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Abstract- Although second generation sequencing 
technology can be used to rapidly sequence an entire 
genome, assembly algorithms require a high level of 
coverage to produce a complete genomic sequence. We 
describe a fuzzy k-mer approach that is capable of rapidly 
ordering and orientating low coverage sequence reads with a 
high level of accuracy. Using this approach, a draft genome 
of Mycoplasma genitalium, sampled at varying low levels of 
coverage, was accurately anchored against the genome of 
Mycoplasma pneumoniae. The anchored reads were 
assembled into scaffolds with a vastly increased N50 length 
and an error rate of <1.5%. 
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I. INTRODUCTION 
The rapid evolution of genome sequencing 

technologies in recent years has lead to a reappraisal of 
sequencing alignment and assembly strategies [1-3]. Using 
massive parallelism, second generation sequencing (SGS) 
technologies are capable of rapidly producing a very large 
number of short reads [3-8]. These twin characteristics of 
read number and read length have resulted in a move away 
from assembly strategies based on the traditional overlap 
graph [9] to more k-mer centric approaches, such as 
sequence graphs and de Bruijn graphs [10-12].  

Regardless of the sequencing technology employed, 
the assembly of a set of sequence reads into a complete or 
draft genome is predicated on a sufficient number of 
overlapping reads being made available to an assembler. 
The level of overlaps, or coverage, is a function of the 
amount of oversampling employed during sequencing. To 
create a set of read fragments that represents 99.9% of a 
genome, an eight-fold (8X) level of coverage is required 
[13, 14]. Notwithstanding this and the recent rapid 
advances in DNA sequencing technology, many of the 
published genomes available in public repositories are of 
draft quality, at coverage levels as low as 2X [15]. Despite 
an acceleration in the number of completed genomes, the 
sheer number of potential candidate species available 
implies that most will either never be sequenced, or will be 
sequenced to draft quality only [16]. There is thus an 
evident niche for applications that are capable of 
generating sizable assemblies from sets of low-coverage 
sequence reads. 

A. Comparative Assembly 
As the number of sequenced organisms increases, 

alternative approaches to genome assembly based on 
orthologous relationships become ever more viable. 
Comparative de novo assembly algorithms map sequence 
reads to a high-quality reference genome and use the 
resultant anchoring information to direct the assembly 
process. Originally proposed by Pop [17], the AMOS 
comparative assembler employs an alignment-layout-
consensus approach to genome assembly. AMOS uses a 
complete, high-quality sequence of a closely related 
organism to determine the placement of reads in a layout 
graph.  

More recently, the related, but distinct concept of 
assisted assembly was proposed by Gnerre [18]. Designed 
for use with low-coverage sequences, assisted assembly 
reinforces information already present in reads to detect 
erroneous or missed overlaps during the initial phase of 
genome assembly. Simultaneously constructing both a de 
novo and a comparative assembly, proximity relationships 
between reads are used to guide the assembly process.  

B. Hash Tables and Variability 
Given the recent trend towards k-mer centric genome 

assembly, the application of a similar approach to 
comparative assembly is worthy of consideration. 
Although the use of k-mers has a long history in both 
sequence alignment [19, 20] and sequence assembly [10-
12], the underlying implementation typically manifests 
itself in the form of hash tables or hash maps. Hash tables 
and maps are dictionary data structures that use a key and 
hashing function to provide rapid, O(1), access to a set of 
mapped values [21]. As hash maps are capable of quickly 
detecting exact matches between keys, they are an ideal 
data structure for use in k-mer centric alignment and 
assembly applications. In a hash data structure, the hash 
key is used to functionally determine a mapped value. The 
implication of this property is that, although redundancy is 
permitted among the values in a hash map, the hash keys 
must be unique. While this uniqueness requirement 
provides hash structures with the underlying property to 
facilitate speed, it constrains access to exact matches of 
keys. This renders hash data structures intolerant of 
variations in sequence composition, such as sequence 
errors, polymorphisms, insertions and deletions, common 
in biological sequences. 
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Figure 1. A Fuzzy Hash Map with a hash key initialised to cause collisions if the first five bases in a sequence are the same. 

To circumvent the constraints imposed by the 
uniqueness requirement of hash keys, alignment 
applications have employed a number of different 
strategies. Chief among these is the “seed and extend” 
strategy used by BLAST [19], which applies a hash table 
to seed exact k-mer matches, before attempting to join 
high-scoring alignments using dynamic programming. An 
alternative approach is the use of spaced seeds [22], which 
permit a degree of mismatch at pre-determined positions in 
a sequence. However, both approaches facilitate sensitivity 
by sacrificing the speed inherent in the hash structure.  

Richer, object-oriented, programming languages 
permit the extension of hash maps to provide built-in 
support for key variability. Originally proposed by Topac 
[23], a Fuzzy Hash Map (FHM) applies fuzzy capabilities 
to traditional hash structures, with a minimal reduction in 
access speed. FHMs permit a degree of variation in hash 
keys and can be used for inexact sequence comparison. 

To illustrate the applicability of FHM to sequence 
alignment and assembly, a draft genome of M.genitalium, 
sampled at very low levels of coverage, was anchored 
against the complete genome of M.pneumoniae, which 
was then used to guide the assembly process. The 
approach is highly effective for both ordering and 
orientating low coverage sets of reads into assembly 
contigs and scaffolds. The remainder of this discussion 
includes a description of how fuzzy k-mers can be 
implemented using a FHM. This is followed by a 
description of the anchoring and assembly process and the 
presentation of results. Finally, the mechanism used to test 
the validity of the approach is described and conclusions 
presented. 

II. FUZZY HASH MAPS AND FUZZY K-MERS 
Unlike procedural programming languages, object-

oriented languages allow arbitrary objects to act as keys 
and values in a hash map [21]. The rapid access time of 
hash maps is accomplished by transforming a key value to 
an integer value that corresponds to a table index. When a 
collision between a search term and a hash key is detected, 
this transformation is applied to provide access to the 
mapped value. In the Java language, the semantics of 
object equality is determined by the implementation of the 
hashCode() and equals() methods [24]. When searching a 
hash map for a given key, if two hashCode() methods 

return the same integer value, an initial collision is 
detected. The equals() method is then executed to resolve 
any ambiguity and determine if a full collision has 
occurred. 

FHMs manipulate the relationship between both of 
these methods by encouraging initial collisions based on 
part of the hash key and using the equals() method to 
permit a degree of variability in the remainder of the key. 
The degree of similarity is determined by the 
implementation of the equals() method, which can employ 
any sequence similarity algorithm that is capable of  
returning a fuzzy value between 0 and 1. 

As depicted in Figure 1, fuzzy k-mers can be 
accommodated in a FHM by specifying the part of the k-
mer to be used when computing the hash code. The 
remainder of the k-mer is evaluated by encapsulating a 
sequence similarity algorithm inside the equals() method. 
Using standard object-oriented techniques such as 
composition and inheritance, any edit distance algorithm 
such as Levenshtein Distance [25], Hamming Distance 
[26] and the Smith-Waterman algorithm [27] can be used. 
Consistent with traditional “seed and extend” strategies, 
the design of a fuzzy hash key is a trade-off between speed 
and sensitivity. Computing a hash code on too small a part 
of a hash key has the effect of flattening the FHM into a 
list, reducing the speed in proportion to the time 
complexity of the sequence similarity algorithm. In 
practice, specifying a minimum word size of 11 bases in 
the hashCode() implementation allows variability in the 
remainder of a k-mer, with little or no impact on running 
time. 

III. ANCHORING AND ASSEMBLING FUZZY K-MERS 
To illustrate the relevance and utility of FHMs to 

comparative genome assembly, the approach was used to 
anchor and assemble a draft genome of Mycoplasma 
genitalium using the complete genome of Mycoplasma 
pneumoniae to direct part the assembly. A k-mer centric 
anchoring and assembly strategy was applied, which 
consists of four main phases: anchor detection and 
extraction, anchor alignment, contig assembly and contig 
scaffolding. 

 

A. Anchor Detection and Extraction 
Given a complete, high-quality reference genome, a de 
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Figure 2. (a) A 4-mer de Bruijn graph for the overlapping sequences GTTACTTTCTCTTA and TCTTACCGGG. In practice k-mer sizes of at least 24 
are used. As each read is added to the graph, the index position of the read (in red) relative to the sequence of the graph node is recorded. This 
information enables reliable transversal through highly repetitive nodes, by following the indices of the current read in increasing order. (b) 
Transformation to a sequence graph can be achieved by merging together nodes with an in-degree and out-degree of 1. The starting index of each read 
with respect to the merged node is altered to reflect the length of the newly merged sequence. The transformation to a sequence graph has the effect of 
significantly reducing the number of nodes and edges in the graph.  

Bruijn graph can be created that represents a perfect tiling 
path through the genome. For a genome of size n, the de 
Bruijn graph will have O(n) nodes and O(n) edges, 
regardless of the number of reads in an assembly [28]. 
Each node in the graph represents a k-mer and can be 
weighted to reflect the multiplicity of matches to the 
sequence it contains. In the FHM approach, the 
multiplicity is not denoted by an integer value, but by 
labelling each node with read edges. A read edge 
represents the alignment of part of a genome with the k-
mer contained by a node. Thus, nodes composed with 
more than one read edge represent repetitive sequences 
and are easily identified and, if necessary, avoided. The 
anchor detection and extraction process requires that the 
full reference genome be parsed and transformed into a de 
Bruijn graph (Figure 2). Although the memory 
requirements of a de Bruijn graph are huge, the memory 
consumption can be greatly reduced by merging all nodes 
with an in-degree and out-degree of 1. In the case of 
anchor detection, an additional constraint of merging only 
nodes with a multiplicity of 1 yields a sequence graph, 
where each merged edge represents a unique anchoring 
region. These anchoring regions are easily detected using a 
Depth-First Search [29] and are extracted and written to a 
FASTA file and to a serialized map. It is noteworthy that 
this process is executed once for each reference genome 

and is not undertaken as part of the assembly. 

B. Anchor Alignment 
Anchoring the reads from a draft genome requires that 

all reads, in both forward and reverse orientations, be 
compared against each anchor sequence. Before the 
alignment and assembly phases commence, the anchoring 
sequences are first parsed and read into a FHM. The FHM 
must be configured with a FuzzyHashKey that specifies the 
parts of each k-mer to be used to compute similarity. In 
addition, the FuzzyHashKey must also be configured with 
the sequence similarity algorithm to use and a fuzzy 
threshold value. Only alignment matches above the fuzzy 
threshold will cause a full collision in the FHM and 
indicate a match. Thus, a fuzzy threshold of 0.65 will only 
result in a match if a hash code causes an initial collision 
in the FHM and 65% of the remainder of the k-mer 
matches a hash key. Read alignment is accomplished by 
decomposing each read into a set of overlapping k-mers 
and attempting to add each k-mer to the FHM. If a match 
is found in the FHM, the name and index of the anchor is 
recorded, along with the orientation of the read. After the 
read has been aligned in both orientations, a majority 
count is use to determine the correct orientation of the read 
and its order with respect to the anchor. Each anchor 
maintains a list of the name, orientation and starting 
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position of each read and automatically sorts the set of 
reads using a priority queue. As each anchor knows its 
own starting index with respect to the reference genome, 
the alignment process not only orientates, but also orders, 
each anchored read.  

C. Contig Assembly 
The assembly of overlapping reads into contigs is 

based on the application of a de Bruijn graph, in a manner 
similar to that used for anchor detection and extraction. As 
each draft read is parsed, an attempt is made to anchor the 
read using the procedure described above. If a read has 
been anchored, it is added to the de Bruijn graph only in 
the orientation given by the anchor. Otherwise, a read is 
added to the graph in both orientations. After parsing the 
full set of draft reads, the de Bruijn graph is transformed 
into a sequence graph by merging together all nodes with 
an in-degree and out-degree of 1. Assembly commences 
by generating a stack representing the set of source nodes 
in the graph. At low levels of coverage, there is an 
insufficient number of overlapping reads to provide a 
single path through the graph. Thus, the total number of 
source nodes in the graph indicates the minimum number 
of contigs available to the assembler.  

Contig assembly is facilitated by the labelling of graph 
nodes with read edges. Starting at a source node, the list of 
read edges is processed to identify the starting sequence of 
an unprocessed read. The best candidate read edge can be 
identified by its index with respect to its own read and its 
index relative to the graph node. Using the current read as 
a heuristic value, neighbouring edges are evaluated and 
offered to a priority queue. The priority queue applies a 
distance constraint to determine if a read edge is 
permissible and, after examining all neighbouring edges, 
returns the next best edge to the assembler. By applying a 
distance constraint in this manner, the assembler will 
select the correct path when it encounters a branch in the 
graph. In addition to selecting the next edge, the priority 
queue is also responsible for determining the next read to 
process.  

The labelling of nodes with read edges also facilitates 
the transversal of loops in the graph, which represent 
repetitive sequences. Using the current read as a heuristic, 
if an adjacent node has more than one read edge for the 
current read, the priority queue will only select a read edge 
that meets the distance constraints.  

D. Contig Scaffolding 
Given a set of contigs from the initial assembly phase, 

the anchoring information can now be applied to order and 
group the contigs. Although the absolute index of each 
anchor sequence with respect to the reference genome is 
known, this information cannot be used to determine the 
distance between contigs, as there may be large insertions 
or deletions in the reference sequence. Thus, the 
scaffolding of contigs involves the full ordering of contigs 
and the grouping of contigs linked by anchors into sub-
contigs.  

This final phase of assembly involves polling each 
anchor from a sorted queue of anchors. If an anchor spans 
more than one contig, at least two reads must be present in 
the adjacent contig to establish a join. As each anchor is 
processed, its aligned reads are removed in ascending 
order of alignment index. When all the reads have been 
polled from an anchor, the next anchor is removed from 
the anchor queue and the process iterates. The final 
assembly output is a FASTA file containing the assembled 
reads and an XML document. The XML document 
contains information about the set of contigs, including the 
constituent reads, read index and orientation. 

IV. RESULTS AND DISCUSSION 
The 0.58Mb genome of M.genitalium was randomly 

sampled at coverage levels from 0.1X-2.0X and assembled 
using the 0.81Mb genome of M.pneumoniae as a reference 
sequence. Using a k-mer size of 24 and, with fuzzy index 
and fuzzy threshold values of 11 and 0.8 respectively, the 
FHM approach anchored 65.56% of the M.genitalium 
reads. Empirical evidence demonstrates that, for genomic 
sequences, as the fuzzy index decreases below 11, the 
number of collisions in the FHM increase exponentially 
until the access time reaches O(n), at which point the 
running time of the FHM is no better that that of an 
indexed list. The fuzzy threshold of 0.8 reflects the close 
genetic relationship between M.genitalium and 
M.pneumoniae. For more divergent species, this parameter 
should be relaxed to permit a greater tolerance of sequence 
variability during the anchoring phase.      

 The results of the assembly at various levels of 
coverage are shown in Table 1. Among the more salient 
features of the fuzzy assembly approach, is the low 
percentage of orientation errors. This illustrates the utility 
of genome anchoring in general and the FHM in particular, 
for determining the correct orientation of a sequence read, 
even at very low levels of coverage. 

 

TABLE I.  SUMMARY OF ASSEMBLY RESULTS AT VARYING LEVELS 
OF COVERAGE.  

Coverage	   N50	  
Contig	  

N50	  
Scaffold	  

%	  
Ordering	  
Errors	  

%	  
Orientation	  
Errors	  

Time	  
(s)	  

2.0	   2141	   51215	   1.21	   0.12	   19.2	  
1.8	   1918	   14787	   4.60	   1.00	   17.3	  
1.6	   1798	   14853	   1.12	   0.17	   16.2	  
1.4	   1739	   9734	   0.39	   0.59	   14.6	  
1.2	   1456	   10322	   2.18	   0.46	   12.8	  
1.0	   1269	   6001	   1.24	   0.97	   11.1	  
0.8	   1228	   8240	   1.55	   0.69	   7.5	  
0.6	   992	   4743	   0.92	   0.46	   7.8	  
0.4	   -‐	   2450	   2.07	   0.00	   6.0	  
0.2	   -‐	   2539	   1.38	   2.07	   4.1	  

 
The N50 metric indicates that 50% of bases are in 

contigs of size n or greater. Again, the effectiveness of the 
approach can be seen by comparing the N50 size for the 
contigs generated by the initial assembly with the N50 size 
of scaffolded contigs. Even at ultra-low levels of coverage, 
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the assembler is capable of generating sizable contigs with 
low ordering and orientation errors. The execution time 
exhibits a logarithmic growth rate in the order O(log n). 
Allowing for the parsing of an ever-increasing number of 
reads, this slow growth rate illustrates that using fuzzy k-
mers in this manner does not compromise running time. 

V. VALIDATION OF APPROACH 
To establish the validity of the approach, an automated 

testing framework was developed that is capable of 
examining and scoring the order and orientation of each 
read in the assembly. The set of reads for each draft 
genome was randomly sampled from a complete genome, 
by providing information such as desired coverage level, 
average read length and clone insert length to a validation 
framework. The output of the read generation process is a 
set of randomly sampled and oriented reads in FASTA 
format, representing the draft genome, and a specialised 
data structure containing validation data for each read. The 
validation data includes the correct order and orientation 
of reads, the length of each read and the distance between 
adjacent reads. 

After anchoring and assembling the draft genome, the 
set of assembled reads was validated, by computing a local 
alignment of each contiguous set of reads against the full 
ordered set of randomly sampled sequences. This was 
accomplished by creating a dynamic programming matrix 
and scoring the list of reads in each contig against the full 
list of reads generated by the framework. It should be 
noted that the dynamic programming matrix requires only 
the names of reads and their relative distances to compute 
an alignment score. Furthermore, a positive score in the 
programming matrix requires a read to be both in order 
and at the correct distance relative to its adjacent reads. 

 In addition to ascertaining the correct order of reads, 
the test framework also computes, from a suffix of the 
FASTA sequence name, the correct orientation of each 
read. The local alignment was implemented using a 
modification of the Smith-Waterman [27] algorithm. 
Ancillary information, such as N50 size and Lander-
Waterman [14] statistics, is also generated by the 
validation framework. 

VI. CONCLUSION 
The anchoring and assembly process described is 

capable of rapidly ordering and orientating reads from a 
draft genome with a low level of errors. In particular, the 
anchoring mechanism is highly effective in orientating 
reads, thereby reducing the size of the graph created by the 
assembler and simplifying the assembly of contigs. 
Directing assembly using sets of anchored reads enables 
the construction of large contig scaffolds, even at low 
levels of coverage. Furthermore, the application of a FHM 
data structure permits a degree of variability between 
sequences, without sacrificing execution speed. Finally, 
the fuzzy k-mer approach allows a high degree of error 
tolerance that is invaluable when processing biological 
sequences that contain sequence errors, insertions and 
deletions. 
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