur on
one pass of the sequence through the network, as opposed to a
pass for every prefix of a sequence as with the prefix method.

V. EXPERIMENT AND EVALUATION

In this section we introduce the data sets used. We then
outline the model training and evaluation approaches for both
the prefix method and the teacher forcing method.

A. Data Sets

The above techniques are applied to four data sets used in
the project, the BPI challenges from 2012, 2013, 2014, and
the Helpdesk data set used by [5].

1) BPI 2012 Data Set: The BPI 2012 data set comes from
the BPI challenge workshop in 2012 [8]. The data set is an
event log taken from an application procedure for financial
services, such as a personal loan or overdraft, at a large
Dutch financial institution. Originally comprised of several
sub-processes, the event log is narrowed down to the ’work
item’ sub-process and only cases with the work item events
types start and complete were included. This reduction of the
sub-processes has been previously used by [5] and [17].

The resulting event log contains a vocabulary of 6 event
types and 7469 cases. Each event type is defined by an Activity
ID in the data. Each case, or process sequence of Activity IDs
are identified and grouped by their Case ID, which acts as a
unique case identifier.

2) Helpdesk Data Set: The Helpdesk data set is an event
log from a ticket management process for an Italian software
company’s help desk. Tax et al., [5] used this data set as
supplementary material. The log consists of 9 different event
types, 3804 cases and 13710 events. The different event types
are represented by their Activity ID with the Case ID being
the unique case identifier. The list of cases are returned by
grouping all ActivityIDs by their respective CaseIDs.

3) BPI 2013 Data Set: The BPI data set for 2013, provided
by the BPI 2013 workshop [9], is an event log for an incident
management system called VINST. VINST solves IT related
problems for Volvo Information Technology. Each problem
or IT service request made to VINST is treated as a case
with the Service Request number being the case identifier.
The resulting event log was provided by Volvo IT Belgium
and lists 7553 cases and the designated case identifier is the
column labeled SR Number. For both this research project and
[18], the vocabulary of event types are defined by generating
every unique possible combination of the two columns Status
and Sub Status, returning a vocabulary of 13 event types. Every
event type is then mapped to an event number. Each different
trace of event numbers is then grouped by the SR Number to
return the data set.

4) BPI 2014 Data Set: The BPI 2014 data set is an event
log selected from a collection of three different processes
investigated by the ICT department for Rabobank Group, a
banking and financial services company. A service manage-
ment tool logs customer support calls for software support. The
service management tool logs three main sub-processes, which
are outlined below and are provided in CSV by Rabobank.

• Interactions: calls are made by customers (Rabobank
colleagues) to the Service Desk where a Service Desk
Agent (SDA) answers, resolves the issue for the customer
and logs these calls as an Interaction or assigns the
technical issue to an Assignment Group

• Incidents: the SDA is unable to resolve a customer call,
and based on a given urgency and impact, assigns the
issue to an Assignment Group to solve and the process
to solve the issue is logged by Rabobank as an Incident;
each incident is treated as a case of logged activities an
assignment group takes to resolve said disruption

• Changes: if a service disruption were to occur more than
once then a problem analysis investigation is launched
that will lead to an improvement plan to prevent the
service disruption from happening again subsequently
logging a Change record

The primary sub-process investigated by Rabobank selected
for this research is the Incident data. The actual data set used
is a translated event log built from csv files relating to every
incident. The files downloaded from the BPI 2014 workshop
for this project are: Detail Incident.csv, a list of 46607 unique
incidents, and the Detail Incident Activity.csv file, an activity
log of recorded events related to 46605 incidents in the list of
incidents. For each individual incident, the column IncidentID
is the designated case identifier. To define the vocabulary of
unique events for the data set, the columns Category and
IncidentActivity-Type are selected from the list of cases and
incident activity log respectively. The two files are then merged
into a new singular event log using the IncidentID column as
a joining key. The two aforementioned columns Category and
IncidentActivity-Type are now both in the same event log. The
vocabulary of different event types can now be now defined
using every possible unique combination of the two columns.
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This returns a vocabulary of 91 event types in total. Each trace
of events is then grouped by the column IncidentID to return
the data set of incidents, or cases.

B. Model Training and Evaluation for the Prefix Method

All the training prefixes are generated from the data set as
outlined in Section IV above. The prefixes are pre-padded to
the length of the longest case. Training parameters include
batch size and the number of epochs. Finally, 20% of the
training data is set aside for validation purposes allowing us to
see the behaviour of the training/validation and accuracy/loss
values at the end of each epoch.

When evaluating the trained model, prefixes are generated
for every case in the test data set. Each prefix sequence
generated is passed through the trained network and the model
outputs the probability distribution vector over the number of
different event types. To determine the predicted event, the
index of the largest value in the probability vector is found
and its respective event type is returned. The accuracy of
the model’s performance is found by comparing the predicted
event type with the actual event type for every testing prefix.

C. Model Training and Evaluation for the Teacher Forcing
Method

The training sequences are sorted in increasing size and the
data is divided into mini-batches of a chosen size. The model
training method is then called on each of these mini-batches.
All sequences in a batch must be of the same length, so all
sequences are pre-padded with zeros to the size of the longest
sequence in the mini-batch. Mini-batches will typically have
different lengths.

To evaluate the model using the Teacher Forcing method,
each sequence in the testing data is fed through the network.
The output is a sequence of probability distributions corre-
sponding to a prediction for every time step. Accuracy is
evaluated by comparing predicted events with the subsequent
event in the input sequence starting after the second event.

VI. RESULTS

Having built an LSTM based model, a range of parameter
values were evaluated to find the optimum configuration of
meta-parameters for the model. Table III gives model config-
urations and prediction accuracy for the BPI 2012 data using
the Prefix version. (Other tables for the other data sets and
Teacher Forcing method are not included in the paper.) Notice
that the use of a second LSTM layer or adding a Dropout layer
for regularization did not improve the accuracy.

These models used an Adam optimizer [19], which is effi-
cient and requires minimal memory and parameter tuning, and
works well with cases comprised of noisy data. The optimizer
also uses an adaptive learning rate, a hyper-parameter that
controls the step size at each iteration of the training algorithm.
It is a trade off between reaching an optimal solution in a
timely manner, and overshooting the optimal solution.

The maximum accuracy values for each data set are listed
in Table IV.

TABLE III. PREFIX METHOD ON BPI 2012 DATA SET.

LSTM Dropout Nodes Batch Size Epochs Accuracy
1 0 100 10 50 65.68%
1 1 100 10 50 66.31%
2 0 100 10 20 66.34%
1 0 100 6 20 66.60%
1 0 120 32 20 67.73%
1 0 60 32 20 67.88%
1 0 100 32 20 68.64%

TABLE IV. MAXIMUM ACCURACY FOR THE DATA SETS.

Data Set Cases Events Max Acc.
BPI 2012 7469 6 68.64%
Helpdesk 3803 9 81.16%
BPI 2013 7553 13 65.66%
BPI 2014 6000 69 48.28%

As expected, it is harder to make predictions for data sets
with a larger number of event types. The Helpdesk data set
seems to be the exception with a vocabulary of 9 different
event types and the highest accuracy of 81%. We looked at
the frequency distribution for event types, including the end
of case character ! in this data set. A graph of the frequency
distribution is shown below in Figure 4.

Figure 4. Frequency Distribution of Helpdesk Events.

Six event types are quite infrequent compared to the others
and we could say the effective number of event types is four,
including the end of case event, and this explains the high
accuracy. The Teacher Forcing method makes no predictions
for the other infrequent event types, while the Prefix method
makes 5 predictions of these infrequent events out of a total
of 1267 predictions. Notice that both models over predict
the more frequent events while under predicting those rarely
appearing. This is to be expected as the neural network has
not seen enough of these infrequent events to learn how to
predict them.

A similar situation holds for the 2013 data set where there
are five infrequent event types. Figure 5 shows the frequency
distributions for the actual event types in the data set and the
predicted events given by the two methods. Notice that again
frequent events tend to be over predicted and infrequent events
tend to be under predicted. Note that the Prefix version is also
less prone to this bias than the Teacher Forcing version.

Table V displays the accuracy and execution time for each
of the four different data sets and two training methods.
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Figure 5. BPI 2013 Frequency Distribution of Test Events.

TABLE V. PREFIX AND TEACHER FORCING COMPARISON.

Data Set Prefix Method Teacher Forcing Method
Acc. Time (mins) Acc. Time (mins)

BPI 2012 68.64% 17.9 68.18% 0.5
Helpdesk 81.16% 2.7 80.39% 0.97
BPI 2013 65.66% 32.1 62.94% 0.5
BPI 2014 48.28% 42.5 43.68% 0.5

The teacher forcing method is much faster to train. As
shown in Table I for a case of length n, n-2 prefixes are
generated for the prefix method. So, roughly speaking the
number of training instances for the prefix method is an order
of n times larger and this accounts for the substantial difference
in training times. As shown, both techniques generally produce
similar results for the 2012 and Helpdesk data sets. The prefix
method produces better results for the 2013 and 2014 data sets.
This is surprising as the loss function is the same. Further work
is required to understand why this is so.

The full BPI 2014 data set contains 46606 cases. Training
using the full data set was carried out on an NVIDIA GPU
server with a four-card Tesla SXM2. For the Prefix method,
using the full data set resulted in a 49.49% accuracy and took
an hour and 7 minutes to train.

VII. CONCLUSION AND FUTURE WORK

CSIRTs constantly struggle to attend to the large number
of alerts generated by intrusion detection software. One ap-
proach to this is to identify critical services and assets in the
organisations that are being targeted. If suitable models exist
linking business processes and supporting infrastructure, the
ability to predict the next case activities can support CSIRTs
in prioritizing the examination of intrusion alerts.

This paper evaluates the use of LSTM neural networks for
predicting next activities in a case. In particular it looked at
four data sets and two training methods. Prediction accuracy
for the different data sets depends on, to a large extent, the
number of event types in each data set. As expected, it is
harder to predict event types where there is a large number of
them. Also models tend to under predict rare events and over
predict common events. This bias was more pronounced when
the model was trained using the teacher forcing method.

The prediction accuracy for the Helpdesk data set was the
highest at 81.2% for nine event types. This is high compared
to the BPI 2012 data set, which only had six event types and
an accuracy of 68.6%. However, five event types from the

Helpdesk data set had very low frequency resulting in the
model mostly choosing between four different event types.
This explains the higher accuracy obtained.

Comparing the two methods of training we saw that in two
cases the accuracy was nearly the same (within 1%). In the
other two the prefix method was slightly higher, 2.8% better
for the BPI 2013 data set and 4.6% for the BPI 2014 data
set. Even though the differences were small this was slightly
surprising as we expected the results to be the same. In all
cases, the teacher forcing method takes an appreciably shorter
time to train, by a factor of up to six times faster.

To the best of our knowledge, LSTM networks have not
been previously applied to event prediction for the 2014 data
set. For the Helpdesk data set, our accuracy results were 10%
better than published by Tax et al. [5]. For the BPI 2012 data
set our results were 8% lower. It should be stressed that we are
not comparing our means of using the timestamp and event
types as input for the LSTM model to Tax’s method.
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