
Requirement-Driven Architecture for Service-Oriented e-Learning Systems

Rawad Hammad

King’s College London

London, UK

Email: Rawad.Hammad@kcl.ac.uk

Abstract—The continuous evolving of Technology

Enhanced Learning (TEL) requirements, more specifically
Functional Requirements, increases the complexity of TEL
software system since such requirements cannot be met by one
TEL/e-learning solution. In addition to the traditional Virtual
Learning Environments/Learning Management Systems
capabilities, such Functional Requirements include: video
streaming, plagiarism checker for students’ submissions, e-
portfolio, etc. Therefore, combining various e-learning
software systems, solutions, or tools seems more realistic.
However, a limited effort has been done to investigate and
control the impact of combining different solutions on the
quality, i.e., Non-Functional Requirements (NFRs), of the
overall e-learning software system. This paper proposes a new
approach to elicit, precisely specify, and manage NFRs for
TEL software systems. To meet these capabilities (i.e.,
Functional Requirements and Non-Functional Requirements),
this paper also proposes a flexible service-oriented architecture
for e-learning systems. The proposed list of NFRs is
comprehensive and can be customized to various
e-learning systems to meet stakeholders’ requirements.
Moreover, the proposed architecture needs to be further
developed to test its impact on TEL software systems in real
scenarios.

Keywords-Technology Enhanced Learning; e-learning;

architecture; Non-Functional Requirements; Software

architecture; SOA; Web Services.

I. INTRODUCTION

The continuous rise of using eLearning in higher
education increases the complexity of
e-Learning/Technology Enhanced Learning (TEL) Software
Systems [1]. On one hand, there is a continuous demand for
various supplementary capabilities, more specifically
Functional Requirements, that cannot be met by one TEL/
e-learning software system only. For instance, in addition to
the traditional Virtual Learning Environments (VLE)
capabilities, various supportive capabilities are required (e.g.,
video streaming, plagiarism checker for students’
assignments, e-portfolio, etc. Therefore, combining various
e-learning software systems, solutions, or tools seems more
realistic. On the other hand, a limited effort has been done to
investigate the impact of combining different solutions on
Non-Functional Requirements (NFRs) of the overall e-
learning service or software system. Such Non-Functional
Requirements include performance, reliability, availability,
recoverability, etc.

Literature evidence shows that Non-Functional
Requirements are not properly managed over the Software
Development Life Cycle (SDLC) [2]. This applies to NFRs
elicitation, specification, documentation, and evaluation. One

of the potential reasons behind this is related to the nature of
applying TEL solutions in higher education institutions as
they focus on Functional Requirements at the expense of
Non-Functional Requirements. Also, there is a lack of
literature evidence on how NFRs are elicited and specified.
Most of the e-learning systems evaluation is performed
against the Functional Requirements only (e.g., [3] and [4]).
Moreover, NFRs subtle nature makes them challenging to
elicit in advance, and most likely to be approached iteratively
along software development life cycle [5]. NFRs are very
important to software architecture; they are also known as
Architecturally Significant Requirements because they have
a measurable impact on the architecture of software system
[6] [7].

Therefore, this paper investigates the current approaches
to manage, more specifically elicit and specify, NFRs over
TEL software development life cycle. NFRs management
refers to the process of eliciting, specifying, communicating,
and controlling Non-Functional Requirements over software
development life cycle [8]. Since, NFRs are persistent, rarely
changed, this paper focuses on the early stages of NFRs
management process. These stages include NFRs elicitation,
specification, and communication. Then, it proposes a
flexible architecture for e-learning solutions to meet the
early-identified NFRs. The rest of this paper is organized as
follows. Section II summarizes related work; Section III
proposes a new approach to elicit and specify NFRs for TEL
systems; Section IV proposes a service-oriented architecture
for e-learning software systems; Section V concludes the
paper with future research directions.

II. RELATED WORK

There exist different e-Learning/TEL Software Systems,
where some of them are: (i) open source, such as: Moodle
[3], Atutor [9], Sakai [10], and Ilias [11] or (ii) propriety,
such as: Blackboard [12] and Desire2Learn [13]. Such
systems are known as Learning Management Systems
(LMSs) or Virtual Learning Environments (VLEs). The
current LMSs/VLEs cannot support architectural flexibility,
to different extents, due to their monolithic design [14].
LMSs evolved from black box systems, known as first
generation LMSs, towards more modular architectural
approach, known as second generation LMSs [14]. Much of
this evolution was due to the standardization initiatives, such
as: Sharable Content Object Reference Model (SCORM) and
IMS Global Learning Consortium Learning Design (IMS
LD), which allow good level of interoperability between
different LMSs, their components, and third-party
plugins/tools. For instance, IMS Learning Tools

25Copyright (c) IARIA, 2018. ISBN: 978-1-61208-614-9

BUSTECH 2018 : The Eighth International Conference on Business Intelligence and Technology

Interoperability (LTI) is used by many
e-learning tools to align or map their configurations with
LMS configurations. Meanwhile, various architecture-
oriented improvements on Atutor LMS have been introduced
[9]. Similarly, more modular structure has been considered in
the case of Sakai LMS, especially in relation to service
orientation [15]. This has increased the scalability and
extendibility of the current LMSs via plugins deployment.

However, such structure is not sufficiently agile. New
requested plugin needs planning and deployment procedures
and might have impact on systems performance or other
related NFRs. In addition, the recent move towards cloud-
based e-learning solutions, especially Software as a Service
(SaaS), made it more challenging for the current
e-learning systems to effectively exchange assets and
efficiently co-exist with each other (e.g., sharing hardware
resources). Hence, the next section will present a
comprehensive and consistent approach to elicit, specify, and
communicate NFRs in relation to TEL solutions to consider
them later to design a flexible architecture for TEL systems.

III. NON FUNCTIONAL REQUIREMENTS IN TEL

In the light of the above discussion, a good starting point
for architecting e-learning solutions is to thoroughly consider
its NFRs in a consistent way. Our approach is inspired by
one of the most reliable approaches to elicit NFRs, which is
the Quality Attribute Workshop (QAW) approach [16],
developed by Carnegie Mellon University Software
Engineering Institute. Simply, this approach refers to
engaging system stakeholders, or their representatives, early
in the life cycle to discover the driving Non-Functional
Requirements of software system through a series of
workshops. Unlike QAW structure that has a rigid structure
and lacks the base definitions for NFRs, we opt for a flexible
structure for our proposed approach. The structure of the
proposed approach must address the following phases: (i)
induction phase, to introduce the approach to stakeholders,
or their representatives, and explain the rationale behind it
and who is doing what, (ii) business view phase, to introduce
high-level Functional Requirements for the proposed
solution, (iii) architecture view phase, to present the
proposed solution architecture at a high-level including
useful details (e.g., hardware, certain technologies, etc.), (iv)
architectural drivers phase, to summarise the key drivers of
the proposed solution, which could be high-level capabilities,
organizational concerns, etc., (v) scenario phase, to divide
the audience into groups to brainstorm real scenarios for
using the systems, and to validate them, and link them with
NFRs, and finally (vi) precisely specify TEL software system
NFRs based on the NFRS template introduced later in this
section (i.e., Tables I and II). Precise specifications of NFRs
means to pick up the definition listed in Table I or II, and to
add certain parameters to the definition as explained later.

The proposed phases could be conducted as separate
workshops, meetings, interviews or other potential formats,
which can be better decided by organisational business
analysts. Also, phases can be merged together or divided into
two or more depending on the context factors that include:
the scale of the TEL software system, nature of stakeholders,

their technical background and interest, etc. The key role of
the business analyst team is to maximise the benefits of
stakeholders’ engagement to get accurate enough NFRs
specifications. One of the central steps here is to avoid
natural language-based specification as this may lead to
subtle requirement specifications, which cannot be
measured. To do so, we opt for a standard-based approach
based on ISO 25010 Systems and Software Quality
Requirements and Evaluation: (i) Product Quality (PQ)
Model that measures the static qualities of a certain software
system, depicted in Figure 1, and (ii) Quality in Use (QiU)
Model that measures the dynamic qualities of a certain
software system when it is applied in a particular context
[17], depicted in Figure 2. Both models have a set of
precisely defined list of qualities that can be easily
customised to be smart enough for architecting e-learning
solutions. In this context, smart means: specific, measurable,
achievable, resource and time bound. Also, using a standard
coherent set of precisely defined quality characteristics is
appropriate for negotiation with industries, especially in
Service Level Agreements for SaaS solutions.

Figure 1. System-related Non-Functional Requirements

The above-depicted NFRs are organised as characteristic
(e.g., compatibility) and sub-characteristics (e.g., co-
existence and interoperability). The former provides a
general definition that does not need to be smart, while the
latter (i.e., sub-characteristics) needs further customisation to
be smart NFRs. All the above-mentioned product quality-
related NFRs are defined [18] in Table 1 below. For
readability purpose, different background colour has been
given to characteristics (e.g., performance efficiency), while
sub-characteristics (e.g., time-behaviour) background colour
is white.

TABLE I. SYSTEM-RELATED NON-FUNCTIONAL REQUIREMENTS

Characteristic/
Sub-characteristic

Definition

Performance
efficiency

performance relative to the amount of resources used
under stated conditions.

Time-behaviour degree to which the response and processing times and
throughput rates of a system, when performing its
functions, meet requirements.

Resource
utilisation

degree to which the amounts and types of resources
used by a system, when performing its functions, meet
requirements.

Capacity degree to which the maximum limits of a system
parameter meet requirements

Compatibility degree to which a system or component can exchange

26Copyright (c) IARIA, 2018. ISBN: 978-1-61208-614-9

BUSTECH 2018 : The Eighth International Conference on Business Intelligence and Technology

information with other systems or components, and/or
perform its required functions, while sharing the same
hardware or software environment.

Co-existence degree to which a system can perform its required
functions efficiently while sharing a common
environment and resources with other products, without
detrimental impact on any other product.

Interoperability degree to which two or more systems or components
can exchange information and use the information that
has been exchanged.

Usability degree to which a system can be used by specified users
to achieve specified goals with effectiveness, efficiency
and satisfaction in a specified context of use.

Learnability degree to which a system can be used by specified users
to achieve specified goals of learning to use the product
or system with effectiveness, efficiency, freedom from
risk and satisfaction in a specified context of use.

User error
protection

degree to which a system protects users against making
errors.

User interface
aesthetics

degree to which a user interface enables pleasing and
satisfying interaction for the user.

Accessibility degree to which a system can be used by people with
the widest range of characteristics and capabilities to
achieve a specified goal in a specified context of use.

Reliability degree to which a system or component performs
specified functions funder specified conditions for a
specified period of time.

Availability degree to which a system or component is operational
and accessible when required for use.

Fault tolerance degree to which a system or component operates as
intended despite the presence of hardware or software
faults.

Recoverability degree to which, in the event of an interruption or a
failure, a system can recover the data directly affected
and re-establish the desired state of the system.

Security degree to which a system protects information and data
so that persons or other products or systems have the
degree of data access appropriate to their types and
levels of authorization.

Confidentiality degree to which a system ensures that data are
accessible only to those authorized to have access.

Integrity degree to which a system or component prevents
unauthorized access to, or modification of, computer
programs or data.

Non-repudiation degree to which actions or events can be proven to have
taken place, so that the events or actions cannot be
repudiated later.

Accountability degree to which the actions of an entity can be traced
uniquely to the entity.

Authenticity degree to which the identity of a subject or resource can
be proved to be the one claimed.

Maintainability degree of effectiveness and efficiency in which a
system can be modified by the intended maintainers.

Modularity degree to which a system is composed of discrete
components such that a change to one component has
minimal impact on other components.

Reusability degree to which an asset can be used in more than one
system, or in building other assets.

Analysability degree of effectiveness and efficiency in which it is
possible to assess the impact on a system of an intended
change to one or more of its parts, or to diagnose a
product for deficiencies or causes of failures, or to
identify parts to be modified.

Modifiability degree to which a system can be effectively and
efficiently modified without introducing defects or
degrading existing product quality.

Testability degree of effectiveness and efficiency in which test
criteria can be established for a system or component
and tests can be performed to determine whether those
criteria have been met.

Portability degree of effectiveness and efficiency in which a
system or component can be transferred from one

hardware, software or other operational or usage
environment to another.

Adaptability degree to which a product or system can effectively and
efficiently be adapted for different or evolving
hardware, software or other operational or usage
environments.

Installability degree of effectiveness and efficiency in which a
system can be successfully installed and/or uninstalled
in a specified environment.

Replaceability degree to which a system can replace another specified
software product for the same purpose in the same
environment.

Following the above-listed system-oriented Non-

Functional Requirements, another complementary set of
NFRs is needed to specify the system behaviour in a certain
context. Such NFRs describe the quality to which the
anticipated system can be used by specific users to meet their
demands to achieve specific goals with effectiveness,
efficiency, freedom from risk, and satisfaction in specific
contexts of use [18]. This complementary list is depicted in
Figure 2, and fully described in Table II, as well. Like
system-related NFRs, this list is organised as characteristics
and sub-characteristics, where the former provides a generic
description that does not need to smart, while as the latter
needs to be refined to be smart NFRs.

Figure 2. Quality in Use-related Non-Functional Requirements

As depicted in Figure 2, this list is limited to the qualities
that can be affected by the context of use. Context of use
includes users, tasks, equipment (hardware, software, and
material), and the physical and social environments in which
a system is used [18]. Some of the system-related NFRs can
be affected by the context of use, but generally they are not
affected by the context of use.

TABLE II. QUALITY-IN-USE RELATED NON FUNCTIONAL REQUIREMENTS

Characteristic/
Sub-characteristic

Definition

Effectiveness accuracy and completeness in which users achieve
specified goals.

Efficiency resources expended in relation to the accuracy and
completeness in which users achieve goals.

Satisfaction degree to which user needs are satisfied when a system
is used in a specified context of use.

Trust degree to which a user or other stakeholder has
confidence that a system will behave as intended.

Pleasure degree to which a user obtains pleasure from fulfilling
their personal needs.

Comfort degree to which the user is satisfied with physical
comfort.

Freedom of risk degree to which a system mitigates the potential risk to

27Copyright (c) IARIA, 2018. ISBN: 978-1-61208-614-9

BUSTECH 2018 : The Eighth International Conference on Business Intelligence and Technology

economic status, human life, health, or the environment.

Economic risk
mitigation

degree to which a system mitigates the potential risk to
financial status, efficient operation, commercial
property, reputation or other resources in the intended
contexts of use.

Health and safety
risk mitigation

degree to which a system mitigates the potential risk to
people in the intended contexts of use.

Environmental risk
mitigation

degree to which a system mitigates the potential risk to
property or the environment in the intended contexts of
use.

Context coverage degree to which a system can be used with
effectiveness, efficiency, freedom from risk and
satisfaction in both specified contexts of use and in
contexts beyond those initially explicitly identified.

Context
completeness

degree to which a system can be used with
effectiveness, efficiency, freedom from risk and
satisfaction in all the specified contexts of use.

Flexibility degree to which a system can be used with
effectiveness, efficiency, freedom from risk and
satisfaction in contexts beyond those initially specified
in the requirements.

Finally, the definitions of the above-mentioned NFRs

(i.e., System-oriented and Quality-in-Use-oriented) are
generic enough to accommodate NFRs specifications for a
wide range of software systems. For effective TEL system
architecture, these NFRs need to be refined to be smart. This
means that various thresholds need to be added to these
generic definitions based on the NFRs elicitation workshop,
explained in Section III. For instance, Recoverability will
have more specific numbers to describe the conditions in
which the system can recover the data affected and re-
establish the desired state of the system. This means
recoverability requirement specification will look like: “In
the event of interruption or failure, the system must recover
the data affected and re-establish the desired state of the
system according to the following parameters: (i) Recovery
Time Objective (RTO): 30 minutes and (ii) Recovery Point
Objective (RPO): three hours. For clarification, RTO refers
to time duration in which users/organisations want to be able
to recover the replicated data, while RPO refers to the
maximum amount of data that can be lost before causing
serious damage to the organisational services. Similarly,
Capacity NFR needs to be customised with a precise list of
parameters, so the refined specification will look like: the
system must be capable of effectively and efficiently
performing its functions as expected in the case of having
2500 concurrent users and hosting the contents/activities of
80000 online courses. In this case, 2500 concurrent users and
80000 courses represent the maximum parameters required
by a certain institution. To respond to the early-identified
NFRs, a high-level architecture for TEL software system will
be proposed in the next section.

IV. THE PROPOSED E-LEARNING SYSTEM ARCHITECTURE

As introduced earlier, NFRs are known as architecturally
significant requirements. Ideal software architecture
describes the concerned software system through a set of
artefacts and relationships between these artefacts. Such
artefacts include models, processes, principles, and
guidelines that guide the selection, creation, and
implementation of software solutions aligned with business
requirements. Furthermore, this includes decisions taken

during building the high-level architecture of the software
system, where these decisions have significant impact on the
system quality, performance, availability, etc. [19]. This
explains why software architecture is influenced by NFRs,
and consequently, justifies investigating NFRs and
architecture together. Literature evidence, especially [2], [5]-
[7], reveals that the key Non-Functional Requirements that
influence software architecture decisions are: performance,
compatibility including: co-existence and interoperability,
maintainability especially reusability and modularity,
adaptation, and flexibility. Moreover, lessons learned from
current TEL practices in academic institutions, such as the
heavy move towards cloud-based e-learning solutions, puts
further emphasis on interoperability and co-existence
requirements, because different cloud-based e-learning
systems usually share the same hardware environments.

Such requirements can be better met by flexible
architecture, such as Service-Oriented Architecture (SOA)
that is designed to support flexibility, interoperability,
reusability, etc [6]. Therefore, we opt for a service-oriented
enabled architecture for e-learning system, where the overall
e-learning service is composed of more than one software
system, such as LMS (e.g., Atutor, Moodle, etc.), plagiarism
checker (e.g., Turnitin), video streaming (e.g., Kaltura),
student record system, etc. Some of these systems might be
developed in-house, hosted on premises, or provided as a
SaaS. Figure 3 depicts the architecture of SOA-enabled e-
Learning System. As explained in Figure 3, the proposed
architecture is composed of the following three layers: (i)
presentation-service layer, that has the necessary set of
interfaces to communicate with underneath layers, (ii)
business layer, that includes all sub-systems or components
(e.g., LMS and video streaming), and (iii) data layer that
hosts every possible source of data.

Figure 3. Service-enabled e-Learning System Architecture

The first layer, presentation-service layer, includes the
following four components. The first component, learning
process interface, manages and monitors all learning and
teaching processes carried out by students. Such processes
mainly include LMS capabilities, such as finding learning

28Copyright (c) IARIA, 2018. ISBN: 978-1-61208-614-9

BUSTECH 2018 : The Eighth International Conference on Business Intelligence and Technology

contents and managing e-learning activities. To better
facilitate this component’s job, there is a need to improve the
architecture/design of the current LMSs via adding what we
call here “Service-oriented component”. This component
allows flexible access to the internal capabilities of the LMS
(e.g., looking for certain contents of a particular course or
analysing various activities done by a group of users for
learning analytics purposes). This component needs
significant changes to be introduced to the LMS stretching
from architectural design of the intended LMS through
specific algorithms that can identify and discover web
services that meet users’ demands.

The second component, pedagogy process interface,
handles learning content through all of its stages (i.e., design,
development, publishing, etc.) This can be done through
interaction with Learning Content Management System
(LCMS) component in the business layer. This component
retains complex processes since designing learning contents
includes various pedagogical approaches that considerably
vary. For instance, designing behavioural-based content,
which is instructor-centred contents that contain: a) learning
objectives, b) learning contents, and c) assessment exercise is
different from designing a social constructive-based content
which is driven by students’ interactions. Both types of
contents are based on underpinning pedagogical models that
can be represented via a set of processes that explain the
workflow needed to design, develop, and publish learning
contents. Similarly, service-oriented component, for LCMS,
is needed here to make this process achievable via web
services.

The third component, institutional process interface,
handles all institutional processes that are related to
e-learning, such as assigning roles to e-learning actors (e.g.,
module leader, instructor, and examiners). This also includes
students’ enrolments, other administration tasks, tracking
other related processes (e.g., financial processes). The
automatic execution of these processes is challenging
because most institutions have their own business rules that
could be complicated due to the wide range of programmes
offered by universities and the adopted service models. This
component will communicate, via web services, with Human
Resources (HR) systems and students’ record systems that
can provide the necessary information to achieve this task.

The fourth component, integration interface, handles all
technical aspects needed for successful e-learning services.
One of the most important aspects here is the security
because e-learning service, as introduced earlier, is a hybrid
service that may combine on-premises software, public
cloud, and private cloud. Also, considering the evolving
requirements for academic institutions is highly important.
This requires continuous monitoring for the current
e-learning services, such as doing performance testing and
penetration testing. This allows benchmarking for the current
level of service, so the institution can investigate the impact
of adding additional components to the e-learning service.

As described earlier, each of the above-mentioned
interface component, in the presentation layer, liaises with
one or more service-oriented component in the concerned
sub-system in the business layer. For instance, institutional

interface might liaise with one or more than one service
component to setup the proper plagiarism check processes
that might be dynamic as they differ from undergraduate to
postgraduate or lifelong learning programme. This applies to
models/tools that use specific learning approaches (e.g.,
Game-based Learning model [20]). In addition, certain
arrangements need to be done at the data level to make sure
data are accessible by permitted stakeholders whenever is
needed. Despite the fact that Non-Functional Requirements
are more persistent, with little changes are expected, there is
a need to manage the changes that could happen over TEL
software development life cycle. Therefore, it is
recommended to use suitable requirement management tool
or model to keep the e-learning service reliable and efficient.
This includes reviewing the current set of requirements either
based on agreed timeframe or whenever we have new
requirements from stakeholders. Finally, it is worth
mentioning that the early-identified business layer might
have extra sub-systems based on the Functional
Requirements coming from different departments in the
academic institution.

V. CONCLUSION AND FUTURE WORK

In this paper, we handled the challenging problem of
managing Non-Functional Requirements, more specifically
eliciting and specifying NFRs, in the context of TEL.
Lessons learned from TEL practices revealed that NFRs are
ignored due to many reasons, which could seriously impact
the overall e-learning system/service. Therefore, we opt for a
comprehensive approach based on ISO 25010 to elicit and
specify Non-Functional Requirements. Furthermore, this
paper presented flexible service-oriented architecture for e-
learning software systems that can better meet the required
capabilities (i.e., Functional and Non-Functional
Requirements). This work revealed the need to adopt open
and flexible architecture for TEL systems. This means that
these systems should be designed in a way that is accessible
via web service mechanism to allow further agility.
Moreover, it highlighted the need to develop service
identification and service discovery algorithms that consider
e-learning particularities.

REFERENCES

[1] R. Hammad, M. Odeh and Z. Khan, "Towards a generic
requirements model for hybrid and cloud-based e-learning
systems," The IEEE 5th International Conference on Cloud
Computing Technology and Science (CloudCom), 2013, pp.
106-111, Bristol, UK.

[2] J. Eckhardt, A. Vogelsang and D. M. Fernández, "Are non-
functional requirements really non-functional? an
investigation of non-functional requirements in practice," The
38th IEEE/ACM International Conference on Software
Engineering (ICSE), 2016, pp. 832-842.

[3] S. Kumar, A. K. Gankotiya and K. Dutta, "A comparative
study of Moodle with other e-learning systems," The 3rd
International Conference in Electronics Computer
Technology (ICECT), 2011, 414-418.

[4] S. Graf and B. List, "An evaluation of open source E-learning
platforms stressing adaptation issues," The 5th IEEE

29Copyright (c) IARIA, 2018. ISBN: 978-1-61208-614-9

BUSTECH 2018 : The Eighth International Conference on Business Intelligence and Technology

International Conference on Advanced Learning
Technologies (ICALT), 2005, 163-165.

[5] D. Ameller et al., "Non-functional requirements in
architectural decision making," IEEE Software, vol. 30, (2),
pp. 61-67, 2013, doi:10.1109/MS.2012.176.

[6] L. Chen, M. A. Babar and B. Nuseibeh, "Characterizing
architecturally significant requirements," IEEE Software, vol.
30, (2), pp. 38-45, 2013, doi: 10.1109/MS.2012.174.

[7] C. Miksovic and O. Zimmermann, "Architecturally
significant requirements, reference architecture, and
metamodel for knowledge management in information
technology services," The 9th IEEE/IFIP Conference on
Software Architecture (WICSA), 2011, pp. 270-279, doi:
10.1109/WICSA.2011.43.

[8] D. Pandey and V. Pandey, "Importance of requirement
management: a requirement engineering concern,"
International Journal of Research and Development A
Management Review, vol. 1, (1), pp. 66-70, 2012. ISSN
(Print): 2319–5479.

[9] H. Men, J. Liu and J. Han, "Applied research on Atutor," The
International Conference on E-Learning, E-Business,
Enterprise Information Systems, and E-Government
(IEEEE'09), 2009, pp.107-110. ISBN: 978-0-7695-3907-2.

[10] T. Acosta and S. Luján-Mora, "Comparison from the levels of
accessibility on LMS platforms that supports the online
learning system," The 8th Annual International Conference on
Education and New Learning Technologies, 2016, pp. 2704-
2711, doi: 10.21125/edulearn.2016.1579.

[11] I. Vlasin and C. Chirila, "Online contest based on integration
of activities, adaptability and students cooperation using Ilias
LMS," The International Scientific Conference eLearning and
Software for Education, 2016, pp. 67-74.

[12] K. Logan and T. Neumann, "Comparison of Blackboard 9.1
and Moodle 2.0," Learning Technologies Unit. University of
London, London, UK, 2010.

[13] R. D. Rucker and L. R. Frass, "Migrating Learning
Management Systems in Higher Education: Faculty
Members’ Perceptions of System Usage and Training When
Transitioning from Blackboard Vista to Desire2Learn,"
Journal of Educational Technology Systems, vol. 46, (2), pp.
259-277, 2017, doi: 10.1177/0047239517711954.

[14] D. Dagger et al., "Service-oriented e-learning platforms: from
monolithic systems to flexible services," IEEE Internet
Computing, vol. 11, (3), pp. 28-35, 2007,
10.1109/MIC.2007.70.

[15] A. G. Booth and B. P. Clark, "A service-oriented virtual
learning environment," On the Horizon, vol. 17, (3), pp. 232-
244, 2009, doi:10.1108/10748120910993268.

[16] M. R. Barbacci et al., "Quality attribute workshops (QAWs),"
International society for Bioelectricity, Shreveport L.A.,
2003.

[17] R. Hammad, M. Odeh and Z. Khan, "Towards a model-based
approach to evaluate the effectiveness of e-learning," The 9th
European Conference on IS Management and Evaluation –
ECIME, UK, Bristol, 2015, pp. 111-119, ISBN: 978-1-
910810-55-2.

[18] ISO/IEC 25010 "Systems and software engineering–Systems
and software quality requirements and evaluation (SQuaRE)–
System and software quality models," The International
Standard Organisation (ISO), 2011.

[19] N. Medvidovic and R. N. Taylor, "Software Architecture:
Foundations, Theory, and Practice," John Wiley & Sons, 1st
edition, 2010, ISBN: 9780470167748.

[20] R. Hammad "Game-Enhanced and Process-Based e-Learning
Framework," In: Tian F., Gatzidis C., El Rhalibi A., Tang W.,
Charles F. (eds) E-Learning and Games, July 2017, Lecture
Notes in Computer Science, vol 10345, Springer, Cham. pp.
279-284, doi:10.1007/978-3-319-65849-0_30.

30Copyright (c) IARIA, 2018. ISBN: 978-1-61208-614-9

BUSTECH 2018 : The Eighth International Conference on Business Intelligence and Technology

