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Abstract—Prediction of sub-cellular localization of proteins is a 

fundamental task in bioinformatics, since it can provide useful 

information to determine its function. Several prediction 

techniques have been proposed in the recent years and 

methods based on machine learning techniques have achieved 

state of the art classification, usually employing support vector 

machines and neural networks. However, those methods need 

high amounts of labeled samples (proteins with known 

function) in order to train accurate classifiers, and such 

information is not easily available for this task. In this paper, 

an alternative methodology that uses semi-supervised learning 

is proposed. This type of machine learning allows to use 

unlabeled samples (which are easily available) in order to 

improve the estimation of the classifiers. All the needed steps 

for using semi-supervised learning in the problem of predicting 

protein sub-cellular localizations are described in detail and 

the methodology is compared with the standard supervised 

alternative. The results show that using semi-supervised 

learning significantly improves the prediction performance of 

the classifier in several cases, proving to be a valuable tool in 

bioinformatics.  
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I. INTRODUCTION 

One of the most important tasks in modern 
bioinformatics is to provide reliable functional annotations 
for gene products. Predicting protein sub-cellular 
localizations allows researchers to obtain useful information 
for revealing protein functions and helping to understand the 
pathways that regulate biological processes [1]. The 
localization of specific proteins can be experimentally 
determined by assays of expression of green fluorescent 
proteins in order to monitor its intrinsic fluorescence and 
subsequently locate it in the cell [2]. However, such 
procedures become expensive and highly time consuming 
when they have to be applied in high-throughput projects, 
which yields to the need of developing computational 
predictors able to identify the sub-cellular location of novel 
proteins based on its sequence information alone [3].  

Several predictors have been proposed in the recent 

years (for full surveys, see [4, 5, 6]). In particular, most 

recent methods have used machine learning techniques 

trained over feature spaces of physical-chemical, statistical 

or locally-based attributes. Those methods employ 

techniques such as neural networks (ProtFun [7]), Bayesian 

multi-label classifiers 8]) and support vector machines 

(SVM-Prot [9], GOKey [10], PoGO 11]), obtaining high 

performance results in their own respective databases, 

mostly composed by model organisms such as bacteria and 

a few high order species [12]. 

One of the main limitations of machine learning 

methods, however, is that they need relatively high amounts 

of training data in order to learn reliable classification 

models. Such training data refers to “labeled instances”, that 

is, enough protein sequences which function must be 

already known. It is a known fact, however, that only a 

small number of proteins have actually been annotated for 

certain functions [4]. Under such circumstances, semi-

supervised learning methods provide an alternative 

approach to protein annotation. In semi-supervised learning 

methods, additionally to labeled data, the algorithm is 

provided with an amount of unlabeled data that can be used 

to improve the estimations of the classifier. 
This work presents an implementation of semi-

supervised learning using semi-supervised support vector 

machines (S3VM) for predicting protein sub-cellular 
localizations. The results obtained with this approach show 
that using semi-supervised learning significantly improves 
the prediction performance of the standard support vector 
machine (SVM) in several cases, proving to be a valuable 
tool in bioinformatics. 

The following section describes the theoretical 

background about SVM and S3VM. Next, the “Experimental 
setup” section describes the database and all the components 
of the proposed methodology. The final two sections present 
the results and conclusions, respectively. 

II. THEORETICAL BACKGROUND 

A. Support vector machines 

Support vector machines (SVM) are powerful tools for 

solving classification problems, designed over a strong 

theoretical background based on the idea of minimizing the 

structural risk [13]. For a non-linear SVM, the objective is 

to find a classification function of the form:  

 f
(w,b)

(x)=〈w,x〉+b (1)  

99Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-335-3

BIOTECHNO 2014 : The Sixth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies



where 〈⋅,⋅〉 represents the dot product. A vector of 

parameters can be defined as θ = [w,b], and the optimization 

problem can be stated as follows:  

θ
*=arg min
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where ℓ(t)=max(0,1−t) is the hinge loss function and C is a 

trade-off parameter regulating the complexity of the model. 

For the non-linear case, the data are first mapped in a high 

dimensional Hilbert space H through a mapping Φ:X↦H, 

and then a linear decision boundary is constructed in that 

space. The mapping Φ can be explicitly computed or only 

implicitly through the use of a kernel function K such that 

K(x
1
,x

2
)=〈Φ(x

1
),Φ(x

2
)〉 . The Representer Theorem can be 

used to show that the solution function has the form: 
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where the coefficients α
i
 can be found with a 

conventional quadratic optimization algorithm. 

The Gaussian kernel is the most commonly used 

because of its attractive features such as structure 

preservation [14]. This kernel is computed by: 
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where σ is the dispersion parameter that must be properly 

chosen by the user. In this work, the SVM is trained with 

the ‘kernlab’ package, available in R-CRAN [15].  

B. Semi-supervised support vector machines 

Semi-Supervised SVMs (S3VMs) emerged as an extension 

to standard SVMs for semi-supervised learning. S3VMs find 

a labeling for all the unlabeled data, and a separating 

hyperplane, such that maximum margin is achieved on both 

the labeled data and the (now labeled) unlabeled data. As a 

result, unlabeled data guides the decision boundary away 

from dense regions. The assumption of S3VMs is that the 

classes are well-separated, such that the decision boundary 

falls into a low density region in the feature space, and does 

not cut through dense unlabeled data [16, chapter 6]. 

In a similar way than the conventional SVMs, the 

optimization problem for an S3VMs can be stated as 

follows: 

θ
*=arg min
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where ℓ(t)=max(0,1−t) is the hinge loss function, C is the 

trade-off parameter and λ is a new regularization parameter. 

The first two terms in the above equation correspond to the 

traditional solution for the standard supervised SVM shown 

in equation (2), while the last term puts f
θ
(x

i
) of the 

unlabeled points x
i
 away from 0 (thereby implementing the 

low density assumption) [17].  

Again, as in the supervised case, the kernel trick can be 

used for constructing non-linear S3VMs. While the 

optimization in SVM is convex and can be solved with QP-

hard complexity, optimization in S3VM is a non-convex 

combinatorial task with NP-Hard complexity. Most of the 

recent work in S3VM has been focused on the optimization 

procedure (a full survey in this matter can be found in [18]). 

Among the proposed methods for solving the non-convex 

optimization problem associated with S3VMs, one of the 

first implementations is the S3VM
light

 by Joachims [19], 

which is based on local combinatorial search guided by a 

label switching procedure. Chapelle et. al. [20] presented a 

method based on gradient descent on the primal, that 

performs significantly better than the optimization strategy 

pursued in S3VM
light

; the work by Chapelle et. al. [17] 

proposes the use of a global optimization technique known 

as “continuation”, often leading to lower test errors than 

other optimization algorithms; Collobert et. al. [21] uses the 

Concave-Convex procedure, providing a highly scalable 

algorithm in the nonlinear case.  
 

III. EXPERIMENTAL SETUP 

A. Database 

This work uses the database designed in [12]. Such database 

comprises all the available Embryophyta proteins at 

UniProtKB/Swiss-Prot database [22], with at least one 

annotation in the Gene Ontology Annotation (GOA) project 

[23]. In order to avoid the presence of protein families that 

could bias the results, the dataset was filtered at an identity 

cutoff of 30%.  

The main set comprises a total of 2210 sequences 

associated to 20 different sub-cellular localizations. Those 

localizations correspond to the Cellular component ontology 

defined by the plants GO slim [24]. Categories with less 

than 30 proteins were discarded because they did not have 

enough samples to train a statistically reliable classifier. All 

the available Embryophyta proteins at UniProtKB/Swiss-

Prot database that has no entries in the GOA project were 

added as the core set of unlabeled instances. Proteins 

associated to the nodes in the functional path of each GO 

term were also left as unlabeled instances regarding that 

classifier. Finally, 22000 unlabeled instances were randomly 

chosen in order to accomplish an approximate relation of ten 

unlabeled instances per each labeled one. 
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Figure 1: Main methodology 

 

B. Classification Methodology 

Figure 1 shows the main methodology for classification. 

The CCP - S3VM [21] was used as base classifier, with the 

Gaussian kernel. All the parameters of the algorithm, 

including the dispersion of the kernels, the trade-off 

parameters of the SVMs, the regularization constants were 

tuned with a particle swarm optimization meta-heuristic 

[25]. 

In order to allow samples to be associated to multiple 

categories, decision making was implemented following the 

one-against-all strategy. The method produced a strong class 

imbalance that was tackled using the Synthetic Minority 

Over-sampling Technique (SMOTE) [26]. 

Feature selection was carried out before trying to induce 

any decision rule (classifier) because, having a limited 

number of training examples, excessive features would 

possibly overfit the training data. For this purpose, the Fast 

Correlation-Based Filter presented in [27] was used.  

In order to estimate the performance of the predictive 

model, a 5-fold cross-validation strategy is implemented. In 

such strategy, the test procedure is repeated five times, and 

each time an 80% of the data is used for adjusting the SVM 

parameters and training the model, while the remaining 20% 

is used as testing samples. 

IV. RESULTS 

In order to analyze the results obtained with the proposed 

methodology, sensitivity and specificity for each GO term 

were computed. The obtained results are compared with the 

ones obtained in [12] with the commonly used BLASTp 

method (Figure 2), as well as with a standard SVM (Figure 

3). Bars in the left plots show sensitivity and specificity of 

the Lap-S3VM and lines depict geometric mean for S3VM 

(orange), BLASTp (blue) and the classical supervised SVM 

(green). Right plots depict the p-values obtained by paired t-

tests at a 95% significance level. Orange bars show the 

cases when the S3VM significantly outperforms BLASTp 

and the supervised SVM, in Figures 2 and 3, respectively. 

On both figures, the best predicted categories are ordered 

from top to bottom. 

While the comparison with BLASTp provides information 

about the applicability of the methodology compared with 

the alignment based methods, the main purpose of this 

comparing the SVM with the S3VM is to verify whether or 

not the inclusion of the additional cluster-based semi-

supervised term in the training of the SVM improves the 

performance of the system. This can be understood as the 

accomplishment of the cluster assumption when the 

unlabeled data is incorporated to the training process.  

Figure 2 shows that there are only two cellular components 

for which there is no statistically significant difference 

between BLASTp and the S3VM: Perixosome and 

Endosome. For all the remaining eighteen cellular 

components, the semi-supervised method obtained 

statistically significant superior performance. 

Regarding Figure 3, it can be observed that eight cellular 

components were significantly improved, while another two 

(Mitochondria and Cytoplasm*) also reached high p-values 

over 0.9.  
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Figure 2: Comparison between the S3VM method and BLASTp 

 

 
Figure 3: Comparison between the S3VM method and the supervised SVM 

 

This results show that the inclusion of the additional 

information improves the estimation of the classification 

models and thus, provides an efficient way for alleviating 

the lack of labeled data in the field of bioinformatics. 

Although several localizations were not improved over a 

statistically significant threshold, no one of them degraded 

its performance with the inclusion of the additional data, 

proving to accomplish the underlying assumptions of semi-

supervised learning.  

Finally, in order to verify the influence of the number of 

unlabeled instances included in the training, process, several 

experiments were performed, varying the number of 

unlabeled instances from 0 to 2200. As exemplary cases, the 

results for six cellular components (nucleus, cell wall, 

vacuole, cytosol, membrane and the root node of the 

ontology, cellular component) are depicted on Figure 4. It is 

important to point out that these tests where done with the 

same SVM parameters across all the experiment and, 

consequently, the predictor is not optimized for each case. 

However it allows understanding the main influence of the 

unlabeled data.  

From these results, it can be observed that the effect of 

progressively including unlabeled instances is reducing the 

specificity of the classifier, while increasing the sensitivity. 

In general terms, when no unlabeled instances are included, 

specificity is very high and sensitivity is almost zero. This 

means that the classifier is rejecting all the samples for that 

given GO term. The semi-supervised assumption allows the 

system to recognize the positive samples, thus increasing the 

overall performance of the predictor.   

V. CONCLUSION 

This work presented an experimental analysis of the 

suitability of semi-supervised methods for the prediction of 

protein sub-cellular localizations. The results show that 

semi-supervised learning applied to the prediction of GO 

terms, significantly outperforms the supervised learning 

approach in several cases. As future work another semi-

supervised strategies must be explored in order to analyze if 

different assumptions (for example, graph-based methods) 

can be able to provide better results for the cases where this 

methodology was not significantly superior. 

 

ACKNOWLEDGMENT 

This work is within the framework of the Dirección de 

Investigaciones de Manizales (DIMA) of the Universidad 

Nacional de Colombia and the Centro de Investigación of 

the Instituto Tecnológico Metropolitano. The work has been 

partially founded by Colciencias grant 111952128388.  
 

REFERENCES 

[1] K. Chou, H. Shen, and E. Newbigin, “Plant-mPLoc: A Top-Down 
Strategy to Augment the Power for Predicting Plant Protein 

Subcellular Localization,” PloS one, vol. 5, no. 6, 2010, pp. 259–270. 

[2] P. Baldi and S. Brunak, Bioinformatics: the machine learning 
approach. 1em plus 0.5em minus 0.4emThe MIT Press, 2001. 

[3] K. Chou and H. Shen, “Recent progress in protein subcellular location 

prediction,” Analytical Biochemistry, vol. 370, no. 1, 2007, pp. 1–16. 
[4] X. Zhao, L. Chen, and K. Aihara, “Protein function prediction with 

high-throughput data,” Amino Acids, vol. 35, no. 3, 2008, pp. 517–

530. 
[5] G. Pandey, V. Kumar, and M. Steinbach, “Computational approaches 

for protein function prediction: A survey,” Department of Computer 

102Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-335-3

BIOTECHNO 2014 : The Sixth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies



 
Figure 4: Variation of the number of unlabeled samples included in the training process

 

 
Science and Engineering, University of Minnesota, Twin Cities, Tech. Rep. 

06-028, 2006. 

[6] I. Friedberg, “Automated protein function prediction–the genomic 

challenge,” Briefings in Bioinformatics, vol. 7, no. 3, 2006, p. 225. 
[7] L. Jensen, R. Gupta, H. Staerfeldt, and S. Brunak, “Prediction of 

human protein function according to Gene Ontology categories,” pp. 

635–642, 2003. 
[8] J. Jung and M. R. Thon, “Gene function prediction using protein 

domain probability and hierarchical Gene Ontology information,” 

2008 19th International Conference on Pattern Recognition, 2008, pp. 
1–4. 

[9] C. Z. Cai, “SVM-Prot: web-based support vector machine software for 

functional classification of a protein from its primary sequence,” 
Nucleic Acids Research, vol. 31, no. 13, 2003, pp. 3692–3697. 

[10] R. Bi, Y. Zhou, F. Lu, and W. Wang, “Predicting Gene Ontology 

functions based on support vector machines and statistical significance 
estimation,” Neurocomputing, vol. 70, no. 4-6, 2007, pp. 718–725. 

[11] J. Jung, G. Yi, S. a. Sukno, and M. R. Thon, “PoGO: Prediction of 

Gene Ontology terms for fungal proteins.” BMC bioinformatics, 
vol. 11, 2010, p. 215. 

[12] J. A. Jaramillo-Garzón, J. J. Gallardo-Chacón, C. G. Castellanos-

Domínguez, and A. Perera-Lluna, “Predictability of gene ontology 
slim-terms from primary structure information in embryophyta plant 

proteins,” BMC bioinformatics, vol. 14, no. 1, 2013, p. 68. 

[13] V. Vapnik, Statistical learning theory. plus 0.5em minus 0.4emWiley 
New York, 1998. 

[14] Z. Liu, M. J. Zuo, and H. Xu, “Parameter selection for Gaussian radial 

basis function in support vector machine classification,” 2012 
International Conference on Quality, Reliability, Risk, Maintenance, 

and Safety Engineering, Jun. 2012, pp. 576–581. 

[15] A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis, “kernlab – an 
S4 package for kernel methods in R,” Journal of Statistical Software, 

vol. 11, no. 9, 2004, pp. 1–20. 

[16] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised 
learning,” Synthesis lectures on artificial intelligence and machine 

learning, vol. 3, no. 1, 2009, pp. 1–130. 

[17] O. Chapelle, M. Chi, and A. Zien, “A continuation method for semi-
supervised SVMs,” Proceedings of the 23rd international conference 

on Machine learning - ICML ’06, 2006, pp. 185–192. 

[18] O. Chapelle, V. Sindhwani, and S. S. Keerthi, “Optimization 
techniques for semi-supervised support vector machines,” The Journal 

of Machine Learning Research, vol. 9, 2008, pp. 203–233. 

[19] T. Joachims, “Transductive inference for text classification using 
support vector machines,” in ICML, vol. 99, 1999, pp. 200–209. 

[20] O. Chapelle and A. Zien, “Semi-supervised classification by low 

density separation,” Proceedings of the tenth international workshop 
on, 2005. 

 

[21] R. Collobert, F. Sinz, J. Weston, and L. Bottou, “Large scale 
transductive SVMs,” The Journal of Machine …, vol. 1, 2006, pp. 

1687–1712. 

[22] E. Jain, A. Bairoch, S. Duvaud, I. Phan, N. Redaschi, B. Suzek, 
M. Martin, P. McGarvey, and E. Gasteiger, “Infrastructure for the life 

sciences: design and implementation of the UniProt website,” BMC 

bioinformatics, vol. 10, no. 1, 2009, p. 136. 
[23] D. Barrell, E. Dimmer, R. Huntley, D. Binns, C. O’Donovan, and 

R. Apweiler, “The GOA database in 2009–an integrated Gene 

Ontology Annotation resource,” Nucleic Acids Research, 2008. 
[24] T. Berardini, S. Mundodi, L. Reiser, E. Huala, M. Garcia-Hernandez, 

P. Zhang, L. Mueller, J. Yoon, A. Doyle, G. Lander et al., “Functional 

annotation of the Arabidopsis genome using controlled vocabularies,” 
Plant Physiology, vol. 135, no. 2, 2004, p. 745. 

[25] J. Kennedy and R. Eberhart, “Particle swarm optimization,” 

Proceedings of ICNN’95 - International Conference on Neural 
Networks, vol. 4, 1995, pp. 1942–1948. 

[26] N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer, “SMOTE: 

synthetic minority over-sampling technique,” Journal of Artificial 
Intelligence Research, vol. 16, no. 3, 2002, pp. 321–357. 

[27] L. Yu and H. Liu, “Efficient feature selection via analysis of 

relevance and redundancy,” The Journal of Machine Learning 
Research, vol. 5, 2004, pp. 1205–1224. 

  

 

103Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-335-3

BIOTECHNO 2014 : The Sixth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies


