
Enforcing the Repeated Execution of Logic in Workflows

Mirko Sonntag, Dimka Karastoyanova
Institute of Architecture of Application Systems
University of Stuttgart, Universitaetsstrasse 38

70569 Stuttgart, Germany
{sonntag, karastoyanova}@iaas.uni-stuttgart.de

Abstract—The repeated execution of workflow logic is a feature
needed in many situations. Repetition of activities can be
modeled with workflow constructs (e.g., loops) or external
workflow configurations, or can be triggered by a user action
during workflow execution. While the first two options are
state of the art in the workflow technology, the latter is
currently insufficiently addressed in literature and practice.
We argue that a manually triggered rerun operation enables
both business users and scientists to react to unforeseen
problems and thus improves workflow robustness, allows
scientists steering the convergence of scientific results, and
facilitates an explorative workflow development as required in
scientific workflows. In this paper, we therefore formalize
operations for the repeated enactment of activities—for both
iteration and re-execution. Starting point of the rerun is an
arbitrary, manually selected activity. Since we define the
operations on a meta-model level, they can be implemented for
different workflow languages and engines.

Keywords-service composition; workflow adaptability;
iteration; re-execution.

I. INTRODUCTION

Imperative workflow languages are used to describe all
possible paths through a process. On the one hand, this
ensures the exact execution of the modeled behavior without
deviations. On the other hand, it is difficult, if not
impossible, to react to unforeseeable and thus un-modeled
situations that might happen during workflow execution,
e.g., exceptions. This is the reason why flexibility features of
workflows were identified as essential for the success of the
technology in real world scenarios (e.g., [1]). In [2], four
possible modifications of running workflows are described
as advanced functions of workflow systems: the deletion of
steps, the insertion of intermediary steps, the inquiry of
additional information, the iteration of steps.

In this paper, we focus on the iteration of steps. Usually,
iterations are explicitly modeled with loop constructs. But
not all eventualities can be accounted for in a process model
prior to runtime. Imagine a process with an activity to invoke
a service. At runtime, the service may become unavailable.
The activity and hence the process will fail, leading to a loss
of time and data. Rerunning the activity (maybe with
modified input parameters) could prevent this situation.

The repetition of workflow logic is not only meaningful
for handling faults. In the area of scientific workflows, the
result of scientific experiments or simulations is not always

known a priori [3, 4]. Scientists may need to take adaptive
actions during workflow execution. In this context, rerunning
activities is basically useful to enforce the convergence of
results, e.g., redo the generation of a Finite Element Method
(FEM) grid to refine a certain area, repeat the visualization
of results to obtain an image with focus on another aspect of
a simulated object, or enforce the execution of an additional
simulation time step.

A lot of work exists on the repetition of activities in
workflows. Existing approaches use modeling constructs
(e.g., BPEL retry scopes [5]), workflow configurations (e.g.,
Oracle BPM [6]), or automatically selected iteration start
points (e.g., Pegasus [7]) to realize the repeated execution of
workflow parts. An approach for the repetition of workflow
logic with an arbitrary starting point that was manually
selected at runtime by the user/scientist is currently missing.
We argue that such functionality is useful in both business
and scientific workflows. In business workflows it can help
to address faulty situations, especially those where a rerun of
a single faulted activity (usually a service invocation) is
insufficient. In scientific workflows it is one missing puzzle
piece to enable explorative workflow development [4, 8] and
to control and steer the convergence of results.

In this paper, we therefore formalize two operations on
workflow instances to enforce the repetition of workflow
logic, namely iteration and re-execution. The iteration works
like a loop that reruns a number of activities. The re-
execution undoes work completed by a set of activities with
the help of compensation techniques prior to the repetition of
the same activities. We define the operations on the level of
the workflow meta-model. Thus, the operations can be
implemented in different workflow languages and engines.
We discuss several problems that arise when repeating
arbitrary workflow logic, such as data handling issues and
the communication with clients.

The rest of the paper is organized as follows. Section II
presents other work on the topic. Section III shows the
workflow meta-model used in this work. Section IV
describes the iterate and re-execute operations and discusses
implications of the approach. Section V concludes the paper.

II. RELATED WORK

Repetition of workflow logic can be achieved language-
based with certain modeling constructs. A general concept to
retry and rerun transaction scopes in case of an error is
shown in [9]. Eberle et al. [5] apply this concept to BPEL

20

BUSTECH 2011 : The First International Conference on Business Intelligence and Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-160-1

scopes. In BPMN [10] this behavior can be modeled with
sub-processes, error triggers and links. In ADEPTflex it is
possible to model backward links to repeat faulted workflow
logic [11]. In IBM MQSeries Workflow and its Flow
Definition Language (FDL) activities are restarted if their
exit condition evaluates to false. ADOME [12] can rerun
special repeatable activities if an error occurs during activity
execution. In Apache ODE an extension of BPEL invoke
activities enables to retry a service invocation if a failure
happens [13]. These approaches have in common that special
modeling constructs realize the repetition. Thus, the iteration
is pre-modeled at design time. Further, FDL and ADOME
allow the rerun of a single faulted activity only. In contrast to
these approaches, our solution aims at repeating a workflow
starting from an arbitrary, not previously modeled point.

Iterations can also be realized by configuring workflow
models with deployment information. Invoke activities in the
Oracle BPEL Process Manager [6] can be configured with an
external file so that service invocations are retried if a
specified error occurs. The concept to retry activities until
they succeed is also subject of [14]. The scientific workflow
system Taverna [15] allows specifying alternate services that
are taken if an activity for a service invocation fails. In
contrast to these approaches, we advocate a solution where
the rerun can be started spontaneously without a pre-
configuration of workflows.

The scientific workflow system Pegasus can
automatically re-schedule a part of a workflow if an error
occurs [7]. Successfully completed tasks are not retried.
Kepler’s Smart Rerun Manager can be used to re-execute
complete workflows [16]. Tasks that produce data that
already exists are omitted. The main difference of these
approaches to our idea is that we select the starting point of
the iteration manually and hence can use this functionality
for explorative workflow development and steering of the
convergence of scientific results.

In [2] the iteration of activities is mentioned but without
going into details. In the scientific workflow system e-
BioFlow scientists can re-execute manually selected tasks
with the help of an ad hoc workflow editor [3]. The set of
activities that should be (re-)executed must be marked
explicitly. No other activities are (re-)executed; no
distinction is made between iteration and re-execution
operations. In our approach the user only has to provide the
start activity for the rerun and the successor activities are
then executed as prescribed by the workflow model.

a

b

number
Activity Variable

Data
connector

Control
connector

Figure 1. Example for a process model

III. META-MODEL

At first, we introduce main concepts of the workflow
meta-model we use in this paper. We focus on those aspects

of the meta-model needed to describe the repeated execution
of workflow logic. A process model is considered a directed
and acyclic graph (Figure 1). The nodes are tasks to be
performed (i.e., activities). The edges are control connectors
(links) and prescribe the execution order of activities. Data
dependencies are represented by variables that are read and
written by activities.

Definition 1 (Variable, V). The set of variables V Í M ´ S
(M = set of names; S = set of data structures) defines all
variables of a process model [2]. Each v Î V has assigned a
finite set of possible values, its domain DOM(v) [2].

Definition 2 (Activity, A). Activities are functions that
perform specific tasks. A join condition j Î C with C as the
set of all conditions can be assigned to an activity. If j
evaluates to true at runtime, the activity is scheduled. The set
of all activities of a process model is A Í M ´ C. Variables
can be assigned to activities with the help of an input
variable map : A  (V) and an output variable map

: A  (V). Input variables may provide data to activities
and activities may write data into output variables. Further,
compensating activities that undo the effects of an activity
can be assigned by a compensate activity map c: N  N.

Definition 3 (Link, L). The set L Í A ´ A ´ C denotes all
control connectors in a process model. Each link connects a
source with a target activity. Its transition condition t Î C
says if it is followed at runtime. Two activities can be
connected with at most one link (i.e., links are unique).

Definition 4 (Process Model, G). A process model is a
directed acyclic graph denoted by a tuple G = (m, V, A, L)
with a name m Î M.

A. Execution And Navigation

For the execution of a process model, a new process
instance of that model is created, activities are scheduled and
performed, links are evaluated, and variables are read and
written. These tasks (i.e., the navigation) are conducted
according to certain rules. The component of a workflow
system that supervises workflow execution and that
implements these rules is called the navigator. We reflect the
notion of time in the meta-model with ascending natural
numbers. Each process instance possesses its own timeline.
At time 0 Î  a process is instantiated. Each navigation step
increases the time by 1. Hence, navigation steps conducted in
parallel have different time steps. In the following we present
navigation rules that are most important for this work.

If an activity is executed, an activity instance is created
with a new unique id. If the same activity is executed again
(e.g., because it belongs to a loop), another instance of it is
created with another id. The same holds for links and link
instances. A new id can be generated with the function
newId() that delivers an element of the set of ids, ID.

21

BUSTECH 2011 : The First International Conference on Business Intelligence and Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-160-1

We consider process, activity and link instances sets of
tuples. This allows us to navigate through a process by using
set operations. Navigation steps are conducted by creating
new tuples and adding them to sets (instantiation of an
activity/a link) or by taking tuples from sets and adding
modified tuples to sets (to change the state of existing
activity/link instances).

Definition 5 (Variable Instance, ). Variable instances
provide a concrete value c for a variable v (i.e., an element of
its domain) at a point in time t. The finite set of variable
instances is denoted as  = {(v, c, t) | v Î V, c Î DOM(v), t

Î }. The set of all possible variable instances is all.

Definition 6 (Activity Instance, ). Each activity can be
instantiated several times. These different instances are
referred to by ids that are unique to activity instances. The
set of activity instances is denoted as  = {(id, a, s,

t) | id Î ID, a Î A, s Î S, t Î }. At a point in time t an

activity instance has an execution state s Î S = {scheduled,
executing, completed, faulted, terminated, compensated}.
Note that an activity instance a reaches the compensated
state if it is completed and its compensation activity c(p2(a))
was executed successfully.

We define three sets that help to capture the state of a
process instance and that are used to navigate through a
process model graph.

Definition 7 (Active Activities, ). The finite set of active

activities contains all activity instances that are scheduled

or currently being executed:  Í , "a Î : p3(a) Î
{scheduled, executing}.

Definition 8 (Finished Activities, ). The finite set of

finished activities  contains all activity instances that are

completed, faulted or terminated:  Í , "a Î  : p3(a) Î
{completed, faulted, terminated}. Note that compensated
activities are not part of  because their effects are undone.

Definition 9 (Active Links, ). The finite set of active links

 contains link instances that refer to the instantiated link e

and a truth value for the evaluated transition condition:  =

{(e, t) | e Î E, t Î {true, false}}.  contains only those link
instances that are evaluated but where the target activity is
not yet scheduled or being executed: "l Î : a Î :

p2(p1(l)) = p2(a).

Definition 10 (Wavefront, ). The set of all active activities
and links in a process instance is called the wavefront
 =  È .

Definition 11 (Process Instance, pg). An instance for a
process model g is now defined as a tuple pg = (, , , ).

The set of all process instances is denoted as all.
As navigation example consider Figure 1. Say activity

a Î A is currently being executed and invokes a program that
increases a given number by 1. The process instance thus
looks as follows: pg = ({(number, 100, 1)}, {(382, a,
executing, 3)}, {}, {}). If activity a completes, its
corresponding tuple is deleted from  and a new tuple with
the new activity instance state and an increased time step is
added to : pg = ({(number, 100, 1)}, {}, {(382, a,
completed, 4)}, {}). Now, the navigator stores the new value
of the variable number and deletes the former value: pg =
({(number, 101, 5)}, {}, {(382, a, completed, 4)}, {}). Even
though the navigator manipulates the tuples, all these actions
are recorded in the audit trail.

IV. ITERATION AND RE-EXECUTION

Based on the meta-model described above we can now
address the repeated execution of workflow parts. As already
proposed in [5], we also want to distinguish between two
repetition operations. The first operation reruns workflow
parts without taking corrective actions or undoing already
completed work. The second operation resets the workflow
context and execution environment with compensation
techniques prior to the rerun (e.g., de-allocating reserved
computing resources, undoing completed work).

a

b

cRepeat

e f g

i j k

d

h

l

Wavefront

m

Completed activity

Finished link

Running activity

Unscheduled activity

Active link

Inactive link

Start activity

Iteration
body

Figure 2. Example of a process instance

Before we dive into the details of the iteration of
workflow parts we have to introduce several important terms
(see Figure 2). The point from where a workflow part is
executed repeatedly is denoted as the start activity (activity c
in the figure). The start activity is chosen manually by the
user/scientist at workflow runtime. The workflow logic from

22

BUSTECH 2011 : The First International Conference on Business Intelligence and Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-160-1

the start activity to those active activities and active links that
are reachable from the start activity are called iteration body
(activities c, e, f, g, i, j, the links in between and link g-k).
The iteration body is the logic that is executed repeatedly.
Note that activities/links reachable from the iteration body
but not in the iteration body are executed normally when the
control flow reaches them (e.g., activities k and l).

For the iteration/re-execution of logic it is important to
avoid race conditions, i.e., situations where two or more
distinct executions of one and the same path are running in
parallel. These situations can occur in cyclic workflow
graphs or can be introduced by the manual rerun of activities
that we propose. For example, if the repetition is started from
activity c in Figure 2, then a race condition emerges because
activities i and j on the same path are still running: activity l
could be started if i and j complete while a competing run is
started at c. There are two ways to avoid race conditions in
this scenario. Firstly, the workflow system can wait until the
running activities in the iteration body are finished without
scheduling any successor activities (here: l). The rerun is
triggered only afterwards. Secondly, running activities in the
iteration body can be terminated and the rerun can start
immediately. A workflow system should provide both
options to the users because in some cases it is meaningful to
complete running work prior to the rerun while in other cases
the result of running work is unimportant. This has to be
decided on a per-case-basis by the user. In the rest of this
paper we focus on the more complex second option:
termination. We therefore need to define an operation that
terminates running activities.

Definition 12 (Termination). The terminate operation
prematurely aborts running activities. Let n = (id, a, s, t) Î 

with s Î {active, executing} be an activity instance. Then

terminate(n) delivers the tuple (id, a, terminated, t’) with
t’ > t, i.e., the activity instance is terminated.

Definition 13 (Active Successor Activities). We need a
function that finds all activities in the wavefront that belong
to the iteration body. The function delivers exactly those
running activities that have to be terminated before the rerun
can be started:

activeSuccActivities : A ´ all  ()

Let a Î A be an activity in process model g and pg Î all

an instance of g. Then activeSuccActivities(a, pg) =
{r1, …, rk}, r1, …, rk Î   "i Î {1, …, k}: p2(ri) is
reachable from a.

Race conditions can also occur if active links remain in
the process instance. In Figure 2, a race condition could
appear as follows. If activity k completes and the link h-k is
evaluated, the join condition of k could become true. k would
then be started although a competing execution of the same
path arises due to the repetition of c. That is why such links
have to be found and reset.

Definition 14 (Active Successor Links). A function is
needed that finds all links in the wavefront where the source
activity is reachable from a given activity:

activeSuccLinks: A ´ all  ()

Let a Î A be an activity of process model g and pg Î all

an instance of g. Then activeSuccLinks(a, pg) = {l1, …,
lk}, l1, …, lk Î   "i Î {1, …, k}: p1(li) is reachable from
a.

A. Iteration

Parts of a workflow may be repeated without the need to
undo any formerly completed work. A scientist may want to
enforce the convergence of experiment results and therefore
repeats some steps of a scientific workflow. This is what we
denote as iteration of workflow parts.

Definition 15 (Iterate Operation). The iteration is a function
that repeats logic of a process model for a given process
instance beginning with the given activity as starting point
and taking the data indicated by the given time step as input
for the next iteration.

i : A ´ all ´   all

Let a Î A be the start activity of the iteration and

p_ing, p_outg Î all two process instances. Here, p_ing is the

input for the i operation and p_outg is the resulting instance
with changed state that is ready to start with the iteration. As
pre-condition we define that only already executed activities
can be used as start activity: $n Î  È  : p2(n) = a. This
prevents (1) using the operation on dead paths, (2) jumping
into the future of a process instance, and (3) guarantees the
correct termination of running activities. Then i(a, p_ing, t) =

p_outg with t Î , p_ing = (in, in, in, in) and p_outg =

(out, out, out, out) : 

1. out = in

2. out = in \ activeSuccActivities(a) È {(newId(),
a, active, i)}, i is a new and youngest time step

3. out = in È ÈnÎactiveSuccActivities(a) terminate(n)

4. 2 = 1 \ activeSuccLinks(a)
The variables remain unchanged (1.). All active

successor activities from a are terminated, i.e., deleted from
the set of running activities (2.) and inserted with a new
status to the set of finished activities (3.). All active links in
the iteration body are reset (4.). The start activity is
scheduled (added to the set of active activities with status
active) so that the workflow logic is repeated beginning with
the start activity (2.). The join condition of the start activity
is not evaluated again.

B. Re-execution

It is also needed to repeat parts of a workflow as if they
were executed for the first time. Completed work in the
iteration body has to be reversed/compensated prior to the
repetition. A scientist may want to retry a part of an
experiment because something went wrong. But the

23

BUSTECH 2011 : The First International Conference on Business Intelligence and Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-160-1

execution environment has to be reset first. This is what we
denote as re-execution of workflow parts.

Algorithm 1 (Compensate Iteration Body). For the
compensation of completed work in the iteration body we
propose an algorithm with the following signature:

compensateIterationBody : A ´ all  (all)
The function compensates all completed activities of the

iteration body in reverse execution order. It delivers the
values of variables that were changed during compensation.
Let a Î A be the start activity of the re-execution and p Î all
a process instance for the model of a. Then
compensateIterationBody(a, p) = {v1, …, vk} with p = (, ,

, ), v1, … , vk Î all works as follows (Note: f.state for

f Î  is equivalent to p3(f); f.time to p4(f)):

function compensateIterationBody(a, p)
1 result ¬ Æ

2 F = {f Î  | f.state == completed 

p2(f) is reachable from a}
3 while (|F| > 0) do
4 if |F| > 1 then
5 $m Î F: "n Î F, n ¹ m:

m.time > n.time  execute

compensating activity c(p2(m))
6 else

7 $m Î F  execute compensating

activity c(p2(m))

8 F ¬ F \ {m}

9 "v Î (c(p2(m))): result ¬ result È {(v,
c, t)}, c is the new value of variable
v, t is the timestamp of the
assignment

10 od
11 return result

A similar algorithm for the creation of the reverse order

graph is also proposed in [17]. But the intention of our
algorithm is to deliver the changed variable values as result
of the compensation operation.

Definition 17 (Re-execute Operation). The re-execution is a
function that repeats logic of a process model for a given
process instance with a given activity as starting point. The
data indicated by the given time step is taken as input for the
re-execution. The operation uses the compensate operation
for already completed work in the iteration body.

r : A ´ all ´   all

a Î A, p_ing, p_outg Î all and the pre-condition are
similar to the iterate operation. The difference is the
calculation of out: r(a, p_ing, t) = p_outg: 

1. out = in È compensateIterationBody(a, p)

The variable values might be modified as a result of the
compensation of completed work in the iteration body (1.).
Note that the start activity for the re-execution is scheduled
after the compensation is done.

C. Data Handling

For the repetition of workflow parts the handling of data
is of utmost importance. Where to store data that the former
iteration has produced? What data should be taken as input
for the next iteration? A mechanism is needed to store
different values for same variables and to load variable
values for iterations. The compensation of completed work
as is done in the re-execution operation is not sufficient for
resetting variables because compensation does not always set
the variables to their former states. This strongly depends on
the compensation logic and invoked services.

The desired functionality can be realized by saving the
complete content history of variables including the
assignment timestamps. Many workflow systems already
provide this as part of their audit trail [2, 18]. If a variable is
changed a new tuple is inserted in  and the former tuples
remain, e.g., at time step 9 variable number was increased by
1:  = {(number, 50, 1), (number, 51, 9)}. That way no data
is lost due to repetition of workflows parts and former
variable values can be accessed as input for the rerun. It must
be possible for the users to choose the input for the next
iteration. That is why we foresee the specification of a time
step in the iteration and re-execution operation (see
Definition 15 and 17). This time step indicates which
variable values are taken as input for the respective
operation, namely those that were valid at the given point in
time. The visible variables have to be re-initialized
accordingly. In Figure 3, the sample workflow of Figure 1
was iterated from activity a three times leading to a chain of
executions of activities a and b. The current value of variable
number was taken for each rerun. Imagine the user wants to
iterate again from activity a. Different time steps chosen by
the user as input for the operation would influence the
initialization of variables for the iteration as follows. At the
(latest) time t = 8 the value of number is 102; at t = 6 the
value is the one obtained after the second execution of a
(101); and at t = 1 number has its initial value (99).

a b

number = 100

t=1

t=2

t=3 t=4

t=5

t=6

t=7

t=8

a ba

number = 102 number = 101

Figure 3. Data handling during workflow repetition

D. Implications on the Execution Correctness

In practice, workflows consist of different activity types,
e.g., for sending/receiving messages, loops. The enforced
repetition of workflow logic has to account for different
activity types, especially those that interact with external

24

BUSTECH 2011 : The First International Conference on Business Intelligence and Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-160-1

entities such as clients, humans, services/programs. The main
problem is that the repetitions are not reflected in the
workflow logic and hence the aforementioned entities do not
know a priori the exact behavior of the workflow.

If a message receiving activity is repeated, the message
sending client has to re-send the message or send an adapted
message. The problem is that the client needs to be informed
about the repetition. A simple solution is that clients provide
a special operation that can be used by the workflow engine
to propagate the iteration. Over this operation the engine
could send the message back to the client enriched with
further context (e.g., the address of the engine, correlation
information, workflow instance id). The client then decides
whether to re-send the message or to send an adapted one.

The repetition of message sending activities is straight
forward for idempotent services. Non-idempotent services
should be compensated prior to a repeated invocation, as is
done in the re-execution operation. If the iteration operation
repeats the execution of non-idempotent services, then the
user is responsible for the effect of the operation.

Iterations within modeled loops can have an
unforeseeable impact on the behavior of workflows. The
context of workflows might be changed in a way that leads
to infinite loops (e.g., because the repetition changes variable
values so that a while condition can never evaluate to false).
Usually, a workflow system provides operations to change
variable values. This functionality can be used to resolve
infinite loops.

E. User Interaction With the Workflow System

A workflow system that implements our approach must
provide a monitoring tool that allows users to continuously
follow the execution state of process instances. If the user
detects a faulty or unintended situation, he can suspend the
workflow and manually trigger an iteration/re-execution. The
system requests him for the time step used to retrieve the
variable values for the loop. Then, the process instance state
is changed as described in Section IV and the user can
resume workflow execution.

V. CONCLUSION AND OUTLOOK

In this paper, we have formally described two operations
to enforce the repetition of workflow logic during workflow
runtime: the iterate operation reruns activities starting from a
manually selected activity; the re-execute operation undoes
completed work in the iteration body before rerunning
activities. The distinctive features of the approach are that
the repetition does not have to be modeled or configured
previously and that arbitrary activities can be used as starting
point for the rerun. We have shown how problems with the
data handling and communication with external parties can
be solved. The approach is described based on an abstract
meta-model and thus can be applied to existing or future
workflow engines and languages. Currently, we are working
on an implementation for the BPEL engine Apache ODE.

The enforced repetition of workflow logic is a step
towards our goal to enable an explorative workflow
development, especially in the field of scientific workflows.

ACKNOWLEDGMENT

The authors would like to thank the German Research
Foundation (DFG) for financial support of the project within
the Cluster of Excellence in Simulation Technology
(EXC 310/1) at the University of Stuttgart.

REFERENCES
[1] W. van der Aalst, T. Basten, H. Verbeek, P. Verkoulen, and

M. Voorhoeve, “Adaptive workflow: on the interplay between
flexibility and support,” Proc. of the 1st Conf. on Enterprise
Information Systems, pp. 353-360, 1999.

[2] F. Leymann and D. Roller, “Production Workflow – Concepts
and Techniques,” Prentice Hall, 2000.

[3] I. Wassink, M. Ooms, and P. van der Vet, “Designing
workflows on the fly using e-BioFlow,“ ICSOC, 2009.

[4] R. Barga and D. Gannon, “Scientific vs. business workflows,”
in: Taylor et al., “Workflows for e-Science,” Springer, pp. 9-
18, 2007.

[5] H. Eberle, O. Kopp, F. Leymann, and T. Unger, “Retry scopes
to enable robust workflow execution in pervasive
environments,” Proc. of the 2nd MONA+ Workshop, 2009.

[6] Oracle BPEL Process Manager,
http://www.oracle.com/us/products/middleware/application-
server/bpel-home-066588.html

[7] E. Deelman, G. Mehta, G. Singh, M.-H. Su, and K. Vahi,
“Pegasus: Mapping large-scale workflows to distributed
ressources,” In: Taylor et al., “Workflows for e-science,”
Springer, pp. 376-394, 2007.

[8] G. Vossen and M. Weske, “The WASA approach to workflow
management for scientific applications,” Workflow
Management Systems and Interoperability, NATO ASI Series
F: Computer and System Sciences, Vol. 164, Springer-Verlag,
pp. 145-164, 1998

[9] F. Leymann, “Supporting business transactions via partial
backward recovery in workflow management systems,” Proc.
of the BTW, Springer, 1995.

[10] Object Management Group (OMG), “Business Process
Modeling Notation (BPMN) Version 1.2,” OMG
Specification, 2009.

[11] M. Reichert and P. Dadam, “ADEPTflex – Supporting
dynamic changes of workflows without losing control,“
Intelligent Information Systems, vol. 10, pp. 93-129, 1998.

[12] D. Chiu, Q. Li, and K. Karlapalem, “A meta modeling
approach to workflow management systems supporting
exception handling,” Information Systems, vol. 24, pp. 159-
184, 1999.

[13] Apache ODE, http://ode.apache.org/activity-failure-and-
recovery.html

[14] P. Greenfield, A. Fekete, J. Jang, D. Kuo, “Compensation is
not enough,” Proc. of the 7th EDOC, 2003.

[15] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P.
Li, and T. Oinn, “Taverna: a tool for building and running
workflows of services,” Nucleic Acids Research, vol. 34,
Web Server issue, pp. 729-732, 2006.

[16] I. Altintas, O. Barney, E. Jaeger-Frank, “Provenance
Collection Support in the Kepler Scientific Workflow
System,“ Provenance and Annotation of Data, IPAW, LNCS,
Vol. 4145, pp. 118–132, Springer, 2006.

[17] R. Khalaf, “Supporting business process fragmentation while
maintaining operational semantics: a BPEL perspective,”
Doctoral Thesis, ISBN: 978-3-86624-344-6, 2008.

[18] Workflow Management Coalition, “Audit Data Specification,
Version 1.1,” WfMC Specification, 1998.

25

BUSTECH 2011 : The First International Conference on Business Intelligence and Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-160-1

