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Abstract—The controllability of a combination of 
antiangiogenic treatment and chemotherapy for cancer is 
considered in the paper. The treatment is modeled as a two-
dimensional control action in the second order dynamical 
system described by a model belonging to a class proposed so 
far. Sufficient conditions of local constrained controllability 
are found and verified for the model and their biological  
interpretation is presented.  
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I.  INTRODUCTION  
Controllability is a qualitative property of dynamical 

control systems and its meaning, roughly speaking, is the 
following: a dynamical system is controllable if it is possible 
to steer it from an arbitrary initial state to an arbitrary final 
state using the set of admissible controls. In the existing 
literature there are many different definitions of 
controllability strongly depending on the class of dynamical 
control systems (see, e.g., [1], [2] and references therein). In 
the present paper, we consider constrained local 
controllability problems for second-order finite-dimensional 
semilinear stationary dynamical systems described by a set 
of two ordinary differential state equations. More precisely, 
we discuss the control properties of a model belonging to a 
class proposed in [3] to which two control variables  
describing two treatment modalities have been  introduced. 
The line of reasoning is similar to our previous study [4] in 
which however  only antiangiogenic therapy was considered, 
in other words only one control variable was used. The 
results are based on theorems proved in [2]. The idea of the 
theorems is that under suitable assumptions the constrained 
global relative controllability of a linear first-order associated 
approximated dynamical system implies constrained local 
relative controllability near the origin of the original 
semilinear second-order dynamical system. The Hahnfeldt et 
al. model [3] is based on the assumption that tumor growth 
with an incorporated vascularization mechanism can be 
described by a Gompertz-type or logistic-type equation with 
variable carrying capacity which defines the dynamics of the 
vascular network. The main idea of this class of models is to 
incorporate the spatial aspects of the diffusion of factors that 
stimulate and inhibit angiogenesis into a non-spatial two-
compartmental model for cancer cells and vascular 

endothelial cells. The control properties of such models in 
the context of combined therapy were discussed among 
others in [5], [6] and [7]. In [5], following the line of 
reasoning proposed by d’Onofrio and Gandolfi in [8], 
conditions for asymptotic tumor eradication by constant and 
periodic therapy were given. Moreover, in [5] and [6], the 
necessary conditions for optimal treatment protocols in a 
given finite time were considered. The interesting finding is 
that for the d’Onofrio-Gandolfi version of the model [8] the 
optimal  trajectory does not contain singular arcs. This 
property has been found previously for a sub-class of the 
models of this class for antiangiogenic therapy [9], but for 
the remaining models from this class the existence of 
intervals of singular optimal control has been proved 
rigorously by Ledzewicz and Schattler [6], [10], [11].  All 
the considerations related to finite time control are however 
conditioned on the concept of controllability of the 
dynamical systems discussed which, to our knowledge, has 
not been analyzed by other authors except in our previous 
paper [4]. This is a major motivation for the present  study. 

In the second section we present the most important 
biological information related to the topic of our study. The 
mathematical model and its properties are presented and 
discussed in the third section. In section 4 we define a class 
of semilinear systems and we present some results related to 
controllability of such systems. Section 5 contains the most 
important results of our study dealing with controllability of  
the models of the combined anticancer therapy.  Final 
remarks and conclusions are given in the section 6. 

II. BIOLOGICAL BACKGROUND 
Tumors, like normal tissues, have physiological 

constraints on growth, such as access to oxygen and 
nutrients for metabolism. The diffusion of oxygen in tissues 
is limited to a distance of about 150 μm, thus tissue growth 
is restricted to a few cubic millimeters if no new vasculature 
is formed. For vascularization to occur, the nearest vessel or 
capillary needs to become destabilized so that the 
endothelial cells lining the vessel can loosen from their 
neighbors and migrate through the extracellular matrix 
towards the tumor. Only after a tumor has recruited its own 
blood supply it can expand in size. Tumors do this via the 
production of angiogenic factors secreted into local tissues 
and stroma, a process termed the angiogenic switch. The 
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angiogenic switch is a discrete step in tumor development 
that can occur at different stages in the tumor-progression 
pathway, depending on the nature of the tumor and its 
microenvironment. Since in normal healthy adults the 
process of angiogenesis is very limited, it should, at least in 
theory, be possible to inhibit tumor angiogenesis without 
affecting normal tissues. Antiangiogenic therapies proposed 
by Folkman in the early seventies of the previous century 
[12] have become one of the most promising approaches in 
anti-cancer drug development. Successful preclinical 
research data lead to clinical trials based on different 
strategies. Approaches currently under evaluation for 
inhibiting angiogenesis may either be direct (targeting cell 
surface bound proteins/receptors) or indirect (targeting 
growth factor molecules) [13]. The genetic instability and 
high mutation rate of tumor cells is responsible, in part, for 
the frequent emergence of acquired drug resistance to 
conventional cytotoxic anticancer therapy. In contrast, 
vascular endothelial cells, like bone marrow cells, are 
genetically stable and have a low mutation rate. Therefore 
Kerbel [14] proposed the hypothesis that antiangiogenic 
therapy would be a strategy to bypass drug resistance. In 
[15] the gap between preclinical (mouse models – localized 
primary tumor) and clinical testing (late-stage metastatic 
tumor) is noted; anti-angiogenic agents are not efficient at 
the level suggested by preclinical trials and different results 
have been observed depending on the disease stage. 
Biologists suggest that anti-angiogenic therapy might 
become an essential component of multidrug cancer therapy 
[16], [17], especially when combined with chemotherapy. 
One possible strategy is using angiogenesis inhibitors to 
normalize the abnormal vasculature and thereby to facilitate 
drug delivery [18], [19].  Some results from clinical studies 
of such combination therapy are shown in [16]; a dose of 
antiangiogenic agent (Bevacizumab 5 mg/kg) showed a 
significantly different (higher) median survival than 
chemotherapy alone, and a larger dose (10 mg/kg) even 
increased survival compared to chemotherapy alone. Several 
clinical trials of combined therapy have been discussed 
recently, and some examples are presented in [20]. 
Continuous treatment with angiogenic inhibitors ultimately 
leads to a decrease in tumor blood flow and a decreased 
tumor uptake of co-administrated cytotoxic drugs. In 
periodic therapy the main goal of anti-angiogenic agents is 
to normalize tumor vasculature which might facilitate 
recovery of tumor cells from cytostatic agents [16].  

This is why when formulating objectives of the 
combined therapy mathematically, one should take into 
account final states which could be reached by the 
admissible control actions. The problem of the reachability 
could be solved by the respective conditions of 
controllability of the model. 

III. MODEL OF COMBINED THERAPY AND ITS PROPERTIES 
Hahnfeldt et al. [3]  proposed a model of vascularized tumor 

development described by a self limiting growth mechanism 

(e.g. a Gompertz- or logistic-type equation) with a variable 
carrying capacity defining the dynamics of the vascular 
network. They proposed to treat the carrying capacity 
constraining the tumor growth as a varying tumor volume 
sustainable by the vessels and roughly proportional to the vessel 
volume. The complete model requires an additional equation 
describing changes of the volume of the vessels, and the 
equation below expresses Gompertz-type growth: 

 

    )(
)(ln)()(

tK
tNtN

dt
tdN β−=

                   (1)
 

where N represents tumor volume as the size of the 
cancerous cell  population, K describes the maximum tumor 
volume sustainable by the supporting vascular network, and β 
is a growth parameter.  

The models considered in the present study are based on 
that proposed by Hahnfeldt et al who have developed and 
biologically validated a two-dimensional model of ordinary 
differential equations for interactions between primary tumor 
volume and the carrying capacity of the vasculature network 
which in turn is proportional to the square of the tumor 
diameter. For simplification, it was necessary to assume 
spherical symmetry of the tumor mass. Therefore the 
expression for K has the following form:  

 

)()()()()( 3
2

tKtKtNtN
dt

tdK μλγ −−=
       (2)

 

where γ represents the effect of the stimulation, λ the effect 
of the inhibition, and μ the natural cell death. Taking into 
account that tumor growth is relatively slow compared to the 
rate of release of pro- and anti- angiogenic factors, it is possible 
to assume that parameters γ, λ, μ are constant. The model (1), 
(2) may be modified by introducing a logistic-type growth 
equation instead of the Gompertz-type one and by changing the 
ratio between stimulating and blocking angiogenic factors [8]. 
This leads to a set of models which although behaving 
similarly when uncontrolled, may have different control 
properties [9]. For example, all the models have the same 
equilibrium point which is both locally and globally 
asymptotically stable: 

( )( ) 2/3** / λμγ −== KN  (3) 

On the other hand, conditions of tumor eradication under 
periodic therapy are both sufficient and necessary for all the 
models, except for the original Hanhfeldt model for which they 
are only necessary. Similar differences are observed when 
optimal antiangiogenic treatment protocols are considered. The 
original Hahnfeldt model contains singular arcs in optimal 
trajectories which are absent in other models [9], [10], [11]. To 
focus attention we consider the modification of the Hahnfeldt 
model proposed in [8]: 
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This model is strongly nonlinear, but by a logarithmic 
change of variables and some scaling transformation we are 
able to transform it into the semilinear form. More precisely, 
by the transformation: 
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we are led from model (1), (4) to the following semilinear 
system: 
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Application of antiangiogenic therapy can be 

incorporated in the model by a factor increasing 
multiplicatively the rate of loss of  the vessels, which leads to 
the following equation: 

 

)7()()()()()()()( 3
2

tutKtKtKtNtK
dt

tdK ημλγ −−−=

 
where ( )u t denotes the dose of the agent scaled to its effect 
on the vascular network, and η  is a constant parameter and 
plays the role of a control variable. For the constant dose U, 
the equilibrium points take the form: 

 ( )( ) 2/3** / λημγ UKN −−==  (8) 

which, according to the conditions of stability given in [8], 
leads to the conclusion that: 

 0,/)( ** =⇒−= NKU ημγ  (9) 

In other words, the vascular network and in turn the tumor 
can be eradicated, a conclusion which is crucial for the 
philosophy of the entire analysis. It is enough to ensure that 
the population of endothelial cells responsible for 
angiogenesis behaves  in the required way because the size 
of the tumor population in some sense tracks the same 
transients. A similar line of reasoning could be applied in the 
case of combined antiangiogenic and chemotherapy when 
two control variables are present. The main difference is that 
chemotoxic agents kill both cancer and critical normal 
tissues including endothelial cells: 
 

 )(
)(
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tK
tNtN

dt
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           (10)
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where v(t), the second control variable, denotes the dose of 
the chemotherapy scaled to its effect on tumor and normal 
tissues, and ξ and ψ  are constant scaling parameters. Of 
course, the additional chemotherapy supports the effect of 
antiangiogenic therapy. Moreover the effect of tumor 
eradication may be achieved more easily and faster, although 
the theoretical results based on the theory of stability still 
have an asymptotic form. For constant doses of 
antiangiogenic and chemotoxic agents  (denoted by U and V 
respectively), the equilibrium point is given by : 
 

 βξ

λξημγ
/**

2/3* )/)((
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VUN

=

−−−=
 (12) 

 
In this case the equilibrium point is not the same for both 
populations, but it is related very closely, and it can be easily 
seen that the conditions for both its local and global 
asymptotic stability are similar to those given above. The 
main difference is that now both control actions 
“collaborate” in conditions for convergence of solutions of 
the model equations to 0. More precisely, the condition (9) 
should be substituted by: 
 
 0,/)(/ ** =⇒−=+ NKVU ημγηξ  (13) 
 
Τhe use of the previously considered transformation of 
variables leads to the following semilinear model of the 
combined anticancer therapy: 
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which will be used in further analysis.  The main problem 
with these results is, however, their asymptotic character. In 
practice only a finite therapy horizon could be considered, 
which leads to the problem of the system's controllability. 

IV. SEMILINEAR SYSTEMS AND THEIR CONTROLLABILITY 
In this section, we study the general form of the 

semilinear stationary finite-dimensional control system 
described by the following ordinary differential state 
equation: 
 

x'(t) = Ax(t) + F(x(t),u(t)) + Bu(t)      (15) 
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with zero initial conditions: x(0) = 0, where the state x(t)∈Rn 
and the control u(t)∈Rm, A is n×n dimensional constant 
matrix, B is n×m dimensional constant matrix. Moreover, let 
us assume that the nonlinear mapping F: X×U→X is 
continuously differentiable near the origin and such that 
F(0,0)=0, and  X and U denote state and control spaces, 
respectively. 

In practice, admissible controls are always required to 
satisfy certain additional constraints. Generally, for arbitrary 
control constraints it is very difficult to give easily 
computable criteria for constrained controllability. 
However, for some special cases of the constraints it is 
possible to formulate and prove simple algebraic 
constrained controllability conditions. Therefore, we assume 
that the set of values of controls Uc⊂U is a given closed and 
convex cone with nonempty interior and vertex at zero. 
Then the set of admissible controls for the dynamical 
control system (15) has the following form:   
 
Uad=L∞([0,T],Uc).    (16) 
 
For the semilinear dynamical system (15), it is possible to 
define many different concepts of controllability. In the 
sequel we shall focus our attention on the so-called 
constrained controllability in the time interval [0,T]. In order 
to do this, first of all let us introduce the notion of the 
attainable set at time T>0 from zero initial conditions, 
denoted shortly by KT(Uc) and defined as follows: 
 
KT(Uc) = {x∈X : x = x(T,u),  u(t)∈Uc }  (17) 
 
where x(t,u), t > 0 is the unique solution of the differential 
state equation (15) with zero initial conditions and a given 
admissible control u∈Uad=L∞([0,T],Uc). Under the 
assumptions stated for the nonlinear term F, such a solution 
always exists. Now, using the concept of the attainable set, 
we recall the well-known definitions of constrained 
controllability in [0,T] for a semilinear dynamical system.  

Definition 1: The dynamical system (15) is said to be 
Uc-locally controllable in [0,T] if the attainable set KT(Uc) 
contains a neighborhood of zero in the space X. 

Definition 2: The dynamical system (15) is said to be 
Uc-globally controllable in [0,T]  if  KT(Uc) = X. 

Now, we shall introduce certain notations and present 
some important facts from the general theory of nonlinear 
operators. Let U and X be given spaces and g(u):U→X be a 
mapping continuously differentiable near the origin 0 of U. 
Let us suppose for convenience that g(0)=0. It is well 
known from the implicit-function theorem that if the 
derivative Dg(0):U→X maps the space U onto the whole 
space X, then the nonlinear map g transforms a 
neighborhood of zero in the space U onto some 
neighborhood of zero in the space X. In the more general 
case when the domain of the nonlinear operator g is Ω, Uc 
denotes a closed and convex cone in U with vertex at 0. In 

the sequel, we shall use for controllability investigations a 
property of the nonlinear mapping g, which is a 
consequence of a generalized open-mapping theorem. This 
result seems to be widely known, but for the sake of 
completeness we shall present it here, though without proof 
and in a slightly less general form sufficient for our purpose.  

Lemma 1: Let X, U, Uc, and Ω be as described above. 
Let g:Ω→X be a nonlinear mapping and suppose that on Ω 
nonlinear mapping g has derivative Dg, which is continuous 
at 0. Moreover, suppose that g(0) = 0 and assume that linear 
map Dg(0) maps Uc onto the whole space X. Then there 
exist neighborhoods N0 ⊂ X about 0∈X and M0⊂Ω about 
0∈U such that the nonlinear equation x=g(u) has, for each 
x∈N0, at least one solution u∈M0∩Uc, where M0∩Uc is a so- 
called conical neighborhood of zero in the space U. Using 
lemma 1 we study constrained local controllability in [0,T] 
for a semilinear dynamical system (15) using the associated 
linear dynamical system.  
 
z'(t) = Cz(t) + Du(t)   for t∈[0,T]      (18) 
 
with zero initial condition z(0)=0, where 
 
C = A +  Fx(0,0)   D = B + Fu(0,0)     (19) 
 
are n×n-dimensional and n×m-dimensional constant 
matrices, respectively. The main result is the following 
sufficient condition for constrained local controllability of 
the semilinear dynamical system (15) which will be used to 
study controllability of the model of combined anticancer 
therapy: 

Theorem 1 [2]. Suppose that (i) F(0,0) = 0, (ii) Uc⊂U 
is a closed and convex cone with vertex at zero, (iii) the 
associated linear control system (17) is Uc-globally 
controllable in [0,T]. 
Then the semilinear stationary dynamical control system 
(17) is Uc-locally controllable in [0,T].  

In practical applications of Theorem 1, the most 
difficult problem is to verify the assumption (iii) about 
constrained global controllability of the linear time-invariant 
dynamical system. In order to overcome this difficulty, we 
may use the following Theorem. 

Theorem 2 [2]: Suppose the set Uc is a cone with 
vertex at zero and nonempty interior in the space Rm. Then 
the associated linear dynamical control system (17) is Uc-
globally controllable in [0,T] if and only if: 
(1) it is controllable without any constraints, i.e. 

  
 rank[D,CD,C2D,...,Cn-1D] = n                            (20) 
 
(2) there is no real eigenvector w∈Rn of the matrix Ctr 

satisfying  inequalities  
 
wtrDu ≤ 0, for all u∈Uc.                                            (21) 
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These theorems could be proved using the generalized 
open mapping theorem. 

V. CONTROLLABILITY OF THE MODEL OF THERAPY 
Now, let us consider the constrained local 

controllability of the model of combined anticancer therapy 
described by the semilinear differential state equations (14) 
defined in a given time interval [0,T].  
In this case the state vector  x = [x, y]T,  the control vector  
u = [u, v]T, and  z  is the state of the associated linear 
system. Taking into account the general form of the semi-
linear dynamic system we have: 
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Hence, we have:  
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In order to consider the controllability of dynamical 
system (14) we use the Theorems presented in the previous 
section. The admissible controls are assumed to be positive, 
hence the set of admissible controls is a positive cone Uc  in 
the space R2. 

The characteristic polynomial for matrix Ctr has the 
form: 

 

ϑ

ϑ

3
22

3
2

1
1

det)det()(

++=

=⎥
⎦

⎤
⎢
⎣

⎡
−
+

=−=

ss

s
s

CsIsP tr

             (24) 

 
Therefore the discriminate of the characteristic polynomial 
is :      ϑ3

81−=Δ   
and the characteristic equation P(s) = 0 has two roots. 

It is necessary to consider the following three cases: 

I. Δ < 0, for 8
3>ϑ  

In this case, we have two complex eigenvalues 
 

)11(5.0)1(5.0 3
8

1 ϑ−−−=Δ−−= jjs  

and when the eigenvalues are complex, then the system is 
constrained controllable. 
II. Δ = 0, for  8

3=ϑ  
In this case, we have one real eigenvalue 
  
s12 = -0.5 with multiplicity 2.  
 
Therefore, to verify controllability it is necessary to use 
Theorem 2. In order to do that we first find the 
eigenvector  w of the matrix Ctr . From the spectral 
equation 
 
Ctrw = -0.5w         (25) 
 
the real eigenvector has the following form:  
 

⎥
⎦

⎤
⎢
⎣

⎡−
=

2
1

w  

 
thus 
 

0)2(2 >++= vuuBwtr ξεσ        (26) 
 
for all positive controls. Therefore, there is no real 
eigenvector satisfying (21). Hence, taking into account  
Theorem 2 the system is controllable with positive 
admissible controls. 
III. Δ > 0, for  8

3<ϑ  
In this case, we have two different real eigenvalues. 
Hence, to verify controllability we use Theorem 2. The 
real eigenvalues have the following form: 
 

0)11(5.0 3
8

1 <−−−= ϑs  

0)11(5.0 3
8

2 <−+−= ϑs  
 
Therefore, the corresponding real eigenvectors are 
 

⎥
⎦

⎤
⎢
⎣

⎡
−
−

= −1
1

1
1

s
w  and ⎥

⎦

⎤
⎢
⎣

⎡
−
−

= −1
2

2
1

s
w  

 
Thus,  
 

0)( 1
1

1
11 >−+−= −− vsusuBw tr ξεσ   
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0)( 1
2

1
22 >−+−= −− vsusuBw tr ξεσ

   
for all positive controls. 

Therefore, there is no real eigenvector satisfying 
inequality (21). Hence, taking into account Theorem 2 
the system is controllable with positive admissible 
controls. Summarizing, the semilinear dynamical system 
(14) is constrained controllable in a given time interval 
[0,T] with positive controls. From the biological point of 
view, this means that if the size of the tumour and its 
vascular network is not too large then there exists a 
combination of antiangiogenic therapy and chemotherapy 
which enables eradication of the tumour. The important 
finding is that this property does not depend on the 
parameters of the model, whose estimation may be 
difficult. In the existing literature, e.g., [3], [8] one can 
find some estimates for the parameters, but their accuracy 
is of course very low. This may be not true if only one 
modality (e.g., antiangiogenic therapy) is used. As 
proved in [4], local constrained controllability of the model 
of antiangiogenic therapy is guaranteed only when its 
parameters satisfy additional conditions related to 
oscillatory behavior  in the untreated case.  

VI. CONCLUSION 
In this study, we have shown how, by using quite simple 

models, we can analyze and design therapy protocols of 
combined antiangiogenic and chemotherapy of tumors. This 
type of cancer treatment is still in experimental and clinical 
trials. The results are promising, but knowledge of the 
processes behind the evolution of cancer vascular networks, 
the equilibrium between stimulatory and inhibitory factors, 
different forms of antiangiogenic therapy, its side effects. 
and the results of combined use of different treatment 
modalities is still far from being complete. The important 
finding presented in this paper is that sufficient conditions of 
local constraint controllability for the simple model of 
combined therapy are satisfied independent of its parameters, 
which is not true for the model of antiangiogenic therapy 
alone [4]. A more realistic model should take into account 
drug resistance of the cancer cell population caused by 
cytotoxic agents (see, e.g., [7]). Of course the situation in 
vivo is more complicated than the two-compartment models 
considered in this paper but, in our opinion, it may be treated 
similarly and may lead to similar qualitative results. The 
results will not change if linear pharmacokinetics of 
antiangiogenic and/or cytotoxic drugs is included in the 
model. Qualitatively, the controllability problem will change 
if delays in the dynamics of tumor growth and vascular 
network development are taken into account, and such a 
model was proposed in [21] and analyzed  without control 
terms in [22]. We hope that its controllability could be also 
examined using theorems presented in [23] based on the 
similar mathematical engine. 
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