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Abstract—Computational models enable advances in under-
standing essential features of living systems. Such models can
be used to simulate data that can also be measured empirically.
Generating such simulated data is frequently a key step in
developing and validating models. However, precisely specifying
a complex procedure of simulating data is notoriously difficult.
The SimGenex language reported here is designed to simplify
this task as it is applicable in research scenarios where several
candidate models are considered, the mathematical details of
regulatory interactions are only known partially or described
semiquantitatively, the majority of kinetic parameters are
not empirically measured, and a gene expression matrix is
available as a basis of identifying the best model. SimGenex
enables succinct and flexible descriptions of simulating the
biological processes and experimental procedures that are the
building blocks of most current wet lab experimental protocols.
It enables specification of reproducibly executable workflows
for validating computational models of biological systems, it
facilitates pre-processing and transformation of data as it is
frequently applied in gene expression data analysis and it
provides support for comparing and discriminating alternative
candidate models based on their ability to approximate the
empirical dataset. The result of applying a SimGenex program
to a computational model is a simulated dataset that can
directly be compared to empirically measured omic data
through the specification of a distance measure which can
be used to discriminate the best model among a number of
candidates.
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I. INTRODUCTION

Gene expression measurements determine the amount of

product of one or more genes in a biological sample. The

amount or concentration of a gene product is called the

expression level of the gene that encodes the product.

Samples for gene expression measurement are typically

cultivated at controlled conditions. While the specific con-

ditions depend on the object of research and the research

question, the properties that are subject to control can gen-

erally be classified into genetic properties and environmental

conditions. Genetic properties pertain to the genetic makeup

of the subjects. Specifically, genes may be knocked out (loss

of function mutations), or overexpressed (gain of function

mutations). Typical environmental conditions applied in lab

experimentation include treatment with agents such as hor-

mones or drugs, variations in temperature, pH or salinity,

and differences in supply of energy or nutrition.

Such signals are effectors impinging on cellular activities

and on expression of some genes, or they result in the

activation of such effectors. The affected genes frequently

encode transcription factors which in turn alter expression of

further genes. Perception of environmental signals can thus

ripple through a cell’s gene regulatory network (GRN), and

ultimately change expression levels of many genes.

GRNs enable cells to react to environmental conditions

in a genetically determined way. GRNs generate complex

dynamics and patterns and attract much scientific interest,

particularly since drug development and genetic engineering

often involve targeted modification of GRN dynamics. GRN

models offer a comprehensive understanding of disease

progression, and they can help to predict clinical responses

and can be vital to streamline efforts to identify the most

promising candidates as early as possible in the drug devel-

opment pipeline [1]. Therefore, computational GRN models

are often used to predict GRN dynamics and to investigate

the principles of GRN organisation.

The collection of expression levels of all genes in all

samples is called an expression set, or, in recognition of the

“genes× conditions” format of the set, an expression matrix
X = (xgc), where g indexes genes and c indexes conditions.
The set of expression levels of a given gene g, measured in
different samples, is called the expression profile (or profile,

for short) of that gene, denoted by xg .

Gene expression measurements are obtained by wet lab

methods such as rtPCR or microarrays. The readouts from

these techniques are subjected to mathematical operations

(e.g. for background correction, normalisation) to obtain

estimates of gene expression levels. Gene expression data

frequently contain artifacts that require some form of pre-

processing (e.g. if a data set contains few negative expression

values, this problem can be solved by adding a small

offset to all values). After pre-processing, expression data

typically is transformed into log-ratios [6], [2] by designat-
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ing a reference condition c∗ of expression levels (typically
corresponding to the unperturbed wild type sample), and

calculating log(xgc/xgc∗) for all genes g and all columns c.
Gene expression profiles can be compared by choosing a

profile distance measure d that quantifies how similar two
profiles are. The distance measures currently supported are

the Euclidean distance and the correlation distance [8]. The

semi-metric correlation distance is defined as 1−r(xg,xg′),
where r(xg,xg′) denotes the sample correlation coefficient
between the expression profiles of genes g and g′, and
captures the similarity of “shape” of the profiles being

compared [3].

A simulated expression matrix can be constructed by

applying in silico operations to a suitable computational

GRN model. Each individual operation reflects biological

process or an experimental procedure. By comparing the

results of such a simulation to empirical observations,

GRN models can be systematically validated. Specifically,

a simulated expression matrix Y can be compared to target
matrix X of empirical gene expression levels by computing∑

g
d(xg,yg). This matrix distance gives an indication of

how well the GRN model captures the gene regulatory

dynamics of the system from which the empirical mea-

surements were taken, and it can be used to discriminate

alternative computational GRN models.

Computational biology often requires reproducible per-

formance of complex workflows to try to simulate the

biological processes and experimental procedures that are

the building blocks of most current wet lab experimental

protocols. Performing in silico operations on GRN models

typically requires programming in a general purpose lan-

guage. For data analysis purposes, tools such as Taverna [7],

designed to automatise bioinformatics analyses and EXACT

[9], designed to represent biological laboratory protocols,

have recently been developed. The SimGenex language

defines a set of primary operations that are sufficiently

general to simulate most standard experimental procedures.

This is done within the transsys framework for GRN mod-

elling [5], [4]. SimGenex specifications of operations that

model experimentation are declarative and much shorter and

simpler than equivalent simulations coded in a computer

programming language. SimGenex also provides facilities

for specifying mathematical transformations of the primary

simulated expression values, and for specifying a distance

measure for comparing matrices.

II. SIMGENEX FEATURE OVERVIEW

The core of a SimGenex program describes how to use a

transsys GRN model to produce a simulated gene expression

matrix. The measurementmatrix block describes how

to transform the primary simulated matrix into a mea-

surement matrix by e.g. computing log-ratios. Finally, the

discriminationsettings block configures computa-

tion of the distance of the measurement matrix to a target

matrix.

A. Simulating Gene Expression

The empirical data in the target matrix are normally

produced by wet lab means such as rtPCR or microarray.

It follows that a number of genotypes are exposed to

a number of environmental conditions. In the simulated

scenario, transsys GRN models represent genotypes. These

are subjected to simulated conditions to produce simulated

gene expression values that match the empirical scenario.

The columns of a matrix simulated by SimGenex are

generated by creating an initial state and applying a sequence

of primary simulation instructions to that state. The primary

instructions provided by SimGenex are:

• runtimesteps to run a specified number of time

steps,

• knockout to remove the specified gene from the

transsys GRN model,

• treatment to set the expression level of a factor to

a specified value,

• overexpress to insert a new, constitutively ex-

pressed gene into the GRN model,

• setproduct to alter the product encoded by a gene.

Instruction sequences that are used repeatedly can be de-

clared as a procedure. Procedures may in turn invoke

other procedures Thus, procedures can straightforwardly be

reduced to sequences of primary instructions.

Columns in the simulated matrix are specified by

simexpression declarations. Like procedures, simex-

pressions may be composed of primary instructions and

procedure invocations. In addition, they also may contain

foreach instructions. Such simexpressions define multiple

columns in the simulated matrix. The foreach instruction

enables very compact specifications of setups (e.g. when a

number of strains are subjected to the same set of experi-

mental conditions). For example, the declaration

simexpression s

{

foreach: wildtype komutant;

equilibration;

foreach mock real;

onehour;

}

specifies four columns in which the genotypes wildtype

and komutant are subjected to mock and the real

treatment. The procedures komutant, mock and real

have to be defined in order for the above code fragment

to work.

B. Computing the Simulated Matrix

In line with the wet lab scenario, the columns of a matrix

simulated by SimGenex need to be transformed following

the same protocols that were applied to compute the target
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matrix of empirical data. SimGenex uses the following

blocks within the measurementmatrix section to spec-

ify such procedures:

• measurementprocess: specifies an offset pa-

rameter to normalise individual gene expression values

and a transformation equation to indicate how ex-

pression values are transformed to simulate a column in

a gene expression matrix, e.g. by a log-ratio transform.

• measurementcolumns: specifies the columns in the

simulated expression matrix. Columns are computed

by subjecting the expression levels in one or more

simexpressions to mathematical operations, resulting

in a column containing one value for each mapped

factor of the candidate program. The idea is that the

mathematical operations should be the same as those

applied to the raw empirical data that have resulted in

the empirical expression matrix (e.g. log-ratios where

the ratio of a treatment to a control is calculated).

C. Discrimination Settings and Gene mapping

SimGenex allows the specification of a distance mea-

sure to compare the simulated matrix to a target matrix

which can e.g. be used to discriminate the best GRN

model from among a number of candidates. In addition

SimGenex allows the specification of a mapping scheme,

genemapping, whereby names of genes in the com-

putational model can be mapped to names in the target

matrix. These may e.g. be IDs designated by the microarray

provider.

Beyond configuring matrix distance, the

discriminationsettings section may provide

further configuration to be used in the process of

discriminating GRN models. Currently, SimGenex supports

a whitelist of factors or genes which a discriminator

may adjust. This feature is useful where parts of the GRN

model are unknown, and the discriminator should therefore

explore various alternatives for the unknown parts. As an

example, where numerical parameters are unknown, these

can be set by numerical optimisation.

III. RESULTS

We demonstrate the use of SimGenex on the very simple

regulatory network shown in Fig. 1, which is comprised of

a constitutively expressed housekeeping gene and a cascade

of four genes encoding factors c1, c2, c3 and c4. The

code of the SimGenex protocol to simulate measurements

for the wildtype and all single gene knockout mutants is

partially shown in Fig. 2. The complete code is posted on the

transsys website [4]. Note that specifications for all columns

in the measurementcolumns block and for all factors in

the genemapping were not included. In line with standard

practice, we use the expression levels in the wild type as the

reference.

housekeepe r

c1

c2

c4c3

hormone

gene c1gene

{

promoter

{

hormone: activate(0.01, 1.0);

}

product

{

default: c1;

}

}

gene c2gene

{

promoter

{

c1: activate(0.01, 1.0);

}

product

{

default: c2;

}

}

gene c4gene

{

promoter

{

constitutive: 0.1;

c1: activate(0.01, 1.0);

c2: repress(0.01, 1.0);

}

product

{

default: c4;

}

}

Figure 1. Example network for demonstrating simulation of gene expres-
sion measurements with SimGenex. The graph shown at the top shows the
overall network topology. The code below shows a part of the transsys
model. The housekeeper is constitutively expressed and not subject to
any regulation. The hormone activates c1, which is not expressed in the
absence of hormone. Likewise, c2 is not expressed in the absence of c1.
In contrast to this, c3 is expressed without c1, but c2 increases its rate
of expression and c4 is activated by c1 and repressed by c4.
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procedure hormtreat

{ treatment: hormone = 1.0; }

procedure equilibration

{ runtimesteps: 100; }

procedure ko_c1

{ knockout: c1gene; }

simexpression all

{

foreach: wt ko_hk

ko_c1 ko_c2 ko_c3 ko_c4;

equilibration;

foreach: notreat hormtreat;

treatmenttime;

}

measurementmatrix

{

measurementprocess

{

offset: 0.1;

transformation:

log2(offset(x1)) - log2(offset(x2));

}

}

measurementcolumns

{

wt_notreat: x1 = all_wt_notreat,

x2 = all_wt_notreat;

kohk_notreat: x1 = all_ko_hk_notreat,

x2 = all_wt_notreat;

koc1_notreat: x1 = all_ko_c1_notreat,

x2 = all_wt_notreat;

wt_hormtreat: x1 = all_wt_hormtreat,

x2 = all_wt_hormtreat;

kohk_hormtreat: x1 = all_ko_hk_hormtreat,

x2 = all_wt_hormtreat;

koc1_hormtreat: x1 = all_ko_c1_hormtreat,

x2 = all_wt_hormtreat;

}

}

discriminationsettings

{

genemapping

{ factor housekeeper = "housekeeper";

factor c1 = "c1"; }

distance: correlation;

whitelistdefs

{ factor: housekeeper c1 c2 c3 c4;

gene: hkgene c1gene c2gene c3gene

c4gene;}

}

Figure 2. Partial SimGenex code to simulate measurements for the
wildtype and all single gene knockout mutants.
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Figure 3. Simulated log-ratio gene expression profiles using the expression
levels in the untreated wild type as the reference. The first five bars show
expression measurement without, the second five bars show expression
measurements with hormone treatment. For non-treated and treated samples,
the wild type knockout mutants for all four genes are included.
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Fig. 3 shows the simulated gene expression mea-

surements. The two negative bars in the profile of

housekeeper reflect the fact that this gene product’s

expression is abolished when the housekeeping gene is

knocked out. Otherwise, the housekeeper’s expression does

not respond to any of the simulated conditions. Without

hormone treatment, c1gene is not expressed, and as a

consequence, c2gene is not expressed either (see Fig. 1).

Therefore, knocking out these genes does not cause any

changes in gene expression when no hormone treatment is

applied. However, with hormone treatment, the genes in the

cascade are expressed and as a consequence, knockouts have

detectable effects on the downstream genes in the cascade.

IV. CONCLUSION

Computational biology often requires reproducible per-

formance of complex workflows. For data analysis purposes,

tools such as Taverna [7] and EXACT [9] have recently been

developed. SimGenex complements these tools by enabling

reproducible specification of simulations of biological pro-

cesses and experimental procedures. The current main use

of SimGenex is generating simulated matrices of expression

values. Further, it facilitates specification of a distance

measure to compare the simulated matrix to a target matrix

comprised of gene expression data externally provided by

wet lab means and provides support for discriminating the

best gene regulatory network model from among a number

of candidates. SimGenex is based on a small and generic set

of operations that can be supported by many computational

systems biology simulators, and provides new opportunities

for unified description and comparison of computational

models of living systems.

In our experience, most of the time required to execute

a SimGenex program is typically used for simulation of

gene expression dynamics. Therefore, significant speed-up

can be achieved by re-using intermediate results where the

instruction sequences of multiple columns in the simulated

matrix share common prefixes, and the underlying GRN

model is deterministic. In the near future we plan to optimise

the SimGenex implementation accordingly. We also plan

to set up a web service for accessing SimGenex and for

assessing computational GRN models based on empirical

target gene expression data.
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