
De Novo Draft Genome Assembly Using Fuzzy K-mers

John Healy
Department of Computing & Mathematics

Galway-Mayo Institute of Technology
Ireland

e-mail: john.healy@gmit.ie

Desmond Chambers
Department of Information Technology
National University of Ireland Galway

Ireland
e-mail: des.chambers@nuigalway.ie

Abstract- Although second generation sequencing
technology can be used to rapidly sequence an entire
genome, assembly algorithms require a high level of
coverage to produce a complete genomic sequence. We
describe a fuzzy k-mer approach that is capable of rapidly
ordering and orientating low coverage sequence reads with a
high level of accuracy. Using this approach, a draft genome
of Mycoplasma genitalium, sampled at varying low levels of
coverage, was accurately anchored against the genome of
Mycoplasma pneumoniae. The anchored reads were
assembled into scaffolds with a vastly increased N50 length
and an error rate of <1.5%.

Keywords- genome assembly, anchoring, fuzzy k-mers,

fuzzy hash maps

I. INTRODUCTION
The rapid evolution of genome sequencing

technologies in recent years has lead to a reappraisal of
sequencing alignment and assembly strategies [1-3]. Using
massive parallelism, second generation sequencing (SGS)
technologies are capable of rapidly producing a very large
number of short reads [3-8]. These twin characteristics of
read number and read length have resulted in a move away
from assembly strategies based on the traditional overlap
graph [9] to more k-mer centric approaches, such as
sequence graphs and de Bruijn graphs [10-12].

Regardless of the sequencing technology employed,
the assembly of a set of sequence reads into a complete or
draft genome is predicated on a sufficient number of
overlapping reads being made available to an assembler.
The level of overlaps, or coverage, is a function of the
amount of oversampling employed during sequencing. To
create a set of read fragments that represents 99.9% of a
genome, an eight-fold (8X) level of coverage is required
[13, 14]. Notwithstanding this and the recent rapid
advances in DNA sequencing technology, many of the
published genomes available in public repositories are of
draft quality, at coverage levels as low as 2X [15]. Despite
an acceleration in the number of completed genomes, the
sheer number of potential candidate species available
implies that most will either never be sequenced, or will be
sequenced to draft quality only [16]. There is thus an
evident niche for applications that are capable of
generating sizable assemblies from sets of low-coverage
sequence reads.

A. Comparative Assembly
As the number of sequenced organisms increases,

alternative approaches to genome assembly based on
orthologous relationships become ever more viable.
Comparative de novo assembly algorithms map sequence
reads to a high-quality reference genome and use the
resultant anchoring information to direct the assembly
process. Originally proposed by Pop [17], the AMOS
comparative assembler employs an alignment-layout-
consensus approach to genome assembly. AMOS uses a
complete, high-quality sequence of a closely related
organism to determine the placement of reads in a layout
graph.

More recently, the related, but distinct concept of
assisted assembly was proposed by Gnerre [18]. Designed
for use with low-coverage sequences, assisted assembly
reinforces information already present in reads to detect
erroneous or missed overlaps during the initial phase of
genome assembly. Simultaneously constructing both a de
novo and a comparative assembly, proximity relationships
between reads are used to guide the assembly process.

B. Hash Tables and Variability
Given the recent trend towards k-mer centric genome

assembly, the application of a similar approach to
comparative assembly is worthy of consideration.
Although the use of k-mers has a long history in both
sequence alignment [19, 20] and sequence assembly [10-
12], the underlying implementation typically manifests
itself in the form of hash tables or hash maps. Hash tables
and maps are dictionary data structures that use a key and
hashing function to provide rapid, O(1), access to a set of
mapped values [21]. As hash maps are capable of quickly
detecting exact matches between keys, they are an ideal
data structure for use in k-mer centric alignment and
assembly applications. In a hash data structure, the hash
key is used to functionally determine a mapped value. The
implication of this property is that, although redundancy is
permitted among the values in a hash map, the hash keys
must be unique. While this uniqueness requirement
provides hash structures with the underlying property to
facilitate speed, it constrains access to exact matches of
keys. This renders hash data structures intolerant of
variations in sequence composition, such as sequence
errors, polymorphisms, insertions and deletions, common
in biological sequences.

104

BIOTECHNO 2011 : The Third International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-137-3

Figure 1. A Fuzzy Hash Map with a hash key initialised to cause collisions if the first five bases in a sequence are the same.

To circumvent the constraints imposed by the
uniqueness requirement of hash keys, alignment
applications have employed a number of different
strategies. Chief among these is the “seed and extend”
strategy used by BLAST [19], which applies a hash table
to seed exact k-mer matches, before attempting to join
high-scoring alignments using dynamic programming. An
alternative approach is the use of spaced seeds [22], which
permit a degree of mismatch at pre-determined positions in
a sequence. However, both approaches facilitate sensitivity
by sacrificing the speed inherent in the hash structure.

Richer, object-oriented, programming languages
permit the extension of hash maps to provide built-in
support for key variability. Originally proposed by Topac
[23], a Fuzzy Hash Map (FHM) applies fuzzy capabilities
to traditional hash structures, with a minimal reduction in
access speed. FHMs permit a degree of variation in hash
keys and can be used for inexact sequence comparison.

To illustrate the applicability of FHM to sequence
alignment and assembly, a draft genome of M.genitalium,
sampled at very low levels of coverage, was anchored
against the complete genome of M.pneumoniae, which
was then used to guide the assembly process. The
approach is highly effective for both ordering and
orientating low coverage sets of reads into assembly
contigs and scaffolds. The remainder of this discussion
includes a description of how fuzzy k-mers can be
implemented using a FHM. This is followed by a
description of the anchoring and assembly process and the
presentation of results. Finally, the mechanism used to test
the validity of the approach is described and conclusions
presented.

II. FUZZY HASH MAPS AND FUZZY K-MERS
Unlike procedural programming languages, object-

oriented languages allow arbitrary objects to act as keys
and values in a hash map [21]. The rapid access time of
hash maps is accomplished by transforming a key value to
an integer value that corresponds to a table index. When a
collision between a search term and a hash key is detected,
this transformation is applied to provide access to the
mapped value. In the Java language, the semantics of
object equality is determined by the implementation of the
hashCode() and equals() methods [24]. When searching a
hash map for a given key, if two hashCode() methods

return the same integer value, an initial collision is
detected. The equals() method is then executed to resolve
any ambiguity and determine if a full collision has
occurred.

FHMs manipulate the relationship between both of
these methods by encouraging initial collisions based on
part of the hash key and using the equals() method to
permit a degree of variability in the remainder of the key.
The degree of similarity is determined by the
implementation of the equals() method, which can employ
any sequence similarity algorithm that is capable of
returning a fuzzy value between 0 and 1.

As depicted in Figure 1, fuzzy k-mers can be
accommodated in a FHM by specifying the part of the k-
mer to be used when computing the hash code. The
remainder of the k-mer is evaluated by encapsulating a
sequence similarity algorithm inside the equals() method.
Using standard object-oriented techniques such as
composition and inheritance, any edit distance algorithm
such as Levenshtein Distance [25], Hamming Distance
[26] and the Smith-Waterman algorithm [27] can be used.
Consistent with traditional “seed and extend” strategies,
the design of a fuzzy hash key is a trade-off between speed
and sensitivity. Computing a hash code on too small a part
of a hash key has the effect of flattening the FHM into a
list, reducing the speed in proportion to the time
complexity of the sequence similarity algorithm. In
practice, specifying a minimum word size of 11 bases in
the hashCode() implementation allows variability in the
remainder of a k-mer, with little or no impact on running
time.

III. ANCHORING AND ASSEMBLING FUZZY K-MERS
To illustrate the relevance and utility of FHMs to

comparative genome assembly, the approach was used to
anchor and assemble a draft genome of Mycoplasma
genitalium using the complete genome of Mycoplasma
pneumoniae to direct part the assembly. A k-mer centric
anchoring and assembly strategy was applied, which
consists of four main phases: anchor detection and
extraction, anchor alignment, contig assembly and contig
scaffolding.

A. Anchor Detection and Extraction
Given a complete, high-quality reference genome, a de

105

BIOTECHNO 2011 : The Third International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-137-3

Figure 2. (a) A 4-mer de Bruijn graph for the overlapping sequences GTTACTTTCTCTTA and TCTTACCGGG. In practice k-mer sizes of at least 24
are used. As each read is added to the graph, the index position of the read (in red) relative to the sequence of the graph node is recorded. This
information enables reliable transversal through highly repetitive nodes, by following the indices of the current read in increasing order. (b)
Transformation to a sequence graph can be achieved by merging together nodes with an in-degree and out-degree of 1. The starting index of each read
with respect to the merged node is altered to reflect the length of the newly merged sequence. The transformation to a sequence graph has the effect of
significantly reducing the number of nodes and edges in the graph.

Bruijn graph can be created that represents a perfect tiling
path through the genome. For a genome of size n, the de
Bruijn graph will have O(n) nodes and O(n) edges,
regardless of the number of reads in an assembly [28].
Each node in the graph represents a k-mer and can be
weighted to reflect the multiplicity of matches to the
sequence it contains. In the FHM approach, the
multiplicity is not denoted by an integer value, but by
labelling each node with read edges. A read edge
represents the alignment of part of a genome with the k-
mer contained by a node. Thus, nodes composed with
more than one read edge represent repetitive sequences
and are easily identified and, if necessary, avoided. The
anchor detection and extraction process requires that the
full reference genome be parsed and transformed into a de
Bruijn graph (Figure 2). Although the memory
requirements of a de Bruijn graph are huge, the memory
consumption can be greatly reduced by merging all nodes
with an in-degree and out-degree of 1. In the case of
anchor detection, an additional constraint of merging only
nodes with a multiplicity of 1 yields a sequence graph,
where each merged edge represents a unique anchoring
region. These anchoring regions are easily detected using a
Depth-First Search [29] and are extracted and written to a
FASTA file and to a serialized map. It is noteworthy that
this process is executed once for each reference genome

and is not undertaken as part of the assembly.

B. Anchor Alignment
Anchoring the reads from a draft genome requires that

all reads, in both forward and reverse orientations, be
compared against each anchor sequence. Before the
alignment and assembly phases commence, the anchoring
sequences are first parsed and read into a FHM. The FHM
must be configured with a FuzzyHashKey that specifies the
parts of each k-mer to be used to compute similarity. In
addition, the FuzzyHashKey must also be configured with
the sequence similarity algorithm to use and a fuzzy
threshold value. Only alignment matches above the fuzzy
threshold will cause a full collision in the FHM and
indicate a match. Thus, a fuzzy threshold of 0.65 will only
result in a match if a hash code causes an initial collision
in the FHM and 65% of the remainder of the k-mer
matches a hash key. Read alignment is accomplished by
decomposing each read into a set of overlapping k-mers
and attempting to add each k-mer to the FHM. If a match
is found in the FHM, the name and index of the anchor is
recorded, along with the orientation of the read. After the
read has been aligned in both orientations, a majority
count is use to determine the correct orientation of the read
and its order with respect to the anchor. Each anchor
maintains a list of the name, orientation and starting

106

BIOTECHNO 2011 : The Third International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-137-3

position of each read and automatically sorts the set of
reads using a priority queue. As each anchor knows its
own starting index with respect to the reference genome,
the alignment process not only orientates, but also orders,
each anchored read.

C. Contig Assembly
The assembly of overlapping reads into contigs is

based on the application of a de Bruijn graph, in a manner
similar to that used for anchor detection and extraction. As
each draft read is parsed, an attempt is made to anchor the
read using the procedure described above. If a read has
been anchored, it is added to the de Bruijn graph only in
the orientation given by the anchor. Otherwise, a read is
added to the graph in both orientations. After parsing the
full set of draft reads, the de Bruijn graph is transformed
into a sequence graph by merging together all nodes with
an in-degree and out-degree of 1. Assembly commences
by generating a stack representing the set of source nodes
in the graph. At low levels of coverage, there is an
insufficient number of overlapping reads to provide a
single path through the graph. Thus, the total number of
source nodes in the graph indicates the minimum number
of contigs available to the assembler.

Contig assembly is facilitated by the labelling of graph
nodes with read edges. Starting at a source node, the list of
read edges is processed to identify the starting sequence of
an unprocessed read. The best candidate read edge can be
identified by its index with respect to its own read and its
index relative to the graph node. Using the current read as
a heuristic value, neighbouring edges are evaluated and
offered to a priority queue. The priority queue applies a
distance constraint to determine if a read edge is
permissible and, after examining all neighbouring edges,
returns the next best edge to the assembler. By applying a
distance constraint in this manner, the assembler will
select the correct path when it encounters a branch in the
graph. In addition to selecting the next edge, the priority
queue is also responsible for determining the next read to
process.

The labelling of nodes with read edges also facilitates
the transversal of loops in the graph, which represent
repetitive sequences. Using the current read as a heuristic,
if an adjacent node has more than one read edge for the
current read, the priority queue will only select a read edge
that meets the distance constraints.

D. Contig Scaffolding
Given a set of contigs from the initial assembly phase,

the anchoring information can now be applied to order and
group the contigs. Although the absolute index of each
anchor sequence with respect to the reference genome is
known, this information cannot be used to determine the
distance between contigs, as there may be large insertions
or deletions in the reference sequence. Thus, the
scaffolding of contigs involves the full ordering of contigs
and the grouping of contigs linked by anchors into sub-
contigs.

This final phase of assembly involves polling each
anchor from a sorted queue of anchors. If an anchor spans
more than one contig, at least two reads must be present in
the adjacent contig to establish a join. As each anchor is
processed, its aligned reads are removed in ascending
order of alignment index. When all the reads have been
polled from an anchor, the next anchor is removed from
the anchor queue and the process iterates. The final
assembly output is a FASTA file containing the assembled
reads and an XML document. The XML document
contains information about the set of contigs, including the
constituent reads, read index and orientation.

IV. RESULTS AND DISCUSSION
The 0.58Mb genome of M.genitalium was randomly

sampled at coverage levels from 0.1X-2.0X and assembled
using the 0.81Mb genome of M.pneumoniae as a reference
sequence. Using a k-mer size of 24 and, with fuzzy index
and fuzzy threshold values of 11 and 0.8 respectively, the
FHM approach anchored 65.56% of the M.genitalium
reads. Empirical evidence demonstrates that, for genomic
sequences, as the fuzzy index decreases below 11, the
number of collisions in the FHM increase exponentially
until the access time reaches O(n), at which point the
running time of the FHM is no better that that of an
indexed list. The fuzzy threshold of 0.8 reflects the close
genetic relationship between M.genitalium and
M.pneumoniae. For more divergent species, this parameter
should be relaxed to permit a greater tolerance of sequence
variability during the anchoring phase.

 The results of the assembly at various levels of
coverage are shown in Table 1. Among the more salient
features of the fuzzy assembly approach, is the low
percentage of orientation errors. This illustrates the utility
of genome anchoring in general and the FHM in particular,
for determining the correct orientation of a sequence read,
even at very low levels of coverage.

TABLE I. SUMMARY OF ASSEMBLY RESULTS AT VARYING LEVELS
OF COVERAGE.

Coverage	 N50	
Contig	

N50	
Scaffold	

%	
Ordering	
Errors	

%	
Orientation	
Errors	

Time	
(s)	

2.0	 2141	 51215	 1.21	 0.12	 19.2	
1.8	 1918	 14787	 4.60	 1.00	 17.3	
1.6	 1798	 14853	 1.12	 0.17	 16.2	
1.4	 1739	 9734	 0.39	 0.59	 14.6	
1.2	 1456	 10322	 2.18	 0.46	 12.8	
1.0	 1269	 6001	 1.24	 0.97	 11.1	
0.8	 1228	 8240	 1.55	 0.69	 7.5	
0.6	 992	 4743	 0.92	 0.46	 7.8	
0.4	 -‐	 2450	 2.07	 0.00	 6.0	
0.2	 -‐	 2539	 1.38	 2.07	 4.1	

The N50 metric indicates that 50% of bases are in

contigs of size n or greater. Again, the effectiveness of the
approach can be seen by comparing the N50 size for the
contigs generated by the initial assembly with the N50 size
of scaffolded contigs. Even at ultra-low levels of coverage,

107

BIOTECHNO 2011 : The Third International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-137-3

the assembler is capable of generating sizable contigs with
low ordering and orientation errors. The execution time
exhibits a logarithmic growth rate in the order O(log n).
Allowing for the parsing of an ever-increasing number of
reads, this slow growth rate illustrates that using fuzzy k-
mers in this manner does not compromise running time.

V. VALIDATION OF APPROACH
To establish the validity of the approach, an automated

testing framework was developed that is capable of
examining and scoring the order and orientation of each
read in the assembly. The set of reads for each draft
genome was randomly sampled from a complete genome,
by providing information such as desired coverage level,
average read length and clone insert length to a validation
framework. The output of the read generation process is a
set of randomly sampled and oriented reads in FASTA
format, representing the draft genome, and a specialised
data structure containing validation data for each read. The
validation data includes the correct order and orientation
of reads, the length of each read and the distance between
adjacent reads.

After anchoring and assembling the draft genome, the
set of assembled reads was validated, by computing a local
alignment of each contiguous set of reads against the full
ordered set of randomly sampled sequences. This was
accomplished by creating a dynamic programming matrix
and scoring the list of reads in each contig against the full
list of reads generated by the framework. It should be
noted that the dynamic programming matrix requires only
the names of reads and their relative distances to compute
an alignment score. Furthermore, a positive score in the
programming matrix requires a read to be both in order
and at the correct distance relative to its adjacent reads.

 In addition to ascertaining the correct order of reads,
the test framework also computes, from a suffix of the
FASTA sequence name, the correct orientation of each
read. The local alignment was implemented using a
modification of the Smith-Waterman [27] algorithm.
Ancillary information, such as N50 size and Lander-
Waterman [14] statistics, is also generated by the
validation framework.

VI. CONCLUSION
The anchoring and assembly process described is

capable of rapidly ordering and orientating reads from a
draft genome with a low level of errors. In particular, the
anchoring mechanism is highly effective in orientating
reads, thereby reducing the size of the graph created by the
assembler and simplifying the assembly of contigs.
Directing assembly using sets of anchored reads enables
the construction of large contig scaffolds, even at low
levels of coverage. Furthermore, the application of a FHM
data structure permits a degree of variability between
sequences, without sacrificing execution speed. Finally,
the fuzzy k-mer approach allows a high degree of error
tolerance that is invaluable when processing biological
sequences that contain sequence errors, insertions and
deletions.

VII. REFERENCES
[1] S. Batzoglou, "The many faces of sequence alignment," Briefings

in bioinformatics, vol. 6, p. 6, 2005.
[2] H. Li and N. Homer, "A survey of sequence alignment algorithms

for next-generation sequencing," Brief Bioinform, p. bbq015, 2010.
[3] M. Schatz, A. Delcher, and S. Salzberg, "Assembly of large

genomes using second-generation sequencing," Genome Research,
vol. 20, p. 1165, 2010.

[4] P. Flicek and E. Birney, "Sense from sequence reads: methods for
alignment and assembly," Nature Methods, vol. 6, pp. S6-S12,
2009.

[5] C. Fuller, L. Middendorf, S. Benner, G. Church, T. Harris, X.
Huang, S. Jovanovich, J. Nelson, J. Schloss, and D. Schwartz,
"The challenges of sequencing by synthesis," nature
biotechnology, vol. 27, pp. 1013-1023, 2009.

[6] C. Hutchison III, "DNA sequencing: bench to bedside and
beyond," Nucleic Acids Research, 2007.

[7] J. Shendure and H. Ji, "Next-generation DNA sequencing," nature
biotechnology, vol. 26, pp. 1135-1145, 2008.

[8] A. Sundquist, M. Ronaghi, H. Tang, P. Pevzner, and S. Batzoglou,
"Whole-genome sequencing and assembly with high-throughput,
short-read technologies," PLoS One, vol. 2, 2007.

[9] J. Kececioglu and E. Myers, "Combinatorial algorithms for DNA
sequence assembly," Algorithmica, vol. 13, pp. 7-51, 1995.

[10] J. Butler, I. MacCallum, M. Kleber, I. Shlyakhter, M. Belmonte, E.
Lander, C. Nusbaum, and D. Jaffe, "ALLPATHS: De novo
assembly of whole-genome shotgun microreads," Genome
Research, vol. 18, p. 810, 2008.

[11] J. Simpson, K. Wong, S. Jackman, J. Schein, S. Jones, and Birol,
"ABySS: A parallel assembler for short read sequence data,"
Genome Research, vol. 19, p. 1117, 2009.

[12] D. Zerbino and E. Birney, "Velvet: Algorithms for de novo short
read assembly using de Bruijn graphs," Genome Research, vol. 18,
p. 821, 2008.

[13] R. Fleischmann, M. Adams, O. White, R. Clayton, E. Kirkness, A.
Kerlavage, C. Bult, J. Tomb, B. Dougherty, and J. Merrick,
"Whole-genome random sequencing and assembly of Haemophilus
influenzae Rd," Science, vol. 269, p. 496, 1995.

[14] E. Lander and M. Waterman, "Genomic mapping by fingerprinting
random clones: a mathematical analysis," Genomics, vol. 2, pp.
231-239, 1988.

[15] I.-M. A. C. Konstantinos Liolios, Konstantinos Mavromatis,
Nektarios Tavernarakis, Philip Hugenholtz, Victor M. Markowitz
and Nikos C. Kyrpides, "The Genomes On Line Database (GOLD)
in 2009: status of genomic and metagenomic projects and their
associated metadata," Nucleic Acids Research, vol. 38, 2010.

[16] N. Hall, "Advanced sequencing technologies and their wider
impact in microbiology," Journal of Experimental Biology, vol.
210, p. 1518, 2007.

[17] M. Pop, A. Phillippy, A. Delcher, and S. Salzberg, "Comparative
genome assembly," Briefings in bioinformatics, vol. 5, p. 237,
2004.

[18] S. Gnerre, E. Lander, K. Lindblad-Toh, and D. Jaffe, "Assisted
assembly: how to improve a de novo genome assembly by using
related species," Genome biology, vol. 10, p. R88, 2009.

[19] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, "Basic
local alignment search tool," Journal of Molecular Biology, vol.
215, pp. 403-410, 1990.

[20] W. Pearson and D. Lipman, "Improved tools for biological
sequence comparison," Proceedings of the National Academy of
Sciences, vol. 85, p. 2444, 1988.

[21] M. Goodrich and R. Tamassia, "Data Structures and Algorithms in
Java," John Wiley & Sons, 2001.

[22] B. Ma, J. Tromp, and M. Li, "PatternHunter: faster and more
sensitive homology search," Bioinformatics, vol. 18, p. 440, 2002.

108

BIOTECHNO 2011 : The Third International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-137-3

[23] V. Topac, "Efficient fuzzy search enabled hash map," 2010, pp.
39-44.

[24] J. Gosling, B. Joy, G. Steele, and G. Bracha, Java (TM) Language
Specification, The (Java (Addison-Wesley)): Addison-Wesley
Professional, 2005.

[25] V. Levenshtein, "Binary codes capable of correcting deletions,
insertions, and reversals," 1966.

[26] R. Hamming, "Error detecting and error correcting codes," Bell
System Technical Journal, vol. 29, pp. 147-160, 1950.

[27] T. Smith and M. Waterman, "Identification of common molecular
subsequences," Journal of Molecular Biology, vol. 147, pp. 195-
197, 1981.

[28] M. Chaisson and P. Pevzner, "Short read fragment assembly of
bacterial genomes," Genome Research, vol. 18, p. 324, 2008.

[29] R. Tarjan, "Depth-first search and linear graph algorithms," 1971,
pp. 114-121.

109

BIOTECHNO 2011 : The Third International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-137-3

