
BRA ININFO 2017 : The Second International Conference on Neuroscience and Cognitive Brain Information

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-579-1 8

A GPU-accelerated Framework for Fast Mapping of Dense Functional Connectomes

Kang Zhao, Haixiao Du and Yu Wang
Department of Electronic Engineering, Tsinghua University

Beijing, China
Email: {zhaok14,duhx11}@mails.tsinghua.edu.cn,yu-wang@tsinghua.edu.cn

Abstract—In the context of voxel-based modalities like functional
magnetic resonance imaging (fMRI), a dense connectome can be
treated as a large-scale network where single voxels are directly
used to define brain network nodes. Contrary to parcellated con-
nectomes, dense connectomes have higher spatial resolution and
are immune from the parcellation quality. However, the analysis
of dense connectomes basically requires more powerful computing
and storage capacities. Here, we proposed a graphics processing
unit(GPU)-accelerated framework to perform fast mapping of
dense functional connectomes. Specifically, the framework is
scalable to high voxel-resolution imaging data(<2mm) and can
construct large-scale functional brain networks with lower time
and memory overheads. Based on the proposed framework,
three functional connectivity measures (Pearson’s, Spearman’s
and Kendall’s) were accelerated on the GPU for fast detection
of possible functional links in dense connectomes. Experimental
results demonstrated that our GPU acceleration for the Kendall’s
measure delivered a >50x speedup against both multi-core CPUs
implementations and GPU-based related works.

Keywords–neuroinformatics; dense connectomes; functional
connectivity measures; GPU; voxel resolution.

I. INTRODUCTION

Recent advances in resting-state functional magnetic res-
onance imaging (rs-fMRI) technologies have provided a non-
invasive way to depict spontaneous fluctuations in brain activ-
ity and thus facilitates the mapping of functional connectomes
[1]. Thanks to the constant increase of imaging resolution, re-
searchers nowadays are able to analyze functional connectivity
patterns of human brain at a finer spatial resolution, which
triggers the rise of ’dense connectome’ study[2][3].

A dense functional connectome is generally modeled as a
large-scale network whose nodes can be defined directly by
voxels in fMRI imaging data [4]. The investigation of voxel-
wise functional networks allows to uncover more detailed
connectivity information but is typically coupled with con-
siderable computation and storage demands [5]. Specifically,
the total amount of voxels grows cubically as a function of
voxel-resolution, leading to a sharp increase in computations
when measuring the functional connectivity between all pairs
of voxels. Moreover, formally represented by a connectivity
matrix, a voxel-wise network requires quadratic complexity of
storage with the growth of voxel amounts, which implies a
considerable memory footprint for the construction of large-
scale functional networks. As shown in Figure 1, at the 1mm
resolution of approximate 1,600,000 voxels, more than 8 TB
memory is required for the storage of the voxel-wise whole-
brain connectivity matrix. Taken together, the computation and
storage requirements are the most pressing problems in the
study of dense functional connetomes.

Given the limited computational power, extensive research
has attempted to scale down brain networks by either down-

sampling the imaging data towards a coarser level, or aggre-
gating network nodes to several large parcels in the light of
anatomically or functionally-defined brain atlases, i.e., par-
cellated connectomes [6]. However, it is quite obvious that
these solutions may lead to the loss of potentially significant
connectivity information, not to mention that the analysis of
parcellated connectomes are highly sensitive to the parcellation
selection [7].

In recent years, the advent of general-purpose graphics
processing units (GPGPUs) opens a new door to gigantic
data processing [8]. Benefiting from many-core architectures,
GPUs exhibit a high bandwidth and tremendous computational
horsepower, and the collaboration of CPU-GPU can achieve
remarkable performance boosts for many applications [9].
In the field of imaging connectomics, several attempts have
been made to accelerate the mapping of dense connectomes
using GPUs [10][11]. Nonetheless, these studies either are
powerless in the treatment of high resolution data (e.g., 2mm
or higher resolutions), or present a rapid deterioration of
performance as the growth of voxel aggregates. Scalable GPU-
based algorithms used to map dense functional connectomes
are currently lacking.

In this paper, we proposed a GPU-accelerated framework
aimed for fast mapping of dense functional connectomes.
Specifically, the proposed framework enables fast construc-
tion of large-scale functional network based on three distinct
functional connectivity (FC) measures: Pearson’s, Spearman’s
and Kendall’s measures [12]. Moreover, attributed to a novel
memory optimization strategy, our framework is scalable to the
high-resolution imaging data (<2mm). Experimental results
showed that running on a single-GPU system, our framework
can extract large-scale functional networks (106 nodes, 1%
edge sparsity) within 1000 seconds.

The remaining part of this paper proceeds as follows. In
section II, we begin with an overview on the general flow
of functional network construction, focusing on the possible
challenges for mapping dense connectomes. After that, a
scalable GPU-accelerated framework and the corresponding
accelerated methods of FC measures are described in order to
tackle these challenges. The performances of these algorithms
are analyzed in Section III. Section IV discusses the major
contributions of our study along with some future expectations.

II. METHODS AND MATERIALS

This section details three aspects: the basic steps and issues
of voxel-wise brain network construction, our solutions under
different thresholding and FC measuring approaches as well
as the design of experiments including data generation and
the selection of benchmarks.

BRA ININFO 2017 : The Second International Conference on Neuroscience and Cognitive Brain Information

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-579-1 9

Figure 1. For different imaging resolutions, the corresponding number of
voxels, and memory requirements for generating connectivity matrices.

Source of statistical data:
http://fcon 1000.projects.nitrc.org/indi/CoRR/html/bnu 1.html.

A. An Overview on Functional Network Construction
In fMRI-based functional connectomics, the imaging data

of a certain subject is acquired by successively recording blood
oxygenation level-dependent signals at each imaging voxel
site [4]. Then, the imaging data is preprocessed by some
conventional means (e.g., slice timing correction, spatial and
temporal filtering) before it is finally represented by a data
matrix DN×L, where N is the number of voxels and L is the
length of time series [13]. After that, the construction flow
of a functional network can be typically summarized into two
main steps: generating connectivity matrix and thresholding.
Firstly, the functional connectivity strength between any two
voxels is calculated via diverse FC measures to describe how
N distinct voxels functionally interact with each other, which
generates an N ×N connectivity matrix. Once a connectivity
matrix is generated, given the consensus that human brain
functional networks organize as an economical small-world
topology tending to minimize wiring costs [14], a subsequent
thresholding procedure should be applied to remove spurious
connections to ensure the sparsity nature of the brain networks
[15]. At present, there is no gold standard for the set of
threhold values. Generally a sensitive analysis across diverse
thresholds is recommendatory for researchers to seek appropri-
ate thresholding parameters[16]. Finally, the sparse networks
established though thresholding procedures can be compressed
into a sparse format with lower memory footprints, e.g., the
compressed sparse row (CSR) format [17].

For the construction of voxel-level networks, it is note-
worthy that despite underlying huge memory demands of
intermediate connectivity matrix (Figure 1), the established
networks after thresholding are normally less memory-hungry.
For example, under 1mm isotropic resolution, the established
sparse network with 0.1% edge density requires only ∼16
GB memory, much lower than that of the entire connectivity
matrix. Hence, the basic idea of our proposed framework is to
avoid maintaining the entire connectivity matrix by employing
a GPU-based block-wise thresholding strategy.

B. Scalable Solutions for Voxelwise Network Construction
As the network size grows dramatically with the increasing

voxel aggregates, a scalable method is required for the voxel-

Algorithm 1 Constructing networks given the connectivity
strength (CS) threshold
Input:data matrix D, the CS threshold CSthreshold;
Output:the resultant network ResultNet host;
Variables defined on CPU main memory: D host,

ResultNet host;
Variables defined on GPU memory: D dev, Batch dev;

1: Transfer D host to D dev;
2: Partition D dev into m blocks, numbered from D1 to Dm;
3: for row← 1 to m do
4: for column←row to m do
5: Batch device← GPU f (Drow , Dcolumn);
6: GPU thresholding(Batch dev, CSthreshold);
7: GPU compressing(Batch dev);
8: Transfer Batch dev to Batch host;
9: CPU assemble(Batch host,ResultNet host);

10: Batch dev.clear();

wise network construction. Here, we proposed a GPU-based
block-wise thresholding strategy under two different thresh-
olding modes: given the connectivity strength threshold or the
sparsity threshold [18].

1) Specify Connectivity Strength Thresholds: Assigning the
connectivity strength threshold means that a fixed threshold
value is set as the baseline when thresholding the connectivity
matrix so that matrix elements greater than the given threshold
are reserved while others are set to 0s.

In this case, the steps of generating connectivity matrix
and thresholding can be easily merged. Specifically, the afore-
mentioned data matrix DN×L can be divided into multiple
(m) blocks, i.e., D = {D1,D2, . . . ,Dm} , where the block
size is adjustable. Then, the corresponding connectivity matrix
RN×N = f

(
DT ,D

)
can be derived by:

R =

f
(
DT

1 ,D1

)
f
(
DT

1 ,D2

)
. . . f

(
DT

1 ,Dm

)
f
(
DT

2 ,D1

)
f
(
DT

2 ,D2

)
. . . f

(
DT

2 ,Dm

)
...

...
. . .

...
f
(
DT

m,D1

)
f
(
DT

m,D2

)
. . . f

(
DT

m,Dm

)
 ,

(1)
where f represents distinct FC measures, e.g., the Pearson’s
measure. In this way, RN×N is generated block by block.
Once a block is obtained, a subsequent thresholding and
compressing procedure is performed immediately instead of
doing this after the generation of the entire RN×N . All the
computation, thresholding and compression procedures can be
efficiently completed by a GPU device, while the CPU only
serves as an assembly line for receiving compressed data from
the GPU in series and continuously jointing them together into
a complete network that stays in main memory with a sparse
format. The execution procedure is shown in Algorithm 1.

It should be noted that during the process, only a sparsely
stored matrix is maintained in CPU main memory. Thus,
the algorithm has a linear spatial complexity O (N + E) for
storing voxel-level functional networks, where E is the number
of valid edges after thresholding. As the network can be quite
sparse, the CPU memory usage is largely decreased in this
way.

2) Specify Sparsity Thresholds: Another commonly used
thresholding strategy is to fix the network sparsity. The sparsity

BRA ININFO 2017 : The Second International Conference on Neuroscience and Cognitive Brain Information

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-579-1 10

is defined as the proportion of the quantity of existing edges to
the maximum possible number of edges in a network. Com-
paratively, the sparsity-based thresholding approach is more
suitable for group-level comparisons on network topology [19]
but is more complex to be applied in the construction of large-
scale networks because the sparsity threshold should be firstly
transferred to a corresponding connectivity strength threshold,
which is in need of a time-consuming statistic for all entries
in the connectivity matrix RN×N .

In response, a GPU-accelerated algorithm characteristic
of calculating the connectivity matrix RN×N for two times
was designed. During the first generation, the GPU analyzes
the distribution of element values in RN×N to derive the
connectivity strength threshold corresponding to the given
sparsity. Considering that a sparsity threshold restricts the
number of actual connections k in a network, our basic idea
is to find the k-th maximal element rk in RN×N via GPU
statistics, to serve as the connectivity strength threshold. Once
rk is obtained, the algorithm described above (Algorithm 1)
can be reused to establish networks, which will also satisfy the
constraint of the specified sparsity threshold. Then, the running
of Algorithm 1 actually requires computing RN×N one more
time.

Specifically in the first round, the range of the connectivity
strength from 0 to 1 is segmented into multiple bins, with
the bin quantity Nbin, and the bin width ε = 1/Nbin. Each
time a block of RN×N is generated, a statistical histogram is
maintained and updated by counting the quantity of elements
in the block falling into different bins. A GPU-based sort-
search histogram algorithm is applied to attain a fast and stable
performance for large number of bins [20]. After finishing
statistics of all blocks, the very bin where rk is located can be
find from the statistical histogram and the eventual outcome
r̂ is set as the median of this bin. The process is summarized
in Algorithm 2. Notably, the error between r̂ and rk can be
estimated by :

|r̂ − rk| ≤ ε/2 = 1/(2Nbin), (2)

where the precision can be simply improved by increasing the
number of bins, i.e., Nbin. In practice, we set Nbin = 106,
rendering r̂ an extreme approximation to rk. Taken together,
by adopting the block-wise statistical and approximate strategy
we avoid maintaining the entire connectivity matrix as a
whole, thereby reducing the algorithmic demand for CPU/GPU
memory.

C. GPU implementation of three FC Measures
FC measures are used to quantify the strength of functional

connections between network nodes. In this section, we will
detail our GPU-accelerated algorithms for three commonly
used FC measures: Pearson’s, Spearman’s and Kendall’s mea-
sures, of which the latter two are considered more robust to
outlying observations [21]. To accelerate the calculation of
FC measures on a GPU, the basic principle of our proposed
algorithms is to transform the computation of these measures
into normative operations that GPUs excel in, e.g., vectors
or matrices multiplications, both of which that possess high
parallelism can be executed very quickly on GPUs.

As mentioned above, an fMRI data set of a single subject
can be represented by a data matrix DN×L = (di), where
1 ≤ i ≤ N , and di = (di1, di2 . . . , diL), i.e., the i-th row of

Algorithm 2 Derive the corresponding connectivity strength
threshold from the given sparsity threshold
Input:data matrix D, the sparsity threshold Sparsity;
Output:the connectivity strength threshold CSthreshold;
Variables defined on CPU main memory: D host;
Variables defined on GPU memory: D dev, Batch dev,

histogram dev;
1: Define k ← N ×N × Sparsity;
2: Transfer D host to D dev;
3: Partition D dev into m blocks, from D1 to Dm;
4: for row← 1 to m do
5: for column←row to m do
6: Batch dev← GPU f (Drow , Dcolumn);
7: GPU histogram(Batch dev, histogram dev);
8: Batch dev.clear();
9: Define Position ← GPU upperBound(histogram dev, k);

10: CSthreshold ← binWidth × Position + binWidth/2.0;

DN×L, denoting the time series of the i-th voxel, with the
sequence length L. Thus ri,j , the FC measurements between
voxel i and voxel j, can be described as follows:

ri,j = f(di,dj), (3)

where f ∈ {fp, fs, fk}, representing Pearson’s, Spearman’s
and Kendall’s measures, respectively, whose definitions will
be specified below.

1) Vectorization for Pearson’s and Kendall’s Measures:
The Pearson measure of temporal correlation between two
time-series di, dj is defined by:

fp =

∑L
k=1

(
dik − d̄i

) (
djk − d̄j

)
Sdi
· Sdj

, (4)

where d̄i =
(∑L

k=1 dik

)/
L and Sdi

=

√∑L
k=1

(
dik − d̄i

)2
are the mean and standard deviation of the time series of the
i-th voxel respectively. Several studies have suggested that fp
be derived as the product of two normalized vectors [22]:

fp =
∑L

k=1

(
dik − d̄i
Sdi

)(
djk − d̄j

Sdj

)
= ~pi · ~pj , (5)

where ~pi, ~pj are vectors with the length L and ~pik =(
dik − ~di

)/
Sdi . Likewise, the formula of the Kendall’s mea-

sure can be vectorized to:

fk =

L−1∑
k=1

L∑
q=k+1

(
sign (dik − diq)√

m−mi

)(
sign (djk − djq)
√
m−mj

)
= ~zi · ~zj (6)

where ~zik = sign (dik − diq)/
√
m−mi and m, mi are

scalars [23]. Note that vectors ~zi and ~zj have the length
L (L− 1)/2.

To obtain all-pairs FC measurements, i.e., the connectivity
matrix RN×N = (ri,j), the ~pi (~zi) of every voxel should be
firstly derived. Then, the subsequent operations of all-pairs
ri,j = ~pi · ~pj (Pearson’s measure), or ri,j = ~zi · ~zj (Kendall’s
measure), can be unified as the matrix-matrix multiplication,
which is efficient on GPUs.

BRA ININFO 2017 : The Second International Conference on Neuroscience and Cognitive Brain Information

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-579-1 11

2) Accelerating Rank Assignments for Spearman’s Mea-
sure: The Spearman correlation between two time-series can
be calculated by measuring the Pearson correlation of their
ranked values of each samples [24], i.e.,

fs (di, dj) = fp (ni, nj) , (7)

where ni, nj are the ranked sequences of di, dj , respectively.
That is, by replacing every element in a time-series with
its rank, our proposed GPU-based procedure of Pearson’s
measures described above can be applied directly to accelerate
the computation of the Spearman’s measure. Hence, the key
issue is how to calculate element ranks efficiently on a GPU.

A GPU-based sort-detection algorithm was introduced by
Kim et al. (2012) [25] for assigning ranks, yet this approach is
powerless in process of tied elements, i.e., multiple identical
values in one time-series. Here, we propose a new rank
assigning strategy calculating the rank of dik in the i-th time
series as follows:

rank (dik) = LessNumber + (1 + EqualNumber)/2, (8)

where LessNumber is the amount of elements less than dik
and EqualNumber is the amount of tied elements equal
to dik (including itself). To obtain the rank of an element
dik, a GPU only needs to traverse all elements of a time-
series and count the number of elements less than or equal
to itself, instead of sorting all temporal samples. This strategy
avoids possible branch operations and irregular memory access
among multiple threads, thereby easily parallelized by a GPU
with single instruction, multiple threads (SIMT) model [26].
Performances of the sort-detection algorithm and our own
implementation of the Spearman’s measure will be compared
later.

D. Application and Example Datasets
Several experiments were conducted to illuminate the ad-

vantages of our proposed framework in two aspects: the run
time efficiency and the scalability. To comprehensively assess
the run time efficiency, two sets of data with respective number
of nodes N=25218 (approximate to the voxel aggregates of a
4mm isotropic resolution imaging data) and N=58523 (approx-
imate to the voxel aggregates of a 3mm isotropic resolution
imaging data) were randomly generated and stored using a
floating point format of 4 bytes per element. In addition, each
data set has four variants with varied number of temporal
samples (L=128, 256, 512, 1024), to evaluate the performance
of our GPU-accelerated algorithms under different length of
time series. In contrast, to investigate the scalability of the
proposed framework, another input data set was produced with
constant length of time series (L=128) but spanning a broad
range of voxel quantities (N= 200,000, 400,000, 600,000,
800,000, 1000,000, respectively).

E. Benchmarks and Programs
All experiments were conducted on a workstation with an

Intel(R) Core(TM) i7-6700K CPU (4G Hz, 8 cores, hyper-
threading disabled), 64GB main memory, and an NVDIA
GeForce GTX TITAN Black GPU with 6 GB device mem-
ory. The workstation supports dual operation systems (Win-
dows 8.1 and Linux Ubuntu 16.10). MATLAB(R2016a) and
CUDA(v8.0) are available on both systems.

So far, several parallel-processing approaches have been
put forward to accelerate the calculation of FC measures. Here
we consider two class of typical related works as comparisons:
multi-core CPUs based implementations, and GPU based im-
plementations by others.

The contrastive programs of Pearson’s and Spearman’s
measures on multi-core CPUs are parallelized by invoking
the Intel Math Kernel library(MKL), a widely used math
library featuring highly optimized and easily parallelizable
functions on multi-core systems [27]. Besides, the parallel
implementation of the Kendall’s measure on multi-core CPUs
is based on a classical algorithm built upon merge sort [28].
On the current workbench, all these CPU-based programs are
parallelized using 8 threads. As for GPU-based related works,
the programs from gputools, a prevalent toolbox enabling
efficient GPU computing in R [29], are picked up for the
performance comparison on Pearson’s and Kendall’s measures,
and the aforementioned sort-detection algorithm proposed by
Kim et al. (2012) [25] is re-implemented and tested against
our own implementation of the Spearman’s measure.

III. RESULTS
We first assessed the performance of our GPU-accelerated

algorithms for three FC measures (Figure 2). In this case, all
programs were required to generate full-stored connectivity
matrices without thresholding and compression operations.
Then, the elapsed time of constructing sparse networks among
different network scales and sparsity thresholds was presented
in Table 1 to highlight the scalability of our framework.

A. Performance
Experimental results in Figure 2 showed that our proposed

GPU-accelerated algorithms for Pearson’s, Spearman’s and
Kendall’s measures were more time-efficient against both
multi-core CPUs and GPU based related works. In particular,
our own implementation of the Kendall’s measure exhibited a
over 50x speedup than the other two ways.

Specifically, our GPU implementation of Pearson’s mea-
sures only cost 1.7 seconds on average for generating the
connectivity matrix at a 4mm isotropic resolution (N=25218)
across different lengths of time series, and 4.3 seconds at
a 3mm isotropic resolution (N=58523). Similarly, for the
Spearman’s measure, the average time costs were 2.0 and
4.4 seconds, respectively, at the two network scales. Actually,
our GPU-accelerated procedure of the Spearman’s measure
performed only slightly slower than that of the Pearson’s mea-
sure. Considering that the execution of Spearman’s measure
internally called the procedure of the Pearson’s measure upon
finishing rank assignments, the minor variance in computing
time between the two measures implied the high efficiency
of our proposed strategy for rank assignments, which led to
the little time occupancy of this step during the calculation of
the Spearman’s measure. As for the Kendall’s measure, our
procedure spent averagely 63.5 and 340.5 seconds generating
the connectivity matrix at the resolution of 4mm and 3mm,
respectively, which was much less than that of the multi-core
CPUs implementation using MKL parallel computing library
[27] or the GPU implementation using gputools [29]. The
latter two ways both consumed >1 hour dealing with 4mm
resolution data and >5 hours with 3mm data. Notably, the
calculation of the Kendall’s measure that has a quadratic time

BRA ININFO 2017 : The Second International Conference on Neuroscience and Cognitive Brain Information

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-579-1 12

Figure 2. Performance comparisons of different implementations of three FC measures (Pearson’s, Spearman’s and Kendall’s).

complexity as the increase of lengths of time series is generally
more time-consuming than that of Pearson’s and Spearman’s
measures with linear span.

Additionally, it was observed that multi-core CPUs im-
plementations of Pearson’s and Spearman’s measures were
adversely sensitive to the length of time series. Moreover,
GPU-based related works regarding three measures, due to
their lack of specialized treatments to efficiently adapt these
measures on the GPU architecture, showed relatively inferior
performance to ours, and even sometimes to multi-core CPUs
implementations. E.g., for the computation of the Spearman’s
measure, it took averagely 64 seconds for GPU-based sort-
detection algorithm [25] to handle 3mm isotropic resolution
(N=58523, L=512) while <40 seconds were needed for the
multi-core CPUs implementation accordingly.

B. Scalability
To assess the scalability of the proposed framework, the

elapsed time for constructing large-scale functional networks
with varied numbers of networks nodes were demonstrated in
Table 1. Sparsity thresholds were specified at 0.1%, 1%, 2%,
respectively. In particular, for Kendall’s network construction
that usually takes longer time than Pearson’s and Spearman’s,
the table only listed the time records within 1000s and cor-
responding track of N while the framework was certainly
applicable to larger scale data sets. The results in Table
1 illustrated that our proposed framework were scalable to
high resolution data and could establish voxel-wise functional
networks with a large amount of nodes in a short period of
time. Specifically, the proposed framework could construct
Pearson’s or Spearman’s networks with 106 nodes and 1%
edge sparsity using less than 1000 seconds. Considering that
only about 200,000 nodes need to be maintained in dense
connectomes at an isometric resolution of the 2mm level (Fig-
ure 1), our framework is capable of handling high resolution
data whose voxel size is far lower than 2mm. Moreover,
in actual measurements, it was tested that the framework
could handle 1mm voxel-resolution data (N=1561152, L=1200,

0.1% sparsity threshold) and finish the Pearson’s network
construction within an hour. To the best of our knowledge, this
is the first work enabling the processing of such magnitude
data in an acceptable amount of time. Notably, the elapsed
time of our network construction algorithms is affected by both
node amounts N and sparsity thresholds of networks. The time
complexity is O(N2) approximately, and the distinct network
sparsity thresholds mainly affect the time expenditure of CPU-
GPU data transfers.

Finally, it was observed that our Pearson’s and Spearman’s
network construction procedures failed when N = 106 given
the 2% sparsity threshold, as a result of inadequate CPU main
memory. Actually, the relation between the sparsity threshold
and the corresponding quantity of network nodes that our
framework could handle is constrained by:

N2 · Sparsity ≤MainMemory/B, (9)

where B represented the number of bytes used to store an
element (node or edge) in established networks, and 0 <
Sparsity ≤ 1. For example, given B = 4 bytes and Sparsity
= 2%, our framework supports up to 92 × 104 nodes in the
network construction under the current computing environment
with 64GB CPU main memory. By contrast, for related works
which did not employ the block-wise thresholding strategy, the
CPU main memory is required to be large enough to at least
hold the entire connectivity matrix, i.e.,

N2 ≤MainMemory/B, (10)

in which case the maximum value of N is far less than that in
(9). Under the same condition (64GB main memory), at most
16×104 nodes are supportable for those works, no matter how
sparse the network is. Comparatively, our framework has the
better scalability for the increasing number of network nodes.

IV. CONCLUSION AND FUTURE EXPECTATIONS
In summary, this paper provides a scalable GPU-

accelerated framework for the fast mapping of dense functional

BRA ININFO 2017 : The Second International Conference on Neuroscience and Cognitive Brain Information

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-579-1 13

TABLE I. THE SCALABILITY DEMONSTRATION OF THE PROPOSED
FRAMEWORK.

L=128 Sparsity N=20 · 104 40 · 104 60 · 104 80 · 104 100 · 104
Pearson’s
Measure
time:(s)

0.1% 31.90 126.57 278.07 505.76 777.21
1% 34.47 135.82 307.56 546.13 914.09
2% 37.36 146.61 324.51 587.20 -

Spearman’s
Measure
time:(s)

0.1% 31.66 124.90 280.03 497.58 782.02
1% 32.03 133.76 308.60 541.77 917.25
2% 36.41 145.01 322.00 591.03 -

L=128 Sparsity N=10 · 104 15 · 104 20 · 104 25 · 104 30 · 104
Kendall’s
Measure
time:(s)

0.1% 91.01 210.43 386.50 602.77 861.64
1% 94.31 217.03 395.61 634.54 914.17
2% 95.79 223.40 404.97 640.80 951.33

connectomes based on three commonly used FC measures. The
proposed framework significantly accelerated the voxel-wise
network construction (speedup>50, Kendall’s measure) and
could scale up to higher voxel-resolution data (<2mm) against
related works. We hope that the present study will serve as a
building block to facilitate dense connectome studies. In the
future, we expect to implement more FC measures under the
current framework, especially those measures that enable the
detection of the nonlinear, multivariate and frequency-domain
connectivity among brain network nodes [30].

ACKNOWLEDGMENT

This work was supported by the Natural Science Founda-
tion of China (Grant Nos. 61373026 and 61622403).

REFERENCES

[1] O. Sporns, G. Tononi, and R. Ktter, “The human connectome: A
structural description of the human brain.” Plos Computational Biology,
vol. 1, no. 4, 2005, p. 42.

[2] D. C. Van Essen and K. Ugurbil, “The future of the human connectome,”
Neuroimage, vol. 62, no. 2, 2012, pp. 1299–1310.

[3] K. Loewe, S. E. Donohue, M. A. Schoenfeld, R. Kruse, and C. Borgelt,
“Memory-efficient analysis of dense functional connectomes,” Frontiers
in Neuroinformatics, vol. 10, 2016.

[4] Smith et al., “Resting-state fmri in the human connectome project,”
Neuroimage, vol. 80, 2013, pp. 144–168.

[5] S. Hayasaka and P. J. Laurienti, “Comparison of characteristics between
region-and voxel-based network analyses in resting-state fmri data,”
Neuroimage, vol. 50, no. 2, 2010, pp. 499–508.

[6] V. Essen et al., “The human connectome project: a data acquisition
perspective,” Neuroimage, vol. 62, no. 4, 2012, pp. 2222–2231.

[7] M. A. de Reus and M. P. Van den Heuvel, “The parcellation-based
connectome: limitations and extensions,” Neuroimage, vol. 80, 2013,
pp. 397–404.

[8] E. Wu and Y. Liu, “Emerging technology about gpgpu,” in Circuits
and Systems, 2008. APCCAS 2008. IEEE Asia Pacific Conference on.
IEEE, 2008, pp. 618–622.

[9] J. Ghorpade, J. Parande, M. Kulkarni, and A. Bawaskar, “Gpgpu
processing in cuda architecture,” arXiv preprint arXiv:1202.4347, 2012.

[10] A. Eklund, P. Dufort, D. Forsberg, and S. M. LaConte, “Medical
image processing on the gpu–past, present and future,” Medical image
analysis, vol. 17, no. 8, 2013, pp. 1073–1094.

[11] D. Wu et al., “Making human connectome faster: Gpu acceleration of
brain network analysis,” in Parallel and Distributed Systems (ICPADS),
2010 IEEE 16th International Conference on. IEEE, 2010, pp. 593–
600.

[12] N. S. Chok, “Pearson’s versus spearman’s and kendall’s correlation
coefficients for continuous data,” Ph.D. dissertation, University of
Pittsburgh, 2010.

[13] S. C. Strother, “Evaluating fmri preprocessing pipelines,” IEEE Engi-
neering in Medicine and Biology Magazine, vol. 25, no. 2, 2006, pp.
27–41.

[14] E. Bullmore and O. Sporns, “The economy of brain network organiza-
tion,” Nature Reviews Neuroscience, vol. 13, no. 5, 2012, pp. 336–349.

[15] M. Rubinov and O. Sporns, “Complex network measures of brain
connectivity: uses and interpretations,” Neuroimage, vol. 52, no. 3,
2010, pp. 1059–1069.

[16] S. L. Simpson, F. D. Bowman, and P. J. Laurienti, “Analyzing complex
functional brain networks: fusing statistics and network science to
understand the brain,” Statistics surveys, vol. 7, 2013, p. 1.

[17] N. Bell and M. Garland, “Implementing sparse matrix-vector mul-
tiplication on throughput-oriented processors,” in Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis. ACM, 2009, p. 18.

[18] K. A. Garrison, D. Scheinost, E. S. Finn, X. Shen, and R. T. Con-
stable, “The (in) stability of functional brain network measures across
thresholds,” Neuroimage, vol. 118, 2015, pp. 651–661.

[19] B. C. Van Wijk, C. J. Stam, and A. Daffertshofer, “Comparing brain
networks of different size and connectivity density using graph theory,”
PloS one, vol. 5, no. 10, 2010, p. e13701.

[20] U. Milic, I. Gelado, N. Puzovic, A. Ramirez, and M. Tomasevic,
“Parallelizing general histogram application for cuda architectures,” in
Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS XIII), 2013 International Conference on. IEEE, 2013, pp.
11–18.

[21] C. Croux and C. Dehon, “Influence functions of the spearman and
kendall correlation measures,” Statistical methods & applications,
vol. 19, no. 4, 2010, pp. 497–515.

[22] Y. Wang et al., “A hybrid cpu-gpu accelerated framework for fast
mapping of high-resolution human brain connectome,” PloS one, vol. 8,
no. 5, 2013, p. e62789.

[23] R. Nelsen, “Kendall tau metric,” Encyclopaedia of Mathematics, vol. 3,
2001, pp. 226–227.

[24] J. L. Myers, A. Well, and R. F. Lorch, Research design and statistical
analysis. Routledge, 2010.

[25] S. Kim, M. Ouyang, and X. Zhang, “Compute spearman correlation
coefficient with matlab/cuda,” in Signal Processing and Information
Technology (ISSPIT), 2012 IEEE International Symposium on. IEEE,
2012, pp. 000 055–000 060.

[26] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with cuda,” Queue, vol. 6, no. 2, 2008, pp. 40–53.

[27] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang,
“Intel math kernel library,” in High-Performance Computing on the
Intel R© Xeon Phi. Springer, 2014, pp. 167–188.

[28] W. R. Knight, “A computer method for calculating kendall’s tau
with ungrouped data,” Journal of the American Statistical Association,
vol. 61, no. 314, 1966, pp. 436–439.

[29] J. Buckner, J. Wilson, M. Seligman, B. Athey, S. Watson, and F. Meng,
“The gputools package enables gpu computing in r,” Bioinformatics,
vol. 26, no. 1, 2010, pp. 134–135.

[30] F. D. V. Fallani, J. Richiardi, M. Chavez, and S. Achard, “Graph
analysis of functional brain networks: practical issues in translational
neuroscience,” Phil. Trans. R. Soc. B, vol. 369, no. 1653, 2014, p.
20130521.

