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Abstract — In many laboratories, researchers store exper-
imental data on their own workstation using spreadsheets.
However, this approach poses a number of problems, ranging
from versioning or sharing issues to inefficient data-mining.
Standard spreadsheets are also error-prone as data do not
undergo any validation process. In this paper, we propose
the EnzymeTracker, a web-based laboratory information man-
agement system for sample tracking, as a robust and flex-
ible alternative that aims at facilitating entry, mining and
sharing of experimental biological data. The EnzymeTracker
features online spreadsheets and tools for monitoring numerous
experiments conducted by several collaborators to identify
and characterize samples, from their basic functional anno-
tations to their complete enzymatic activity. It also provides
libraries of shared data such as protocols, and administration
tools for data access control using OpenID and user/team
management. Our system relies on a database management
system for efficient data indexing and management and a
user-friendly AJAX interface that can be accessed over the
Internet. The EnzymeTracker facilitates data entry by dy-
namically suggesting entries and providing smart data-mining
tools to effectively retrieve data. It also features a number of
tools to visualize and annotate experimental data, and export
customizable reports. The EnzymeTracker is available online
at http://cubique.concordia.ca/enzymedb/index.html under the
GNU GPLv3 licence.
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I. INTRODUCTION

Spreadsheets (like Excel) are broadly used by the scien-
tific community. Their intuitive and easily understandable
user interface is a significant advantage. They are also

visually appealing and feature a number of tools to visualize
data using charts. Hence, spreadsheets are currently the
primary means to store both experimental and manually
curated genomics/proteomics data in most laboratories.

A. Spreadsheet/database paradigm

Spreadsheets might be sufficient when one needs to or-
ganize simple data. However, this approach raises a num-
ber of problems as spreadsheets present numerous well-
known deficiencies compared to databases when dealing
with involved data. As reported in previous studies [1],
[2], [3], [4], spreadsheets do not scale up well and, as
the spreadsheet will expand to accommodate a growing
number of records of increasing complexity, data handling
— from data entry to data mining and analysis — will
become increasingly cumbersome, hence reducing the utility
of potentially valuable information.

Besides the scalability issue, spreadsheets are subject
to data redundancy and consequently data integrity loss.
For example, if protein annotations should be displayed in
different spreadsheets, they will most likely be duplicated
in each document. When an annotation is updated in one
place, all occurrences elsewhere may not be updated, which
will result in multiple inconsistent versions of the same
data. In this case, one does not know which versions are
obsolete and which version is correct. Moreover, unlike
databases, spreadsheets do not enforce referential integrity:
they do not check that resources referenced somewhere in
the spreadsheet are still valid, which may be critical, in
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particular when those resources are frequently updated or
deleted.

Spreadsheets are also error-prone and do not facilitate
data entry. Typically, any cell can contain any type of
data and validation is optional at best. Spreadsheets may
even incorrectly infer a data type based on the data, in
particular numbers and dates in Excel. Spreadsheets are also
inefficient to handle sparse data, both in terms of storage and
performance. Storage is less of a concern nowadays as costs
have dramatically decreased in the past few years. However,
it should still be taken into consideration when handling
millions of records, as is often the case in bioinformatics
and large-scale studies in general. In contrast, optimized
databases lead to speed improvements.

Furthermore, sharing data using spreadsheets proved to
be difficult, when possible. For example, a shared Excel
spreadsheet can be checked-out and edited by only one user
at a time. Other collaborators can only display a read-only
copy of the document until changes are committed by the
first user. Neither waiting for a user to complete his work
or duplicating resources is a practical satisfactory solution
in larger work groups.

Finally, spreadsheets provide little — if any — security or
access control mechanisms. Spreadsheets can be password-
protected. However, the password of the spreadsheet is
unique and known by many users, and they do not offer
the possibility to select what users or groups of users can
see/edit in the document: once opened, any record can
be displayed by the user. The password is also embedded
within the document and it is therefore not possible to
revoke access remotely. Databases on the other hand provide
advanced access control mechanisms, and enable system
administrators to precisely grant or revoke permissions to
users or groups of users to create, view, update or delete
resources as needed.

B. Technology acceptance issue

Despite their deficiencies, spreadsheets have been heavily
used by biologists because they offer an intuitive and generic
user interface that is applicable to most of their projects.
Upgrading from spreadsheets to a more sophisticated labora-
tory information management systems (LIMS) is not trivial.
To be broadly accepted by the scientific community as a
valuable replacement for spreadsheets, LIMS need to present
the five acceptance characteristics defined by Rogers [5]:

• relative advantage: the extent to which the LIMS offers
improvements over spreadsheets,

• compatibility: its consistency with social practices and
norms among its users,

• complexity: its ease of use or learning,
• trialability: the opportunity to try an innovation before

committing to use it,
• observability: the extent to which the technology’s

gains are clear to see.

In this paper, we propose the EnzymeTracker, a generic
web-based laboratory information management system for
sample tracking, as an efficient and user-friendly alternative
that aims at facilitating entry, mining and sharing of samples
and experimental biological data. Our system was designed
to present the above acceptance characteristics to maximize
its utility and features advanced yet intuitive annotation and
visualization tools as well as a flexible and customizable
report designer.

Sections III and IV give an overview of the unique fea-
tures of the EnzymeTracker and its web-based graphical user
interface respectively. Section V briefly presents a number of
visualization tools embedded within our system. Section VI
describes data-mining and the generation of reports based
on templates. Finally, Sections VII and VIII gives some
implementation details and future directions respectively.

II. RELATED WORK

To overcome spreadsheets limited capabilities, a number
of proprietary LIMS have been developed. However, their
expensive license reduces their audience to bigger labora-
tories or to the industry and very few systems are freely
available to the general scientific community.

A. iLAP

Stocker et al. [6] recently developed iLAP, a workflow-
driven software for experimental protocol development, data
acquisition and analysis. iLAP relies on a relational database
and a web-based interface to effectively manage complex
work flows derived from biological experimental protocols.
Integration of external programs using Java Applets is also
possible, in particular the popular image processing library
ImageJ [7]. However, iLAP does not manage biological data
directly, as data remain in files that should be uploaded
and associated with a specific experiment or protocol. It is
therefore not possible to search for a particular piece of bio-
logical data. iLAP does not provide tools for annotating pic-
tures from experimental results such as SDS-PAGE (Sodium
Dodecyl Sulfate PolyAcrylamide Gel Electrophoresis) gels
or microplates, nor does it provides facilities to generate
reports.

B. SLIMS

Daley et al. [8] developed SLIMS, a Sample-based Labo-
ratory Information Management System. SLIMS is a web
application that provides members of a laboratory with
an interface to view, edit, and create sample information.
Unlike iLAP, SLIMS leverages the relational database to
store and manage biological data. However, its web-interface
does not utilize recent advances in web technologies. For
example, most data are displayed to the user as static
HTML tables, which cannot be dynamically mined nor
customized. SLIMS also features a microplate annotation
tool. Microplate pictures, though, cannot be uploaded nor
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visualized along with their annotations. Similarly, SLIMS
supports SDS-PAGE gels, which can be downloaded as plain
text files, but may not be properly visualized using the
picture of the gel. Reports can be generated and exported,
but cannot be customized.

III. OVERVIEW OF THE ENZYMETRACKER

Despite their numerous benefits over spreadsheets,
database management systems still lack satisfactory user
interfaces for data analysis [9] whereas Excel spreadsheets
do provide intuitive graphical interfaces for data analysis
and consolidation, provided the issues mentioned above are
addressed.

Web-based applications are dynamic and interactive web-
sites that offer a rich user interface comparable to standard
desktop programs [10], [11]. They can be executed on
any connected workstation, without software installation nor
specific requirements besides a recent web-browser and an
active Internet connection to remotely access data. Web
applications have the major advantage of being always up-
to-date wherever they are being accessed, thereby eluding
the need for multiples copies of the same document on
different workstations, effectively solving synchronization
issues between local copies.

The EnzymeTracker was thus designed as an integrated
collection of online spreadsheets accessible over the Internet
and backed-up by a relational database for efficient data
management. It features a number of novel online tools to
facilitate data entry and visualization. The EnzymeTracker
also provides a library of shared records such as experimen-
tal protocols for sample assays and a comprehensive set of
reporting and system administration tools.

Figure 1 gives an overview of the graphical user interface
(GUI). Most pages are composed of three panels: the main
menu (A) on the left, a spreadsheet (B), which is the primary
means to enter to enter data, and a panel at the bottom
(C), whose content depends on the data to display. Others
data entry means are presented later in sections V and IV-B.
Panels A and C can be dynamically collapsed and resized to
customize the workspace as needed. Spreadsheets may also
be customized by displaying, hiding, reordering and resizing
columns as needed so that only the most relevant data are
displayed.

The content of the lower panel (C) varies with the data
being shown. On most pages, the panel displays the record
selected in the spreadsheet in a more readable format.
Depending on the spreadsheet, it can provide links to cross-
referenced databases such as the Gene Ontology [12] or
the Clusters of Orthologous Groups of proteins (COG)
database [13]. It also automatically fetches complete ref-
erences from the literature using PubMed’s public API
(http://eutils.ncbi.nlm.nih.gov/) given the PMID of an article
and jobs for nucleotide or protein sequence alignment can
be submitted to NCBI’s BLAST server in one click (F).

IV. DATA ENTRY

The spreadsheet (Figure 1B) is the primary means of
entering data in the EnzymeTracker. Each cell is associated
with an editor whose format depends on the data within
the cell. Most cell editors are simple text fields. More
advanced editors are provided where needed. In particular,
cross-references to other tables are typically associated with
a combo box, whose content is dynamically generated after
the content of the referenced table. Figure 1D illustrates
the utilization of a combo box to select a clone in the
page for Annotations. Combo boxes facilitate data entry by
suggesting entries as the user types. They also have the
added benefit of limiting data entry mistakes, in particular
when users enter data that do not exist in the referenced
table. Specific editors are also provided for Boolean flags
and dates. The EnzymeTracker also supports rich text editors
with text formatting capabilities, which are mainly used for
comments and free-text cells.

A. Data integrity and validation

To further reduce entry errors, each cell editor can be
associated with a validator. Validators, which are usually
based on regular expressions or more advanced customized
functions, check the correctness of data types and send
immediate feedback to the user in case of an error. Val-
idators are also useful to enforce data entry conventions and
consistency within a group of users.

In addition, to minimize data entry, cells are automatically
computed whenever possible. For example, the length of
a protein sequence and its molecular weight (E) are auto-
matically calculated when one enters a protein sequence.
Calculated fields are also used to reduce data redundancy
compared to standard spreadsheets. For instance, the name
of a protein should appear on several related spreadsheets.
Using standard spreadsheets, the user will copy/paste the
name of the protein wherever needed. This will lead to
inconsistencies between spreadsheets during their update.
In the EnzymeTracker, the underlying relational database is
leveraged to display the name of the protein in all tables
where it is needed. The first benefit is that the protein
name is automatically displayed whenever there exists a re-
lation between proteins and the current spreadsheet. Second,
changes to the protein data are automatically reflected in all
tables. Data in the various online table are therefore always
consistent and up-to-date.

B. Data importation/exportation

In some cases, the different enzyme assays and char-
acterization of samples were already being recorded us-
ing Excel spreadsheets. We therefore implemented impor-
tation routines to facilitate the migration process to the
EnzymeTracker. From experience, basic data importation by
uploading and parsing files is error-prone as files formats and
layouts tend to vary between files. For example, one column
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Figure 1. Screenshot of the web-based user interface of the Annotation page of the EnzymeTracker. The main menu (A) is on the left. The main panel
is usually composed of a spreadsheet (B) and a panel at the bottom to display the entry selected in the spreadsheet using a more readable layout (C). See
details in the text.

may be missing in one file, which will shift other columns
and lead the parser to import the wrong data.

Instead, we implemented a drag-and-drop importation
mechanism where appropriate. The user selects the data to
import in the Excel file and drags and drops the selection
into the browser’s window. The major benefit of this semi-
automatic approach is that it makes it easier for the users
to review the data before importation, hence reducing the
number of errors made. It also gives more flexibility as only
specific records can be selected and imported. Finally, users
have the possibility to export EnzymeTracker spreadsheets
to Excel documents in one click. Data may also be imported
programmatically, using JavaScript and RESTful requests.

C. Versioning and backups

Our system is supported by a relational database which
efficiently handles versioning and backups. Unlike standard
spreadsheets, when a record is updated or deleted in the
EnzymeTracker, the current version of the record is flagged
as obsolete, backed-up and logged for future reference.
As a consequence, while updating a spreadsheet is always
possible, no data are ever deleted and restoring a record to
a previous state or accessing the complete data modification

log in case an error is made while updating a spreadsheet is
always possible.

V. VISUALIZATION TOOLS

Most data in the EnzymeTracker can be viewed using
tables. In a number of cases however, tables may be im-
proved to give the user a more visual perspective of the
data. To enhance the utility of experimental screening data,
the EnzymeTracker integrates a number of annotation and
visualization tools. Sections V-A and V-B describe in detail
how the bottom panel of a spreadsheet (Fig. 1C) can be
customized to accommodate plate assays and E-PAGETM48
gels from Invitrogen respectively.

A. Microplate assays

Microplate assays are widely used in research and drug
discovery to detect biological or chemical events of samples.
Those events are typically detected by measuring the fluores-
cence intensity of samples from each of the ninety-six wells
(labeled A1 to H12) that compose a plate. The plate assay
is usually repeated twice, at two different sample dilution
factors.
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Figure 2. Graphical user interface for the annotations of plate assays.
Pictures of the microplates for the two dilutions can be uploaded and
automatically annotated based on the content from the tables describing
clones and transformants. High-activity wells can be selected within the
web interface by clicking on picture. Annotations can be laid over the
picture (A) or hidden (B) as needed.

The EnzymeTracker enables users to upload the two
microplate pictures for the two dilutions of each experiment
(Figure 2). The tables describing clones and transformants
are leveraged to automatically annotate the plate. A “virtual
plate” representing the 96 wells can also be layered over
the original picture (A) or hidden (B) as needed. The virtual
plate is also convenient to quickly visualize and identify
most active wells by simply clicking on the desired wells
directly on the picture.

B. SDS-PAGE gels

E-PAGETM48 gels are improved SDS-PAGE (Sodium
Dodecyl Sulfate PolyAcrylamide Gel Electrophoresis) gels
broadly used for high-throughput protein separation and
analysis. Each gel comprises 48 lanes for samples and 4
marker lanes, which define the ladder of the molecular
weights of the proteins on the gel. Similarly to plate assays,
the picture of the gel can be uploaded and annotated within
the user interface (Figure 3). Each sample lane in the gel
(A) can be annotated using a form (B) that is displayed
upon click. A tooltip summarizing annotations of a lane is
displayed when hovered by the cursor (orange). The drop-
down menus in (B) to select the clone and the transformation

Figure 3. Graphical user interface for the annotations of E-PAGETM48
gels from Invitrogen. Pictures of the gels can be uploaded and annotated
within the web interface of the EnzymeTracker.

plate loaded in each lane are dynamically built based on
their respective tables. In addition, specific bands can be
highlighted (green arrows) and annotated. Finally, the ladder
(red) can be easily setup by clicking on one of the four outer
marker lanes.

The EnzymeTracker eludes the need for external tools
and leverages data from other spreadsheet to facilitate the
annotations of hundreds of experimental data and to reduce
data entry errors.

C. Chart visualization

In many cases, the experiments aim at characterizing the
evolution of a variable given a set of parameters. Represent-
ing the data using charts is then is suitable alternative to
tables for data presentation.

The EnzymeTracker fully supports charts, in particular to
represent the enzymatic activity characterization of a sam-
ple. Graphs are usually represented using curves although
histograms and pie charts are also supported. The graph
is dynamically updated when the underlying data is edited
within the interface or imported from Excel as described in
Section IV-B.

Graphs are also used in the administration console, in
particular to display connection and data logs.

VI. DATA-MINING AND REPORTING

As of January 2011, over 55,000 entries have been saved
within the EnzymeTracker and a growing number are being
recorded on a daily basis. Despite these large amounts of
heterogeneous data, scientists routinely need to search for
specific pieces of information. For example, a principal
investigator may look for “all enzymatic activities detected
during liquid assays performed by his assistants in the past
two months on clones from S. thermophile”.

A. Context-dependent filtering

Each table in the EnzymeTracker is fully searchable
and each column is associated with a flexible filter that
depends on the type of data the column represents. Five
different types of filters can be configured: textual, multi-
selection, numerical, calendar and Boolean. Numerical filters
let the user query for values above, below or equal to a
given threshold. They are most useful to query biochemical
properties of enzymes and samples, for example protein
sequence length or molecular weight, or the temperature
stability of a molecule. Boolean filters are typically used
to retrieve records when given a flag. For instance, this
filter is convenient to list all assays where a strong activity
has been reported. Calendar filters are helpful to search for
records given a time frame. The multi-selection filter is most
effective for searching for one or more items in a given list.
The list may be static or may be dynamically generated by
the server based on data from other tables. For example, it
is possible to search for samples from a given organism,
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the list of organisms being automatically generated by the
database server.

B. Reporting

In order to facilitate data sharing among collaborators,
the EnzymeTracker provides a flexible and easy-to-use tool
for designing report templates. A report template is similar
to other tables within the EnzymeTracker, except that the
user can dynamically select the pieces of information he/she
wants to share. It is also valuable to aggregate data from
various tables and display consolidated statistical data. For
instance, one can easily create a report template to display
the percentage of transformants which were successfully
assayed.

The EnzymeTracker allows users to quickly design a
report template and assemble relevant pieces of information
together. A preview of the report can be automatically
displayed when the configuration of the report changes or
when filters are set. The report can also be refined using a
number of flags, for example to decide whether to display
only current values of a record or its modification log also.

More technically, when a report is designed, the corre-
sponding SQL query is automatically generated based on the
report configuration. In other words, the designer effectively
enables users to design SQL queries, without writing any
code. This is particularly useful for more complex queries,
such as non-trivial joins: when a user selects two items from
two different tables, it may happen that the two tables are
not directly related. In that case, a number of intermediate
tables must be used in order to join the two tables.

For example, consider the case when the user needs to
list the plate assays performed on clones related to cellulase.

Figure 4. Simplified EER to illustrate reporting mechanisms. Foreign
keys are marked with solid bullets. Shaded tables are explicitly listed in
the configuration of the report. The transformants table (white) is not listed
but is implicitly required to perform the join query.

Figure 4, which illustrates a simplified Entity-Relationship
diagram of tables relevant to generate this report, shows that
plate assays are performed on transformants, not on clones
directly. Fortunately, transformants are related to clones,
hence it is possible to define an implicit relation between
clones and plates assays using transformants.

We defined the cost of a join between two tables as the
length of the shortest path between the two tables in the
undirected weighted graph implied by the database structure,
where the nodes represent tables and edges, foreign keys.
Using the above example, the cost of the join between clones
and plate assays is 2.

We designed an algorithm to determine the optimal im-
plicit joins to relate two tables, which is derived from Dijk-
stra’s shortest path algorithm. The optimal join is defined as
the path between the two tables with the lowest cost. Edges
were weighted based on the biological significance of the
foreign keys. For instance, because of the normalization of
the database, a number of intermediate joining tables are
created to define the relationships between real biological
entities — in particular in m : n relations — which
incorrectly increases the cost of the relationship as the path
between the two biologically meaningful tables is longer.
The cost of edges in m : n relations was therefore reduced to
avoid the bias induced by the normalization process during
the database design.

When the configuration of the report is updated, the
optimal join is computed and executed by the SQL engine.
The results of the query are finally used to build the
configuration of the ExtJS spreadsheet used to display the
report. Advanced users can also create a report by typing
the SQL query directly.

Once a template is created, it can be shared and displayed
like other tables. In particular, the report can be further
refined using filters as described in section VI-A. In addition,
reports are automatically updated as more data is added to
the EnzymeTracker: there is therefore no need to re-design
a report to display up-to-date data. Finally, reports can be
easily shared with collaborators or saved as standard Excel
files for further analysis.

VII. IMPLEMENTATION AND AVAILABILITY

The EnzymeTracker aims at providing an interactive
web-based user interface. To achieve this goal, the En-
zymeTracker of composed of a set of highly dynamic web
pages implemented using AJAX (Asynchronous JavaScript
and XML) web technologies [11], which enable a web appli-
cation to communicate with a server in the background using
JavaScript and XMLHttpRequest objects, without interfering
with the current state of the page. The web user interface
of the EnzymeTracker was implemented using ExtJS, the
general Asynchronous JavaScript and XML (AJAX) frame-
work from Sencha. It is backed-up by the freely available
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MySQL relational database management system. The server-
side code was implemented using PHP 5.

The EnzymeTracker and its documentation are available at
http://cubique.concordia.ca/enzymedb/index.html under the
GNU General Public License version 3.

VIII. USAGE AND FUTURE DIRECTIONS

The EnzymeTracker was designed to be flexible, easy to
use and offers many benefits over spreadsheets, thus pre-
senting the characteristics required to facilitate acceptance
by the scientific community. The EnzymeTracker has been
successfully used for 15 months on a daily basis by over 50
scientists to monitor protocols and experiments conducted
to identify, annotate and fully characterize thousands of
samples from multiple fungal species.

The initial implementation of the EnzymeTracker has
focused on facilitating sample tracking and experimental
data annotation and visualization. The future development
of the EnzymeTracker will focus on the implementation
of widgets based on the online spreadsheets, which will
facilitate data sharing as widgets can be embedded in
virtually any web page. We will also enhance reporting by
allowing chart generation in addition to tabular data. Finally,
the EnzymeTracker will be expanded to enable bar-coding
of samples using QR codes (two-dimensional matrix codes),
which will facilitate the identification, physical tracking and
long-term storage of samples.
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