BUSTECH 2018 : The Eighth International Conference on Business Intelligence and Technology

Calculating Test Coverage for BPEL Processes With Process Log Analysis

Daniel Liibke

Leibniz Universitdt Hannover
FG Software Engineering
Welfengarten 1, D-30167 Hannover, Germany
Email: daniel.luebke@inf.uni-hannover.de

Abstract—Today more and more business processes are digitized
by implementing them in specialized workflow languages like
the Business Process Execution Language (BPEL) or Business
Process Model and Notation (BPMN 2.0), which orchestrate
services along the process flow. Because these process models are
software artefacts of critical importance to the functioning of the
organization, high quality and reliability of these processes are
mandatory. Testing therefore becomes an important activity in
the development process. Test Coverage Metrics have long been
used in software development projects to assess test quality and
test progress. Current approaches to test coverage calculation for
BPEL either relies on instrumentation, which is slow, or is limited
to vendor-provided unit test frameworks, in which all dependent
services are mocked (unit tests), which limits the applicability of
such approaches. Our approach relies on analyzing process event
logs that are written during process execution. This approach
does not require additional infrastructure and can be used in
unit tests, as well as in system and integration tests. We found
that our approach for measuring test coverage is not only more
flexible but also faster than an instrumentation-based approach.

Keywords—Test Coverage; Process Mining; BPEL; Event Log.

I. INTRODUCTION

Executable Business Processes, implemented with WS-
BPEL or BPMN2, are used to automate business processes in
large companies. They are software artefacts and can contain
complex orchestration logic. With the increasing demand for
fully digitized solutions, it is likely that more and more
business processes are being implemented in these or similar
orchestration languages.

Because business processes and as such their software
implementations are very critical to the functioning and per-
formance of organizations, it is mandatory to do good quality
assurance in order to avoid costly problems in production [1]. It
has been shown by Piwowarski et. al [2] that a) test coverage
measurements are deemed beneficial by testers, although b)
they are rarely applied because of being difficult to use, and c)
that higher coverage values lead to more defects being found.
These findings are supported by Horgan et al. [3], who linked
data-flow testing metrics to reliability, and Braind et al. [4],
who simulated the impact of higher test coverage. Furthermore,
Malaiya et al. [5] and Cai & Lyu [6] have developed prediction
models that can link test coverage with test effort and software
reliability.

Quality Assurance, and thus test coverage calculation, are
an ongoing activity because executable processes will evolve
over time [7]. One way for continously measuring test quality

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-614-9

is to measure test coverage as part of all ongoing testing
activities. Test Coverage then serves as measurement of test
data adequacy [8].

While approaches applicable for unit testing executable
processes have been proposed by academia (e.g., [9], [10])
and developed by vendors for their respective process engines,
there is no practical way to efficiently calculate test coverage
for tests that are not controlled by a process testing framework.
Also, approaches relying on instrumentation create significant
additional overhead by a factor larger than 2.0 compared with
the “plain” test case execution times [11] — which is far more
than instrumentation approaches for “normal” programming
languages, e.g., Java, impose.

For improving the guidance of quality assurance in soft-
ware projects developing executable processes, an approach
is required that can be used in non-unit test scenarios and is
ideally faster and easy to set up. Within this paper, we propose
a new approach based on analyzing process event logs, which
are written by process engines regardless of whether testing
frameworks are used or not. Our research goal is to calculate
test coverage metrics more flexible and faster by leveraging
processes’ events logs.

The paper is structured as follows: First, the process
modeling language BPEL is shortly explained in Section II
before related work is presented in Section III. Our approach
for mining test coverage metrics is described in detail in
Section IV. For validating our approach, we conducted an
experiment, which is presented in Section V. Finally, we
conclude the paper and give an outlook on future work.

II. BACKGROUND ON BPEL

BPEL (short for WS-BPEL; Web Services Business Pro-
cess Execution Language) is an OASIS standard that defines
a modeling language for developing executable business pro-
cesses by orchestrating Web services.

BPEL Models consist of Activities, which are divided
into Basic Activities and Structured Activities. Basic Activities
carry out actual work, e.g., performing data transformations
or calling a service, while Structured Activities are controlling
the process-flow, e.g., conditional branching, loops, etc.

Important Basic Activities include the invoke activity
(which calls Web services), the assign activity (which performs
data transformations), and the receive and reply activities
(which offer others to call a process via service interfaces). Im-
portant Structured Activities are the if, while, repeatUntil, and

BUSTECH 2018 : The Eighth International Conference on Business Intelligence and Technology

= main

& receivelnput
& Is_VIP_Customer

If Else

% Sequence % Sequence

& SavePointsEarned = PrepareRephyforMonVIPCustomer

= PrepareRephforVIPCustomer

2| Reply

®

Figure 1. Sample BPEL Process for processing an Order.

forEach activities, which offer the same control-flow structures
like their pendants in general purpose programming languages,
and the flow activity, which allows process designers to build a
graph-based model including parallel execution. For building
the graph, BPEL offers links that can also carry conditions for
modelling conditional branches.

For handling error conditions and scoped messages, BPEL
provides different kinds of Handlers: Fault Handlers are
comparable to try/catch constructs: Whenever a SOAP Fault
is returned by an invoked service or is thrown by the pro-
cess itself, the Process Engine searches for defined Fault
Handlers. These may trigger Compensation Handlers, which
can undo already executed operations. For receiving events
asynchronously outside the main process flow, Event Handlers
can be defined. These come in two flavors: onEvent Handlers
for receiving SOAP messages, and onAlarm Handlers for
reacting on (possibly reoccurring) times and time intervals.

BPEL does not define a graphical representation, like, e.g.,
BPMN?2 does, but standardizes the XML format in which it is
saved. Vendors have developed their own graphical represen-
tation. Within this paper we use the notation used in Eclipse’s
BPEL Designer. A process that will be used for examples
in this paper is shown in Figure 1: A customer places an
order (“receive input”). A check is made, whether the customer
has VIP status or not. In case of a VIP customer, points are
credited to the customer’s account (“‘SavePointsEarned”). In
both cases appropriate response message to the customer are
prepared (“PrepareReplyFor...”), which is then sent back to
the customer (“reply”).

BPEL processes are deployed to a Process Engine, which
has the responsibility for executing process instances and
managing all aspects around process versioning, persistence,
etc. The amount of data, which is persisted during process
execution, is vendor-dependent and can be configured during
the deployment of a process model in most engines.

BPEL has been designed to be extensible. Many extensions
by both standard committees and vendors have been made.

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-614-9

For example, BPEL4People allows to interact not only with
services but also with humans during process execution.

III. RELATED WORK

With the rise of BPEL, testing of these critical software
artefacts became subject of many research projects. For ex-
ample, Li et al. (BPEL4WS Unit Testing Framework [9]),
Mayer & Liibke (BPELUnit [10]), and Dong et al. (Petri Net
Approach to BPEL Testing [12]) published their ideas.

The BPELUnit framework was later extended by Liibke
et al. [11] with test coverage measurement support. First, the
metrics needed to be defined, which is not as straightforward as
for other languages due to BPEL’s different mechanisms for
defining the process-flow. Consequently, three metrics were
defined: Activity Coverage, Handler Coverage, and Link
Coverage. Coverage Measurement was done by instrumenting
the BPEL process: For tracing the execution, the process
is changed prior to deployment. Additional service calls are
inserted for every activity. The service calls send the current
position (“Markers”) to the test framework. Because of this the
test framework knows which activities have been executed in
the test run. However, the test framework needs to run while
the instrumented processes are executed, which makes its use
limited to automatic tests only. Also, the overhead introduced
by many new service calls is considerable: The reported
overhead is more than 100%, i.e., the test execution times are
more than doubled. This is because every execution trace point
needs to be send out of the process via a service call, which
requires XML serialization and involves the network stack.
This also makes the BPEL process much larger: The number
of basic activities tripples for instrumenting all measurement
points for calculating activity coverage alone. One advantage
of the approach is that is only slightly dependent on the
Process Engine being used: The changes to the BPEL process
are completely standards-compliant. Only the new service for
collecting the Markers needs to be added to the engine-specific
deployment descriptor.

Process Engine vendors have also developed their own pro-
prietary solutions: Test Cases are developed in the development
environment of the process engine and can be executed from
there or on a server. All services are mocked and the test
frameworks simply inject predefined SOAP messages. Such
test frameworks use a striped-down version of the process
engine. This results in a mixture between simulation and test:
The process engine uses the same logic but not all parts of
its code are triggered because some features are disabled.
Also, there is no possiblity of calling “real” services instead
of mocks. While test coverage calculation is very fast, because
the algorithms have access to internal engine data, its use is
limited to unit test scenarios only. Examples of such vendor-
provided test frameworks are Informatica’s BUnit [13] and
Oracle’s BPELTest [14].

All in all, there is currently no approach available for BPEL
processes that can be used to measure test coverage on code
level with acceptable performance and the ability to be used in
conjunction with manual tests and integration & system tests.

IV. TEST COVERAGE MINING

This section will present the different steps that are per-
formed for analyzing the process log in order to calculate test

BUSTECH 2018 : The Eighth International Conference on Business Intelligence and Technology

coverage.

A. Metric Calculation Process

For calculating test coverage, we use process mining tech-
niques. Process Mining is concerned to build “a strong relation
between a process model and ‘reality’captured in the form of
an event log” [15, p. 41]. By having the BPEL process model
and all test cases available as event logs from the process
engine, we are able to “replay” the event logs generated from
the tests on top of the BPEL process model. Out of the many
possible motivations to do a replay, our goal is to extend our
model with frequency information [15, p. 43].

Accordingly, our approach is divided into three sub-steps,
which are described in the following sections:

1) Build the BPEL Process Model Syntax Tree from its
XML representation (BPEL Analysis),

2) Fetch the event log from the Process Engine (Data
Gathering),

3) Replay the event logs on top of the BPEL Process
and calculate coverage metrics (Mining).

B. BPEL Analysis

Within this step, the BPEL XML representation is read
and the control-flow graph is being constructed as described
by the block-based structured activities. For example, activities
contained in sequence activity are chained together by control-
flow links. The construction of the control-flow graph is the
same as for the instrumentation approach to measuring BPEL
test coverage [11] and thus takes the same time to build.
The BPEL Models are accessible via the process engine’s
repository and can be extracted as part of the coverage mining.

C. Data Gathering

The case study project, which we could analyze, uses Infor-
matica ActiveVOS [13]. ActiveVOS is a process engine fully
compliant with the BPEL 2.0 and BPEL4People standards
and stores all data (process models, process instances, process
logs, ...) in a relation database. This allowed us to access
and analyze the available data that can be mined for test
coverage metrics. For different persistence settings ActiveVOS
stores different lifecycle events for every BPEL activity, which
include ready to execute, executing, completed, faulting and
will not execute. In addition, there are two more event types
for links (edges for graph-based modeling): link evaluated
to true and link evaluated to false. Besides the event time,
the event timestamp, the corresponding process instance, an
internal activity or link ID is logged.

This means that all necessary data is available in order
to reconstruct the process-flow and thereby calculating the
test coverage metrics: For calculating activity coverage, all
completed, faulting and link evaluated events need to be
fetched for a given test run. All other event types can be
ignored, which allows to use all engine settings except for
“no logging.” The underlying conceptual data model, as it is
implemented in the ActiveVOS engine, is shown in Figure 2.

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-614-9

<<enumeration >
Event Type

+Ready to Execute
+Executing
+Completed

+Faulting

+Will not execute

+Hink evaluates to true
+ink evaluates to false

iF\rPr\f'T\me

Execution Event

Process Instance Process Model
rocess ID odel 1D |
| +5tartTimestamp | +Process Name

+EndTimestamp +BPEL Structure

+Timestamp
+Activity Reference

Figure 2. Conceptual Data Model of the Process Engine being used.

D. Replay & Metric Calculation

Test Coverage can be calculated with the data extracted in
the previous steps. At first, all activities and conditional links
in the syntax tree are marked as not executed. In the second
step, all events are being applied to the syntax tree and all
activities that have a corresponding completed or faulting event
are marked as being executed. Also, conditional BPEL links
for graph-based modeling are marked. However, every link
can carry two different markers: one if the condition was true
and another if the condition was false. Because links without
a condition are excluded from the coverage metric, they are
ignored from further analysis.

During this phase, loop activities can be marked as exe-
cuted twice for calculating the branch coverage in later stages.
This happens for most loops by setting this marker, if the loop
is executed twice after each other. The only exception is the
parallel forEach loop, in which the activity ID contains the
number of the currently executed parallel branch. If a counter
larger than one is encountered, the forEach activity is marked
as executed twice.

The main problem in this step was to link events and
activity nodes in the BPEL model. Because the activity IDs
in the events are generated by the process engine and are not
part of the BPEL model, it is necessary to first resolve the
proprietary IDs to the activities. The generated activity IDs are
in an XPath-like structure, which closely resembles the XML
structure of the BPEL model. However, some cleaning and
re-writing of these IDs is necessary, because they sometimes
reference internal data structures and do not directly map to the
BPEL activities. After re-writing the IDs, they can be converted
to XPath expressions that directly point to the BPEL activity
being executed. This step is highly specific to the process
engine being used and needed reverse-engineering the format
and construction rules for the proprietary IDs.

After all events have been applied to the syntax tree, the
coverage metrics can be calculated. The easiest test coverage
metric to compute is the Activity Coverage C4 metric: The
syntax tree is traversed and all activities are counted which
are marked (A,,) and which are not marked (A,) as shown in
equation 1.

[Am|

Cpi=—r 77—
| A | + Ayl

ey

BUSTECH 2018 : The Eighth International Conference on Business Intelligence and Technology

Similarily, Handler Coverage Cp can be calculated by
searching the syntax tree for handlers that have been success-
fully executed.

Calculating Link Coverage C, by process mining is easier
than with instrumentation: In order to detect the different
conditions on links, instrumentation needs to insert many new
links and activities. However, with process mining, dedicated
events are triggered whenever a link condition has been
evaluated.

E. Example

To illustrate the replay of the event log on top of the process
model we assume two test cases for the example BPEL process
as shown in Figure 3. The first test case tests the VIP Customer.

As can be seen by the trace, the completion events are
differently ordered than the definition in the BPEL process
model: structured activities like a sequence or an if are
completed after all their child activities have been completed.
The replay algorithm needs to take this into account when
replaying the event log against the process model.

Taking the event log for the first test case and replaying
it on top of the BPEL process model yields the markings as
illustrated in the center of Figure 3. Replaying the second test
case yields the markings as shown on the right hand side of
the same figure. With these two test cases, all basic activities
are covered.

FE. Comparison to Instrumentation

When we compare our approach to instrumentation (see
Figure 4), there are many parts of the calculation that are
similar or even the same. Instrumentation would initially load
the BPEL process model and construct a syntax tree. However,
it would then change the process model by introducing service
calls that signal the internal process state to the test framework.
During run-time these service calls are equivalent to log events.
These events are replayed on the process model in both
approaches. Thus, the main differences are that

e instrumentation needs to build the syntax tree prior to
the test run and a service receiving all markers must be
active during the whole test while process mining can
perform all activities after the test run is completed,

e instrumentation needs to change the BPEL process
model while process mining does not, and

e the events are collected in the instrumentation ap-
proach by signaling service calls instead of extracting
all event logs with one database query like in our
approach. For a test run, the instrumentation approach
requires at least as many service calls for signaling
the process state as the number of executed basic
activities depending on the coverage metrics that shall
be calculated.

Due to these structural differences, we expect our approach
to be overall faster than the instrumentation approach: Mak-
ing and answering many fine-grained service calls is time-
consuming as outlined above. Being able to fetch all events
from the Process Engine’s event log at once should yield better

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-614-9

performance. In addition, our approach does not slow down
execution times of the executable processes itself because they
behave as they are implemented and are not changed by an
instrumentation process and their run-time behavior is not
altered by introducing probes. This means that no additional
error sources (e.g., by defects in the instrumentation) or
different behavior (e.g., in parallel activities by instrumentation
code) can occur.

G. Sample Implementation

We implemented a tool that performs the outlined test
coverage calculation. The tool connects to the database of
the process engine and extracts all relevant information. After
the tests have been completed, the tool extracts the events
for all newly created process instances. It expects that the
tested processes have been configured appropriately to at least
store the events for successfully and unsuccessfully completed
activities.

The implementation is highly dependent on the process
engine being used. The available process log data and its
format is defined by vendors because it is not specified in any
standard. As outlined in the previous section, a post-processing
of the event log data is needed in order to properly resolve the
referenced activities.

V. EXPERIMENT

In order to evaluate our approach, we conducted a small
experiment that is described in this section.

A. Experiment Description & Design

For evaluating the practical applicability and the perfor-
mance implications of our approach, we want to research the
following two research questions:

RQI1: What is the associated overhead for mining pro-
cess coverage?
RQ2: Is the associated overhead for mining process cov-

erage less than for instrumentation-based coverage
calculation?

For this we define a two factor/two treatments with-in
group experiment design: The first independent variable is the
coverage method (Instrumentation vs. Mining) and the second
is the test suite size. Our dependent variable is the execution
time of the measured test suites.

As subjects we used 4 BPEL processes, for which we could
automatically — and thus unbiased — generated test suites of
different sizes by using facet classification trees [16]. Two
processes are taken from Schnelle [17] and two processes
are taken from Terravis, which is an industrial project, which
develops and runs a process-integration platform between
land registers, notaries, banks and other parties across whole
Switzerland [18].

B. Data Collection

For running the experiment we set up a process engine on
a dedicated virtual server together with the required infrastruc-
ture, e.g., the tools for measuring test coverage.

BUSTECH 2018 : The Eighth International Conference on Business Intelligence and Technology

@] receivelnput @] receivelnput

®

& =] ustomer v a
G S (@)
=3 PrepareReplyforVIPCustomer 2 Sequence @ 5P Customer Y —
= Sequence [° e G o e
Sequence sequence
" e e (E)) . sqe @) g
] Reply &) Reply & swebointstamed ° PrepareRepyforNionVPCustomer & SwepoinsEamed £ PrepareRephforNonVIPCustomer o
= main = main = 8
Test Case 1 Test Case 2
& Reply o & Reply a
@]

Figure 3. Event Logs for two Test Cases (Left), first Test Case replayed on BPEL Model (center) and both Test Cases replayed on BPEL Model (right).

Pre-Test Test Post-Test

Instrument
Process
Model

Analyze Execute Test
Process

Model

Replay

Instrumentation
Markers

Receive Markers

Analyze
Process
Model

Fetch Event
Log

Replay

Execute Test
Events

Mining

Figure 4. Comparison of Instrumentation and Mining.

Because the original BPELUnit tool for measuring test
coverage [11] did not support vendor extensions and the
deployment artefacts of the used process engine, we needed
to re-implement the instrumentation tool with full support for
all features, which are used by the industry project.

We measured the execution times by following the de-
scribed process:

1) For every BPEL process, generate the test suites of
different sizes,
2) For every test suite and for every calculation method,
run 10x:
a) Instrument the deployment unit (if necessary)
b) Deploy the process,
¢) Run test suite,
d) Wait for process log and calculate coverage

(if necessary)

For every process, we generated random test suites with the
sizes n € {1, 5,10, 25,50, 75,100} if possible. The processes
by Schnelle had only a smaller number of possible test cases,
thereby the experiment could only use test cases with max. 25
and respectively 50 test cases.

We executed all test suites ten times in order to build mean
values for all time measurements. All in all, 460 test suites runs
were made for each coverage measurement method.

For all our test executions we used a virtual machine with
2 virtual CPUs and 4 GiByte of RAM running on Kubuntu
with Informatica ActiveVOS 9.2 and MySQL.

C. Results

The mean execution times of our measurements (calculated
in milliseconds) are shown in Table ??. T or S indicate the

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-614-9

process set (Terravis or Schnelle), 1 or 2 indicate which
process, and I or L indicate the coverage measurement method
(instrumentation or log analysis).

The mean value for the smallest test suites with only one
test case are smaller for instrumentation than for log analysis.
For all other chosen test suite sizes, log analysis performs
faster.

TABLE 1. TOTAL MEAN EXECUTION TIME (ms)

#TC T1-1 T1-L T2-1 T2-L S1-I SI-L S2-1 S2-L
1 8532 7718 5138 4915 4544 3825 4029 4140
5 16240 10958 11736 6533 6646 4492 6553 4249
10 19523 12446 14356 7090 10567 5942 9737 5586
25 38262 19309 34086 11760 15856 6688 18290 7675
50 62288 27264 62589 17736 29584 9799 - -
100 120720 48628 118413 28318 - - - -

By subtracting the normal execution time of a test suite
we derive the absolute overhead (calculated in ms) as shown
in Table II. In general, the numbers for log analysis are much
lower than for instrumentation and do not increase that much.
The highest overhead for log analysis is 6519ms in contrast for
up to 94287ms for instrumentation. The overhead is the largest
for the first Terravis process (T'1) for process log analysis while
it is the largest for instrumentation with the second Terravis
process (T2).

TABLE II. ABSOLUTE OVERHEAD OF COVERAGE CALCULATION

#TC T1-I TI-L T2-1 T2-L S1-I SI1-L S2-1 S2-L
1 2565 1751 2054 1830 1872 1153 1549 1660
5 7288 2006 7124 1920 3562 1408 3562 1258
10 9447 2370 9100 1834 6722 2098 5792 1641
25 22580 3628 24808 2482 10741 1574 12672 2057
50 39707 4683 48003 3150 21637 1852 - -
100 78611 6519 94287 4193 - - - -

We calculated the relative overhead for the processes by
dividing the absolute overhead by the normal test suite execu-
tion time as shown in Table III. While for larger test suites the
relative overhead increases with instrumentation, it decreases
for log analysis. Relative overhead of instrumentation ranges
between 43% and 391%, while it ranges bwetween 16% and
68% for log analysis.

The measurements grouped by coverage calculation
method and process for all test suite runs are shown in Fig-

BUSTECH 2018 : The Eighth International Conference on Business Intelligence and Technology

TABLE III. RELATIVE OVERHEAD OF COVERAGE CALCULATION

#TC T1-1 TI-L T2-I T2-L S1-I SI-L S2 1 S2-L

ure 5. Test suites with more test cases expectedly take longer
to execute. Log analysis is usually faster than instrumentation.

Instrumentation Log Analysis

T sineual

Execution Time (s)
2 sineual

T aliouyos

— e ——— ——

Z 3|I_uyos

Figure 5. Overall Execution Times

The absolute and relative overhead of both coverage cal-
culation methods are shown in Figure 6 and can be compared
directly. Different colors indicate different processes. The
absolute overhead shows clusters of overhead times that are
associated with a test suite. As can be seen the values for both
the absolute — and following from that — the relative overhead
are higher most of the time for the instrumentation approach.
Only in 13 of 460 measurements instrumentation was faster
than log analysis. All of those measurements are concerned
with test suites with only one test case.

Absolute Overhead Relative Overhead

Log Analysis
Log Analy:

nnnnnnnnnnnnnnnnnnnnnnnnn

Figure 6. Coverage Measurement Overhead

In order to answer RQ2 we performed a paired, two-sided
Wilcoxon hypothesis test with the null hypothesis Hy being

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-614-9

TABLE IV. P-VALUES (TWO-SIDED, PAIRED WILCOXON TEST) FOR
TEST SUITES WITH n TEST CASES AND FOR ALL TEST SUITES

Test Suite Size p-Value
1 0.087 69
5 1.25 x 1076 (#x)
10 5.154 x 10710 (r)
25 2.918 x 10710 ()
50 1.691 x 10717 ()
75 1.451 x 10711 (ewr)
100 1.451 x 1071 ()
All 5.034 x 10712 (xex)

that no difference exists in the test suite execution times when
using instrumentation or log analysis: Over all executed test
suites, p = 5.034 x 1072, However, we have seen that at
least test suites with only one test case behaves differently
from other test suites. Therefore, we blocked for the test
suite size and derived the p-values as shown in Table IV.
Values marked with (***) are less than 0.001 and thus highly
statistical significant.

D. Interpretation

1) RQ1: Overhead of Log Analysis: Our measurements for
the overhead of log analysisshow demonstrate that the absolute
overhead increases and the relative overhead decreases with
more test cases. The maximum absolute overhead of 6.5s for
100 test cases the performance penalty is little. This means
that measuring approx. 92 test suites of such size would only
impose a ten minute overhead (e.g., during nightly builds).

2) RQ2: Overhead of Log Analysis compared to Instru-
mentation: Our measurements clearly show that log analysis
is significantly faster than instrumentation for non-trivial test
suites, i.e. test suites with more than one test case. While the
relative overhead of instrumentation increases with more test
cases and reaches 391% (i.e., nearly quintuples the test suite
execution time), log analysis imposes 68% overhead in the
worst case of a small test suite but decreases to 16% for large
test suites. For a further interpretation typical test case sizes
in industry are needed in order to evaluate typical overhead
ranges. If we suppose that a typical test suite consists of
25 test cases the relative overhead is between 24% and 55%
for log analysis while it already is between 144% and 268%
for instrumentation. This means that for any non-trivial test
suite, log analysis brings a huge performance benefit when
measuring test coverage.

E. Threats to Validity

As with every empirical research there are associated
threats to validity. Because we could only use four BPEL
processes for our experiment, the question of generalizability
arises.

Since we research technical effects only, the findings
should be generalizable to all BPEL processes that execute
a minimum threshold number of activities or test cases. The
p-value for rejecting the null hypothesis and accepting that log
analysis is faster than instrumentation for a test suite size t > 5
is so low that we are confident that replications will find the
same results.

BUSTECH 2018 : The Eighth International Conference on Business Intelligence and Technology

As long as the process engine stores all relevant events that
are required for calculating the test coverage metrics, the log
analysis can proceed. To our knowledge, all BPEL engines are
able to write event logs that contain the required event types.
For every newly supported BPEL engine, a new interpreter of
these events needs to be developed. The analysis and replay
components can be reused. However, as part of our study
we also found that this is also true for instrumentation tools:
While BPEL is standardized, its extensions and the deployment
artefacts are not.

The presented numbers are only applicable to automated
unit tests. While we think it is safe to generalize the absolute
overhead to other test scenarios, we expect that the relative
numbers to be different: Manual tests take longer for executing
the same number of processes, because user interactions take
time, which makes the process duration longer. Thus, we do
not think that the relative overhead can be generalized to other
test types.

VI. CONCLUSION & FUTURE WORK

Within this paper we presented a new approach to mine
process event logs — which are usually already written when
using a process execution engine — to calculate test coverage
metrics of BPEL processes. Our new approach shows clear
performance advantages over the instrumentation approach.
Furthermore, the process mining approach can be used in
other scenarios than the instrumentation approach: Because all
activities for mining the test coverage are performed after the
tests are run, it does not matter how the tests are run and when
they were run. In contrast, coverage calculation needs a marker
collection service running the whole time, which in practice is
mostly only feasible during unit tests. Mining the process logs
is completely independent of any test automation and can be
used for automatic unit tests, automatic integration tests but
also manual integration and system tests. The only drawback
is, however, that the Process Engine needs to be configured to
write the event log for all measured processes.

Although we have implemented test coverage mining for
BPEL processes, the approach can be applied to other exe-
cutable process languages as well: Process engine architectures
are the same, e.g., BPMN 2.0 as the successor to BPEL defines
other activities and is completely graph based. However, pro-
cess engines executing BPMN 2.0 are also logging events for
executed activities which can be replayed on top of BPMN 2.0
process models. Writing the process mining algorithm should
be even simpler, because BPMN 2.0 defines process-wide
unique identifiers for activities that are hopefully contained
in the event log making reverse-engineering of vendor-specific
identifiers obsolete.

While we have finished our research implementation, we
want to optimize the implementation further and contribute it
into the BPELUnit test framework. We hope to find further
industry BPEL processes to apply our approach to and have
a larger data set for evaluating performance — especially the
use of other process engines is interesting and see whether all
necessary event data is generally available.

Being able to calculate test coverage for non-unit tests also
allows further research into executable process test methods:

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-614-9

For example, experiments on the influence of different system
testing approaches on test coverage.

REFERENCES

[1] D. Liibke, Test and Analysis of Service-Oriented Systems.
2007, ch. Unit Testing BPEL Compositions, pp. 149-171.

[2] P. Piwowarski, M. Ohba, and J. Caruso, “Coverage measurement
experience during function test,” in Proceedings of the 15th International
Conference on Software Engineering, ser. ICSE '93. Los Alamitos,
CA, USA: IEEE Computer Society Press, 1993, pp. 287-301.

[3] J. R. Horgan, S. London, and M. R. Lyu, “Achieving software quality
with testing coverage measures,” Computer, vol. 27, no. 9, Sept 1994,
pp. 60-69.

[4] L.C.Briand, Y. Labiche, and Y. Wang, “Using simulation to empirically
investigate test coverage criteria based on statechart,” in Proceedings.
26th International Conference on Software Engineering, May 2004, pp.
86-95.

[5] Y. K. Malaiya, M. N. Li, J. M. Bieman, and R. Karcich, “Software
reliability growth with test coverage,” IEEE Transactions on Reliability,
vol. 51, no. 4, Dec 2002, pp. 420-426.

[6] X. Cai and M. R. Lyu, “Software reliability modeling with test cover-
age: Experimentation and measurement with a fault-tolerant software
project,” in The 18th IEEE International Symposium on Software
Reliability (ISSRE °07), Nov 2007, pp. 17-26.

[7] D. Liibke, “Using Metric Time Lines for Identifying Architecture Short-
comings in Process Execution Architectures,” in Software Architecture
and Metrics (SAM), 2015 IEEE/ACM 2nd International Workshop on.
IEEE, 2015, pp. 55-58.

[8] H.Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage and
adequacy,” ACM Comput. Surv., vol. 29, no. 4, Dec. 1997, pp. 366-427.
[Online]. Available: http://doi.acm.org/10.1145/267580.267590

[9] Z. Li, W. Sun, Z. B. Jiang, and X. Zhang, “BPEL4WS Unit Testing:
Framework and Implementation,” in ICWS ’05: Proceedings of the
IEEE International Conference on Web Services (ICWS’05). Wash-
ington, DC, USA: IEEE Computer Society, 2005, pp. 103-110.

[10] P. Mayer and D. Liibke, “Towards a BPEL unit testing framework,” in
TAV-WEB ’06: Proceedings of the 2006 workshop on Testing, analysis,
and verification of web services and applications. New York, NY, USA:
ACM Press, 2006, pp. 33-42.

[11] D. Liibke, L. Singer, and A. Salnikow, “Calculating BPEL Test Cov-
erage through Instrumentation,” in Workshop on Automated Software
Testing (AST 2009), ICSE 2009, 2009, pp. 115-122.

[12] W. L. Dong, H. Yu, and Y. b. Zhang, “Testing bpel-based web ser-
vice composition using high-level petri nets,” in 2006 10th IEEE
International Enterprise Distributed Object Computing Conference
(EDOC’06), Oct 2006, pp. 441-444.

[13] Informatica. Bpel unit testing. [Online]. Avail-
able: http://infocenter.activevos.com/infocenter/ActiveVOS/v92/index.
jsp?topic=/com.activee.bpep.doc/html/UG21.html (2016)

[14] Oracle. Oracle bpel process manager developer’s guide: Testing bpel
processes. [Online]. Available: https://docs.oracle.com/cd/E11036_01/
integrate.1013/b28981/testsuite.htm (2007)

[15] W. van der Aalst, Process Mining — Data Science in Action. Springer,
2016.

[16] T. Schnelle and D. Liibke, “Towards the generation of test cases for ex-
ecutable business processes from classification trees,” in Proceedings of
the 9th Central European Workshop on Services and their Composition
(ZEUS) 2017, 2017, pp. 15-22.

[17] T. Schnelle, “Generierung von bpelunit-testsuites aus klassifika-
tionsbdumen,” Master’s thesis, Leibniz Universitidt Hannover, Fachge-
biet Software Engineering, 2016.

[18] W. Berli, D. Liibke, and W. Mockli, “Terravis — large scale business pro-
cess integration between public and private partners,” in Lecture Notes
in Informatics (LNI), Proceedings INFORMATIK 2014, E. Plodereder,
L. Grunske, E. Schneider, and D. Ull, Eds., vol. P-232, Gesellschaft fiir
Informatik e.V. Gesellschaft fiir Informatik e.V., 2014, pp. 1075-1090.

Springer,

