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Abstract—The repeated execution of workflow logic is a feature 
needed in many situations. Repetition of activities can be 
modeled with workflow constructs (e.g., loops) or external 
workflow configurations, or can be triggered by a user action 
during workflow execution. While the first two options are 
state of the art in the workflow technology, the latter is 
currently insufficiently addressed in literature and practice. 
We argue that a manually triggered rerun operation enables 
both business users and scientists to react to unforeseen 
problems and thus improves workflow robustness, allows 
scientists steering the convergence of scientific results, and 
facilitates an explorative workflow development as required in 
scientific workflows. In this paper, we therefore formalize 
operations for the repeated enactment of activities—for both 
iteration and re-execution. Starting point of the rerun is an 
arbitrary, manually selected activity. Since we define the 
operations on a meta-model level, they can be implemented for 
different workflow languages and engines. 

Keywords-service composition; workflow adaptability; 
iteration; re-execution. 

I. INTRODUCTION 

Imperative workflow languages are used to describe all 
possible paths through a process. On the one hand, this 
ensures the exact execution of the modeled behavior without 
deviations. On the other hand, it is difficult, if not 
impossible, to react to unforeseeable and thus un-modeled 
situations that might happen during workflow execution, 
e.g., exceptions. This is the reason why flexibility features of 
workflows were identified as essential for the success of the 
technology in real world scenarios (e.g., [1]). In [2], four 
possible modifications of running workflows are described 
as advanced functions of workflow systems: the deletion of 
steps, the insertion of intermediary steps, the inquiry of 
additional information, the iteration of steps.  

In this paper, we focus on the iteration of steps. Usually, 
iterations are explicitly modeled with loop constructs. But 
not all eventualities can be accounted for in a process model 
prior to runtime. Imagine a process with an activity to invoke 
a service. At runtime, the service may become unavailable. 
The activity and hence the process will fail, leading to a loss 
of time and data. Rerunning the activity (maybe with 
modified input parameters) could prevent this situation.  

The repetition of workflow logic is not only meaningful 
for handling faults. In the area of scientific workflows, the 
result of scientific experiments or simulations is not always 

known a priori [3, 4]. Scientists may need to take adaptive 
actions during workflow execution. In this context, rerunning 
activities is basically useful to enforce the convergence of 
results, e.g., redo the generation of a Finite Element Method 
(FEM) grid to refine a certain area, repeat the visualization 
of results to obtain an image with focus on another aspect of 
a simulated object, or enforce the execution of an additional 
simulation time step.  

A lot of work exists on the repetition of activities in 
workflows. Existing approaches use modeling constructs 
(e.g., BPEL retry scopes [5]), workflow configurations (e.g., 
Oracle BPM [6]), or automatically selected iteration start 
points (e.g., Pegasus [7]) to realize the repeated execution of 
workflow parts. An approach for the repetition of workflow 
logic with an arbitrary starting point that was manually 
selected at runtime by the user/scientist is currently missing. 
We argue that such functionality is useful in both business 
and scientific workflows. In business workflows it can help 
to address faulty situations, especially those where a rerun of 
a single faulted activity (usually a service invocation) is 
insufficient. In scientific workflows it is one missing puzzle 
piece to enable explorative workflow development [4, 8] and 
to control and steer the convergence of results.  

In this paper, we therefore formalize two operations on 
workflow instances to enforce the repetition of workflow 
logic, namely iteration and re-execution. The iteration works 
like a loop that reruns a number of activities. The re-
execution undoes work completed by a set of activities with 
the help of compensation techniques prior to the repetition of 
the same activities. We define the operations on the level of 
the workflow meta-model. Thus, the operations can be 
implemented in different workflow languages and engines. 
We discuss several problems that arise when repeating 
arbitrary workflow logic, such as data handling issues and 
the communication with clients. 

The rest of the paper is organized as follows. Section II 
presents other work on the topic. Section III shows the 
workflow meta-model used in this work. Section IV 
describes the iterate and re-execute operations and discusses 
implications of the approach. Section V concludes the paper. 

II. RELATED WORK 

Repetition of workflow logic can be achieved language-
based with certain modeling constructs. A general concept to 
retry and rerun transaction scopes in case of an error is 
shown in [9]. Eberle et al. [5] apply this concept to BPEL 
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scopes. In BPMN [10] this behavior can be modeled with 
sub-processes, error triggers and links. In ADEPTflex it is 
possible to model backward links to repeat faulted workflow 
logic [11]. In IBM MQSeries Workflow and its Flow 
Definition Language (FDL) activities are restarted if their 
exit condition evaluates to false. ADOME [12] can rerun 
special repeatable activities if an error occurs during activity 
execution. In Apache ODE an extension of BPEL invoke 
activities enables to retry a service invocation if a failure 
happens [13]. These approaches have in common that special 
modeling constructs realize the repetition. Thus, the iteration 
is pre-modeled at design time. Further, FDL and ADOME 
allow the rerun of a single faulted activity only. In contrast to 
these approaches, our solution aims at repeating a workflow 
starting from an arbitrary, not previously modeled point. 

Iterations can also be realized by configuring workflow 
models with deployment information. Invoke activities in the 
Oracle BPEL Process Manager [6] can be configured with an 
external file so that service invocations are retried if a 
specified error occurs. The concept to retry activities until 
they succeed is also subject of [14]. The scientific workflow 
system Taverna [15] allows specifying alternate services that 
are taken if an activity for a service invocation fails. In 
contrast to these approaches, we advocate a solution where 
the rerun can be started spontaneously without a pre-
configuration of workflows. 

The scientific workflow system Pegasus can 
automatically re-schedule a part of a workflow if an error 
occurs [7]. Successfully completed tasks are not retried. 
Kepler’s Smart Rerun Manager can be used to re-execute 
complete workflows [16]. Tasks that produce data that 
already exists are omitted. The main difference of these 
approaches to our idea is that we select the starting point of 
the iteration manually and hence can use this functionality 
for explorative workflow development and steering of the 
convergence of scientific results. 

In [2] the iteration of activities is mentioned but without 
going into details. In the scientific workflow system e-
BioFlow scientists can re-execute manually selected tasks 
with the help of an ad hoc workflow editor [3]. The set of 
activities that should be (re-)executed must be marked 
explicitly. No other activities are (re-)executed; no 
distinction is made between iteration and re-execution 
operations. In our approach the user only has to provide the 
start activity for the rerun and the successor activities are 
then executed as prescribed by the workflow model.  
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Figure 1.  Example for a process model 

III. META-MODEL 

At first, we introduce main concepts of the workflow 
meta-model we use in this paper. We focus on those aspects 

of the meta-model needed to describe the repeated execution 
of workflow logic. A process model is considered a directed 
and acyclic graph (Figure 1). The nodes are tasks to be 
performed (i.e., activities). The edges are control connectors 
(links) and prescribe the execution order of activities. Data 
dependencies are represented by variables that are read and 
written by activities. 

Definition 1 (Variable, V). The set of variables V Í M ´ S 
(M = set of names; S = set of data structures) defines all 
variables of a process model [2]. Each v Î V has assigned a 
finite set of possible values, its domain DOM(v) [2]. 

Definition 2 (Activity, A). Activities are functions that 
perform specific tasks. A join condition j Î C with C as the 
set of all conditions can be assigned to an activity. If j 
evaluates to true at runtime, the activity is scheduled. The set 
of all activities of a process model is A Í M ´ C. Variables 
can be assigned to activities with the help of an input 
variable map : A  (V) and an output variable map 

: A  (V). Input variables may provide data to activities 
and activities may write data into output variables. Further, 
compensating activities that undo the effects of an activity 
can be assigned by a compensate activity map c: N  N.  

Definition 3 (Link, L). The set L Í A ´ A ´ C denotes all 
control connectors in a process model. Each link connects a 
source with a target activity. Its transition condition t Î C 
says if it is followed at runtime. Two activities can be 
connected with at most one link (i.e., links are unique).  

Definition 4 (Process Model, G). A process model is a 
directed acyclic graph denoted by a tuple G = (m, V, A, L) 
with a name m Î M. 

A. Execution And Navigation 

For the execution of a process model, a new process 
instance of that model is created, activities are scheduled and 
performed, links are evaluated, and variables are read and 
written. These tasks (i.e., the navigation) are conducted 
according to certain rules. The component of a workflow 
system that supervises workflow execution and that 
implements these rules is called the navigator. We reflect the 
notion of time in the meta-model with ascending natural 
numbers. Each process instance possesses its own timeline. 
At time 0 Î  a process is instantiated. Each navigation step 
increases the time by 1. Hence, navigation steps conducted in 
parallel have different time steps. In the following we present 
navigation rules that are most important for this work. 

If an activity is executed, an activity instance is created 
with a new unique id. If the same activity is executed again 
(e.g., because it belongs to a loop), another instance of it is 
created with another id. The same holds for links and link 
instances. A new id can be generated with the function 
newId() that delivers an element of the set of ids, ID. 
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We consider process, activity and link instances sets of 
tuples. This allows us to navigate through a process by using 
set operations. Navigation steps are conducted by creating 
new tuples and adding them to sets (instantiation of an 
activity/a link) or by taking tuples from sets and adding 
modified tuples to sets (to change the state of existing 
activity/link instances). 

Definition 5 (Variable Instance, ). Variable instances 
provide a concrete value c for a variable v (i.e., an element of 
its domain) at a point in time t. The finite set of variable 
instances is denoted as  = {(v, c, t) | v Î V, c Î DOM(v), t 

Î }. The set of all possible variable instances is all. 

Definition 6 (Activity Instance, ). Each activity can be 
instantiated several times. These different instances are 
referred to by ids that are unique to activity instances. The 
set of activity instances is denoted as  = {(id, a, s, 

t) | id Î ID, a Î A, s Î S, t Î }. At a point in time t an 

activity instance has an execution state s Î S = {scheduled, 
executing, completed, faulted, terminated, compensated}. 
Note that an activity instance a reaches the compensated 
state if it is completed and its compensation activity c(p2(a)) 
was executed successfully.  

We define three sets that help to capture the state of a 
process instance and that are used to navigate through a 
process model graph. 

Definition 7 (Active Activities, ). The finite set of active 

activities contains all activity instances that are scheduled 

or currently being executed:  Í , "a Î : p3(a) Î 
{scheduled, executing}. 

Definition 8 (Finished Activities, ). The finite set of 

finished activities  contains all activity instances that are 

completed, faulted or terminated:  Í , "a Î  : p3(a) Î 
{completed, faulted, terminated}. Note that compensated 
activities are not part of  because their effects are undone.  

Definition 9 (Active Links, ). The finite set of active links 

 contains link instances that refer to the instantiated link e 

and a truth value for the evaluated transition condition:  = 

{(e, t) | e Î E, t Î {true, false}}.  contains only those link 
instances that are evaluated but where the target activity is 
not yet scheduled or being executed: "l Î : a Î : 

p2(p1(l)) = p2(a). 

Definition 10 (Wavefront, ). The set of all active activities 
and links in a process instance is called the wavefront 
 =  È . 

Definition 11 (Process Instance, pg). An instance for a 
process model g is now defined as a tuple pg = (, , , ). 

The set of all process instances is denoted as all. 
As navigation example consider Figure 1. Say activity 

a Î A is currently being executed and invokes a program that 
increases a given number by 1. The process instance thus 
looks as follows: pg = ({(number, 100, 1)}, {(382, a, 
executing, 3)}, {}, {}). If activity a completes, its 
corresponding tuple is deleted from  and a new tuple with 
the new activity instance state and an increased time step is 
added to : pg = ({(number, 100, 1)}, {}, {(382, a, 
completed, 4)}, {}). Now, the navigator stores the new value 
of the variable number and deletes the former value: pg = 
({(number, 101, 5)}, {}, {(382, a, completed, 4)}, {}). Even 
though the navigator manipulates the tuples, all these actions 
are recorded in the audit trail. 

IV. ITERATION AND RE-EXECUTION 

Based on the meta-model described above we can now 
address the repeated execution of workflow parts. As already 
proposed in [5], we also want to distinguish between two 
repetition operations. The first operation reruns workflow 
parts without taking corrective actions or undoing already 
completed work. The second operation resets the workflow 
context and execution environment with compensation 
techniques prior to the rerun (e.g., de-allocating reserved 
computing resources, undoing completed work).  
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Figure 2.  Example of a process instance 

Before we dive into the details of the iteration of 
workflow parts we have to introduce several important terms 
(see Figure 2). The point from where a workflow part is 
executed repeatedly is denoted as the start activity (activity c 
in the figure). The start activity is chosen manually by the 
user/scientist at workflow runtime. The workflow logic from 
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the start activity to those active activities and active links that 
are reachable from the start activity are called iteration body 
(activities c, e, f, g, i, j, the links in between and link g-k). 
The iteration body is the logic that is executed repeatedly. 
Note that activities/links reachable from the iteration body 
but not in the iteration body are executed normally when the 
control flow reaches them (e.g., activities k and l).  

For the iteration/re-execution of logic it is important to 
avoid race conditions, i.e., situations where two or more 
distinct executions of one and the same path are running in 
parallel. These situations can occur in cyclic workflow 
graphs or can be introduced by the manual rerun of activities 
that we propose. For example, if the repetition is started from 
activity c in Figure 2, then a race condition emerges because 
activities i and j on the same path are still running: activity l 
could be started if i and j complete while a competing run is 
started at c. There are two ways to avoid race conditions in 
this scenario. Firstly, the workflow system can wait until the 
running activities in the iteration body are finished without 
scheduling any successor activities (here: l). The rerun is 
triggered only afterwards. Secondly, running activities in the 
iteration body can be terminated and the rerun can start 
immediately. A workflow system should provide both 
options to the users because in some cases it is meaningful to 
complete running work prior to the rerun while in other cases 
the result of running work is unimportant. This has to be 
decided on a per-case-basis by the user. In the rest of this 
paper we focus on the more complex second option: 
termination. We therefore need to define an operation that 
terminates running activities. 

Definition 12 (Termination). The terminate operation 
prematurely aborts running activities. Let n = (id, a, s, t) Î  

with s Î {active, executing} be an activity instance. Then 

terminate(n) delivers the tuple (id, a, terminated, t’) with 
t’ > t, i.e., the activity instance is terminated. 

Definition 13 (Active Successor Activities). We need a 
function that finds all activities in the wavefront that belong 
to the iteration body. The function delivers exactly those 
running activities that have to be terminated before the rerun 
can be started: 

activeSuccActivities : A ´ all  () 

Let a Î A be an activity in process model g and pg Î all 

an instance of g. Then activeSuccActivities(a, pg) = 
{r1, …, rk}, r1, …, rk Î   "i Î {1, …, k}: p2(ri) is 
reachable from a. 

Race conditions can also occur if active links remain in 
the process instance. In Figure 2, a race condition could 
appear as follows. If activity k completes and the link h-k is 
evaluated, the join condition of k could become true. k would 
then be started although a competing execution of the same 
path arises due to the repetition of c. That is why such links 
have to be found and reset. 

Definition 14 (Active Successor Links). A function is 
needed that finds all links in the wavefront where the source 
activity is reachable from a given activity: 

activeSuccLinks: A ´ all  () 

Let a Î A be an activity of process model g and pg Î all 

an instance of g. Then activeSuccLinks(a, pg) = {l1, …, 
lk}, l1, …, lk Î   "i Î {1, …, k}: p1(li) is reachable from 
a. 

A. Iteration 

Parts of a workflow may be repeated without the need to 
undo any formerly completed work. A scientist may want to 
enforce the convergence of experiment results and therefore 
repeats some steps of a scientific workflow. This is what we 
denote as iteration of workflow parts. 

Definition 15 (Iterate Operation). The iteration is a function 
that repeats logic of a process model for a given process 
instance beginning with the given activity as starting point 
and taking the data indicated by the given time step as input 
for the next iteration.  

i : A ´ all ´   all 

Let a Î A be the start activity of the iteration and 

p_ing, p_outg Î all two process instances. Here, p_ing is the 

input for the i operation and p_outg  is the resulting instance 
with changed state that is ready to start with the iteration. As 
pre-condition we define that only already executed activities 
can be used as start activity: $n Î  È  : p2(n) = a. This 
prevents (1) using the operation on dead paths, (2) jumping 
into the future of a process instance, and (3) guarantees the 
correct termination of running activities. Then i(a, p_ing, t) = 

p_outg with t Î , p_ing = (in, in, in, in) and p_outg  = 

(out, out, out, out) :  

1. out = in 

2. out = in \ activeSuccActivities(a) È {(newId(), 
a, active, i)}, i is a new and youngest time step 

3. out = in È ÈnÎactiveSuccActivities(a) terminate(n) 

4. 2 = 1 \ activeSuccLinks(a) 
The variables remain unchanged (1.). All active 

successor activities from a are terminated, i.e., deleted from 
the set of running activities (2.) and inserted with a new 
status to the set of finished activities (3.). All active links in 
the iteration body are reset (4.). The start activity is 
scheduled (added to the set of active activities with status 
active) so that the workflow logic is repeated beginning with 
the start activity (2.). The join condition of the start activity 
is not evaluated again. 

B. Re-execution 

It is also needed to repeat parts of a workflow as if they 
were executed for the first time. Completed work in the 
iteration body has to be reversed/compensated prior to the 
repetition. A scientist may want to retry a part of an 
experiment because something went wrong. But the 
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execution environment has to be reset first. This is what we 
denote as re-execution of workflow parts. 

Algorithm 1 (Compensate Iteration Body). For the 
compensation of completed work in the iteration body we 
propose an algorithm with the following signature: 

compensateIterationBody : A ´ all  (all) 
The function compensates all completed activities of the 

iteration body in reverse execution order. It delivers the 
values of variables that were changed during compensation. 
Let a Î A be the start activity of the re-execution and p Î all 
a process instance for the model of a. Then 
compensateIterationBody(a, p) = {v1, …, vk} with p = (, , 

, ), v1, … , vk Î all works as follows (Note: f.state for 

f Î  is equivalent to p3(f); f.time to p4(f)): 
 
function compensateIterationBody(a, p) 
1 result ¬ Æ 

2 F = {f Î  | f.state == completed  

p2(f) is reachable from a} 
3 while (|F| > 0) do 
4 if |F| > 1 then 
5 $m Î F: "n Î F, n ¹ m: 

m.time > n.time  execute 

compensating activity c(p2(m)) 
6 else  

7 $m Î F  execute compensating 

activity  c(p2(m)) 

8 F ¬ F \ {m} 

9 "v Î (c(p2(m))): result ¬ result È {(v, 
c, t)}, c is the new value of variable 
v, t is the timestamp of the 
assignment 

10 od 
11 return result 

 
A similar algorithm for the creation of the reverse order 

graph is also proposed in [17]. But the intention of our 
algorithm is to deliver the changed variable values as result 
of the compensation operation. 

Definition 17 (Re-execute Operation). The re-execution is a 
function that repeats logic of a process model for a given 
process instance with a given activity as starting point. The 
data indicated by the given time step is taken as input for the 
re-execution. The operation uses the compensate operation 
for already completed work in the iteration body.  

r : A ´ all ´   all 

a Î A, p_ing, p_outg Î all and the pre-condition are 
similar to the iterate operation. The difference is the 
calculation of out: r(a, p_ing, t) = p_outg:  

1. out = in È compensateIterationBody(a, p) 

The variable values might be modified as a result of the 
compensation of completed work in the iteration body (1.). 
Note that the start activity for the re-execution is scheduled 
after the compensation is done. 

C. Data Handling 

For the repetition of workflow parts the handling of data 
is of utmost importance. Where to store data that the former 
iteration has produced? What data should be taken as input 
for the next iteration? A mechanism is needed to store 
different values for same variables and to load variable 
values for iterations. The compensation of completed work 
as is done in the re-execution operation is not sufficient for 
resetting variables because compensation does not always set 
the variables to their former states. This strongly depends on 
the compensation logic and invoked services. 

The desired functionality can be realized by saving the 
complete content history of variables including the 
assignment timestamps. Many workflow systems already 
provide this as part of their audit trail [2, 18]. If a variable is 
changed a new tuple is inserted in  and the former tuples 
remain, e.g., at time step 9 variable number was increased by 
1:  = {(number, 50, 1), (number, 51, 9)}. That way no data 
is lost due to repetition of workflows parts and former 
variable values can be accessed as input for the rerun. It must 
be possible for the users to choose the input for the next 
iteration. That is why we foresee the specification of a time 
step in the iteration and re-execution operation (see 
Definition 15 and 17). This time step indicates which 
variable values are taken as input for the respective 
operation, namely those that were valid at the given point in 
time. The visible variables have to be re-initialized 
accordingly. In Figure 3, the sample workflow of Figure 1 
was iterated from activity a three times leading to a chain of 
executions of activities a and b. The current value of variable 
number was taken for each rerun. Imagine the user wants to 
iterate again from activity a. Different time steps chosen by 
the user as input for the operation would influence the 
initialization of variables for the iteration as follows. At the 
(latest) time t = 8 the value of number is 102; at t = 6 the 
value is the one obtained after the second execution of a 
(101); and at t = 1 number has its initial value (99). 

 

a b

number = 100 

t=1

t=2

t=3 t=4

t=5

t=6

t=7

t=8

a ba

number = 102 number = 101 

 
Figure 3.  Data handling during workflow repetition 

D. Implications on the Execution Correctness 

In practice, workflows consist of different activity types, 
e.g., for sending/receiving messages, loops. The enforced 
repetition of workflow logic has to account for different 
activity types, especially those that interact with external 
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entities such as clients, humans, services/programs. The main 
problem is that the repetitions are not reflected in the 
workflow logic and hence the aforementioned entities do not 
know a priori the exact behavior of the workflow. 

If a message receiving activity is repeated, the message 
sending client has to re-send the message or send an adapted 
message. The problem is that the client needs to be informed 
about the repetition. A simple solution is that clients provide 
a special operation that can be used by the workflow engine 
to propagate the iteration. Over this operation the engine 
could send the message back to the client enriched with 
further context (e.g., the address of the engine, correlation 
information, workflow instance id). The client then decides 
whether to re-send the message or to send an adapted one. 

The repetition of message sending activities is straight 
forward for idempotent services. Non-idempotent services 
should be compensated prior to a repeated invocation, as is 
done in the re-execution operation. If the iteration operation 
repeats the execution of non-idempotent services, then the 
user is responsible for the effect of the operation.  

Iterations within modeled loops can have an 
unforeseeable impact on the behavior of workflows. The 
context of workflows might be changed in a way that leads 
to infinite loops (e.g., because the repetition changes variable 
values so that a while condition can never evaluate to false). 
Usually, a workflow system provides operations to change 
variable values. This functionality can be used to resolve 
infinite loops. 

E. User Interaction With the Workflow System 

A workflow system that implements our approach must 
provide a monitoring tool that allows users to continuously 
follow the execution state of process instances. If the user 
detects a faulty or unintended situation, he can suspend the 
workflow and manually trigger an iteration/re-execution. The 
system requests him for the time step used to retrieve the 
variable values for the loop. Then, the process instance state 
is changed as described in Section IV and the user can 
resume workflow execution.  

V. CONCLUSION AND OUTLOOK 

In this paper, we have formally described two operations 
to enforce the repetition of workflow logic during workflow 
runtime: the iterate operation reruns activities starting from a 
manually selected activity; the re-execute operation undoes 
completed work in the iteration body before rerunning 
activities. The distinctive features of the approach are that 
the repetition does not have to be modeled or configured 
previously and that arbitrary activities can be used as starting 
point for the rerun. We have shown how problems with the 
data handling and communication with external parties can 
be solved. The approach is described based on an abstract 
meta-model and thus can be applied to existing or future 
workflow engines and languages. Currently, we are working 
on an implementation for the BPEL engine Apache ODE. 

The enforced repetition of workflow logic is a step 
towards our goal to enable an explorative workflow 
development, especially in the field of scientific workflows.  
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