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Abstract—This paper aims to show the impact on classification 

accuracy and the level of computational gain that could be 

obtained in applying deep packet inspection on truncated peer 

to peer traffic flows instead of complete ones. Using one of the 

latest open source classifiers, experiments were conducted to 

evaluate classification performance on full and truncated 

network flows for different protocols, focusing on the detection 

of peer to peer. Despite minor exceptions, all the results show 

that with the latest deep packet inspection classifiers, which 

may incorporate different helper technologies, inspecting the 

first packets at the beginning of each flow, may still provide 

concrete computational gain while an acceptable level of 

classification accuracy is maintained. The present paper 

discusses this tradeoff and provides some recommendations on 

the number of packets to be inspected for the detection of peer 

to peer flows and some other common application protocols. As 

such, a new sampling approach is proposed, which 

accommodates samples to the stateful classifier’s algorithm, 

taking into consideration the characteristics of the protocols 
being classified. 

Keywords-IP traffic classification; p2p; peer to peer;  deep 

packet inspection; DPI optimization 

I.  INTRODUCTION 

Traffic identification is a hot research topic, especially 
when it comes to complex Internet applications, such as P2P 
(peer to peer), using port obfuscation, encryption, and 
tunneling [1]. As they inspect the full packet payloads to 
match specific protocol patterns or signatures, DPI (Deep 
Packet Inspection) based methods [2], are characterized by 
the high level of classification accuracy they provide. 
However, the associated high computational cost and some 
user privacy issues arise some concerns regarding their use 
in real environments, especially in high-speed networks.  

Optimizing DPI based methods, is thus becoming an 
important research trend attempting to enhance the classifier 
performance in terms of low computation, while maintaining 
an acceptable level of accuracy. 

Reducing the input size required by the classifier through 
sampling can be considered one of DPI optimization means, 
which is not only supposed to reduce computational 
requirements, but also to ensure an acceptable level of user 
privacy. While different sampling policies exist, traffic 
sampling could be applied on two different levels: on the 
packet payload level, through partial packet payload 
inspection, and on the flow level, through inspecting only a 
few packets from within the complete traffic flow. 

In [3], we studied how far DPI could be optimized 
through packet level sampling. Results showed that, unless 
just few bytes (not more than 128 Bytes) were truncated 
from the end of the packet payload, a sharp decrease in the 
accuracy will be apparent. 

As part of our work in progress, this paper attempts to 
optimize DPI classifiers through flow sampling to which we 
will refer as flow truncation. It is important to note that we 
consider truncation as a particular case of the sampling 
technique, by inspecting a certain number of elements at the 
beginning of a stream (first bytes in a packet payload, first 
packets in a flow). We focus on P2P applications as we 
consider that identifying p2p traffic is one of the most 
complex classification tasks, especially when compared with 
other common application protocols. In fact, and as shown in 
[1], most works were emphasizing on their ability to detect 
p2p traffic as a key indicator of the quality of the classifier, 
and most importantly, were providing a better understanding 
of P2P traffic characteristics as part of the detection 
mechanism.  

While flow sampling is supposed to decrease the 
classification time, it is still a lossy process, which would 
affect accuracy. What impact would the flow truncation 
process have on DPI accuracy and at which computational 
gain? This is the question we are trying to answer in this 
work through our conducted experiments and the obtained 
results.  

Our goal(s) through this work can be defined as follows: 

1) To determine a minimum number of packets to be 

inspected within a p2p  flow to be classified with an 

acceptable level of accuracy. To generalize for other 

protocols. 

2) To discover to what extent per-flow sampling would 

optimize DPI classifiers in the sense of decreasing 

computational costs while maintaining an acceptable level 

of classification accuracy. 
The remaining of this paper is organized as follows: 

Section II provides an overview of DPI optimization means 
and parameters for their evaluation, focusing on flow 
sampling techniques and putting our work in perspective 
with previous works in the literature. Section III describes 
the dataset we used for the experiments, and the OpenDpi [4] 
tool in the way it analyzes and labels packets and flows. 
Section IV provides a description of the way we used to 
truncate the flows. Section V shows our conducted 
experiments’ results in terms of accuracy and computational 
cost and highlights on some important results and special 
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cases. Finally, Section VI presents the conclusion and future 
work. 

II. STATE OF ART IN DPI OPTIMIZATION 

DPI [2] based identification methods have no restrictions 
on inspecting the full contents of the payloads. As such, there 
are some concerns related to both user privacy and 
computational performance.  

In this paper, we will focus on software based 
optimizations which concept is to reduce the size of DPI 
input through sampling techniques [5] that are considered as 
a general mean of input reduction. As many works [6] [7] [8] 
show, sampling techniques can be integrated within the 
traffic classification process.  

Amongst the ways of categorizing sampling techniques 
we have the per-packet payload sampling [3] [9] [10], i.e., 
sampling bytes from within the packet payload, and the per-
flow packet sampling [7] [8] [11] [12], i.e., sampling a subset 
of packets from within the whole traffic flow or a 
combination of both [13]. 

Per-flow packet sampling for DPI classification is shown 
in many papers with different sampling policies: Bloom 
filters in [8], Deep Packet Inspection using Parallel Bloom 
Filters [14] [15], k-ary sketch [16], Related sampling [12], 
and Mask-match sampling in [17]. Chen et al. [7] suggested 
six sampling strategies and showed how they affect DPI 
identification systems.  

In [3], we tested per-packet payload sampling. In this 
paper, we consider per-flow packet sampling. However, we 
did not follow any specific sampling policy. Instead, given 
an accuracy level to be maintained, we simply recommend to 
only inspect a predetermined number of packets Nmin at the 
beginning of a traffic flow (p2p or other protocols). Thus, the 
sampling rate will be Nmin packets per flow.  

Although an in-depth comparison of different sampling 
methods is beyond the scope of this paper, we will briefly 
compare the most relevant ones to our work. Our 
optimization concept is detailed in Subsection II.C. 

Some of the sampling modes discussed in [7] can timely 
investigate the traffic load conditions of the links. However, 
their results were difficult to generalize since they were 
affected by many factors as they concluded.  

Sampled NetFlow was mentioned in [11], where Carela-
Español et al. find that packet sampling has a severe impact 
on the performance of the classification method. They were 
able to achieve an overall flow classification accuracy of 
85% for a sampling rate of 1/100. 

RelSamp (Related Sampling) [12] proposes that flows, 
parts of the same application session, are given higher 
probability. However, in [12] RelSamp was compared to 
Sampled NetFlow, which is a sampling technique for 
network monitoring rather than traffic classification. 

Mask-match sampling method discussed in [17], 
provided 94% accuracy for UDP flows for a sampling rate of 
0.1. However, this method focuses mainly on long flows, and 
the validity of the samples is related to the randomness of the 
ID field of the IP packets headers. 

Similar to our work, Canini et al. [8] used Bloom filter to 
sample the first 10 packets of each flow while a negligible 

loss in the accuracy was encountered (0.0047%).  However, 
they used L7 filter and they encountered some false positive 
figures due to Bloom Filters. Fernandes et al. [13] also 
proposed a similar work, where a combination of per-flow 
and per-packet sampling was used to capture only few 
packets (7 packets) per flow and a fraction of its payload 
without a significant impact on accuracy. However, the 
analysis in [13] did not provide protocol oriented results 
(such as p2p) and experiments were based on L7-filter tool.  

III. OPTIMIZATION THROUGH FLOW TRUNCATION 

Our goal in optimizing DPI is to maintain classification 
accuracy level as high as possible while trying to decrease 
the required computational cost. 

In this subsection, we will focus on both the theoretical 
concept of optimizing the processing time through flow 
truncation, and on the quasi-theoretical estimation for this 
parameter as well.  

Theoretically, the model of the DPI classifier proposed in 
[18] includes 5 processing blocks. Cascarano et al. studied 
the cost of each block and concluded that the most important 
is the cost of the pattern-matching block, which according to 
the study, has a linear dependence on the number of input 
characters.  

For simplicity reasons, and according to the target of the 
experiments, we will model individual packet classification 
as a process composed of just two modules or steps: 

 A packet-handling module, mainly devoted to preprocess 
the packet and identify the flow the packet belongs to 
(reading the packet, getting flow identifiers, searching for 
the flow in active flow list, etc.). This processing is 
mainly related to packet header.  

 A packet-inspection module (referred to as “pattern 
matching block” in [18]), devoted to the classification of 
the packet. This module handles both the header and the 
payload of the packet. 
 
Thus, the time cost related to individual packet 
classification tpc, can be approximated as: 

 tpc=th + ti 

where th is the packet  handling time, and ti is the packet 
inspection time. 

In our concept of optimization through flow truncation, 
we emphasize on ti as we consider it to be the only sensitive 
term to flow truncation. Through flow truncation, we intend 
only to classify packets which ordinal number inside the 
flow is lower than a predefined threshold (Nmin) within each 
flow. However, this does not mean that packets over Nmin are 
not be parsed at all. On the contrary, these packets still have 
to be handled by the classifier simply for determining to 
which flow they belong. The difference is that for these 
packets the inspection part is to be omitted. So, it is 
important to note that, for these packets, th cannot be avoided 
by the classifier, as it is evidently impossible to know if a 
given packet belongs to an existing flow without parsing its 
header at least. The decision to inspect the packet or not 
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depends on its ordinal number being lower or higher than 
Nmin. 

As a result, with flow truncation, we are supposed to 
eliminate packet inspection time ti for packets which position 
in the flow is over Nmin. This is supposed to decrease the 
global classification time for the whole traffic according to 
the following simple approximations: 

 With no flow truncation, the time for analyzing a flow 
tfc can be approximated as:  

 tfc =p∙E[th + ti  

where Np is the number of packets in the  flow and E[th 
+ ti ]=E[tpc] is the average packet  classification time. 
E[tpc] depends on the flow size and the length of the 
payloads, and on the protocol to which the flow 
belongs. 

 With flow truncation, assuming Np > Nmin, the time for 
analyzing a flow, t’fc , becomes:  

 t’fcp∙E[th ]+min∙E[ti  

Our proposal, based on Nmin, and to the best of our 
knowledge, is different from the other sampling methods in 
the following points: 

 Most sampling policies were general with no specific 
attention on the detection of a particular protocol (or 
class of protocols), while our aim is to find the number 
of packets Nmin necessary for the detection of each 
particular protocol. This approach fits with our long-
term objective, which is the detection of P2P flows.  

 Most sampling policies provide sampling rates, which 
implies that the number of sampled packets will 
increase as long as the flow is under course while in our 
proposal, it is fixed to Nmin per flow, which is an 
efficient method that yields higher computational gains 
for large flows. 

 Most sampling policies neglect the effect of non 
sampled packets, while in our proposal we have to 
parse all packets.  

 In some papers, experiments were restricted to DPI as 
implemented by L7-filter tool while in the latest 
classifiers, such as OpenDPI, the DPI technology is 
being enhanced through integration with other helper 
methods such as behavioral and statistical analysis. 

To conclude with common features for all sampling 
methods, Guo et al. [6] showed that as the packet sampling 
probability decreases, the false negative rates become higher. 
Therefore, it can be stated that: the maximum value of 
sampling rate is limited by the affordable computational cost 
and the minimum value of sampling rate is limited by the 
acceptable accuracy value.  

As our sampling rate is defined as: “Nmin packets per 
flow”, what is the recommended value for Nmin to identify 
p2p and other protocols? The following sections will help in 
answering this question through experimental results. 

IV. OPENDPI AND TESTBED 

For the experiments, we used OpenDPI, which is derived 
from the commercial PACE product [19]. The core of 
OpenDPI is a software library designed to classify internet 
traffic according to application protocols. In its current 
version, up to 101 different protocols can be identified, 
including some P2P protocols. In addition to pattern 
matching, OpenDPI incorporates different techniques such as 
behavioral (by searching for known behavioral patterns of an 
application in the monitored traffic) and statistical analysis 
(by calculating some statistical indicators that can be used to 
identify transmission types, as mean, median and variation of 
values used in behavioral analysis and the entropy of a flow). 
Our experimental setup is described next.   

First, we use a customized tool based on the OpenDPI 
library, which is able to follow and differentiate the packets 
in each flow and to provide both flow and packet based 
outputs. Second, we used a dataset of real traffic captured at 
the access link of a medium size institution over 3 days. 
Complete flows in both directions were captured at a border 
router. We have chosen a subset of randomly selected files 
(totaling 3 GB) from our original dataset on which we run 
classification experiments. Then, by using the customized 
OpenDPI tool over the database subset and using complete 
flows with full packet payloads, we have built the "ground 
truth", i.e., the set of correctly labeled flows and packets 
(without truncation) that will be used as the reference for the 
analysis of flow truncation as described in the following 
section. 

V. FLOW TRUNCATION RESULTS AND ANALYSIS 

To be able to generate accuracy results without 
truncating flows, we customized OpenDPI to output the 
packet ordinal number inside the flow the packet belongs to 
at which detection is achieved. As described in OpenDPI 
documentation, the flow is classified according to the first 
recognized packet. In what follows, we will refer to this 
number as packet detection number or flow detection 
number. Then, to truncate flows, we have customized the 
code to be able to classify, within each flow, only packets 
with numbers less than Nmin , and as mentioned in Section II, 
to solely handle remaining packets just for determining to 
which flow they belong.  Note that with this customization, 
we could obtain computational measurements and validate 
accuracy results obtained previously through the flow 
detection number. 

A. Accuracy Results 

As shown in [1], a common framework is not yet defined 
for traffic classification methods. Therefore, we referred to 
existing works in the literature most of which commonly 
considered values above 90% as acceptable levels of 
classification accuracy. The distribution (histogram) of the 
flow detection number for both P2P and non-P2P protocols 
is depicted in Figure 1 for the full dataset, which contains 
40340 P2P flows out of 4859208. As shown, there is a big 
number of flows for which the detection is achieved with just 
a few packets. Proportionally, the number of flows with high 
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(i.e., greater than 50) flow detection number is almost 
negligible.  

In fact, if we represent the percentage of flows that have 
been classified vs. the flow detection number (Figure 2), we 
can see that an important fraction of the flows can be 
classified with Nmin below 20. Moreover, all protocols are 
mainly being detected within the first ten packets with a flow 
accuracy value of 99.90%.  

As depicted also in Figure 2, for Nmin=4, flow accuracy 
degrades to 84.35% while it jumps to 99.15%, for Nmin=10. It 
is noticed that for Nmin values greater than 10, only a very 
slight increase in accuracy is obtained. For example, for 
Nmin=20, accuracy becomes 99.54%, with an increase of 
0.39% compared to Nmin=10.   

Regarding the behavior on a per protocol basis, Figure 3 
shows the average flow detection number for most common 
protocols in the dataset. Although some protocols like 
iMESH and Bitorrent show higher average values, most 
protocols averages were below 10 packets. If we further 
analyze the results on a per protocol basis, similar results 
could also be obtained. As an example, Figure 4 shows the 
histogram of the flow detection number for two relevant 
protocols: Bittorent (Figure 4.a) and http (Figure 4.b). Thus, 

an accuracy value of 99.91% for http and 99.18% for 
Bittorrent can be achieved if the 10 packets rule is still being 
respected for both protocols.  

It is worthy to note that according to [19], OpenDPI in 
bandwidth management systems only scans for patterns in 
the first 1-3 packets for unencrypted and 3-20 packets for 
encrypted communication protocols: A fact which does not 
apply to OpenDPI in traffic classification systems, as shown 
in our experiments. 

As it was clearly noticed from the previous results, in 
order to reach 99.15% of p2p flow accuracy, the classifier 
should inspect at least 10 packets. The same applies for 
remaining protocol. As a result, one optimal value to be 
recommended for Nmin is 10. However, this is not mandatory 
as it is related to the required level of accuracy. 

B.  Computational Cost Results 

Different set of evaluation tools and parameters were 
proposed for comparing classifiers, such as, Netramark [20] 
TIE [21] and perfprofiling for Snort [6]. However, according 
to [22], a commonly agreed upon workload for the 
evaluation of deep packet inspection architectures is still 
missing. In our case, we needed higher level evaluation 
parameters regardless of the pattern matching technique, 
therefore, we have chosen simple processing time as in [7] 
[18] using Linux monitoring tools [23]. For this purpose, we 
evoked the insertion into the classifier code at the proper 
places, of time related function calls providing granular 
results at the microseconds’ level. We compiled the classifier 
code with GCC v4.4.3 with -O3 optimization level, on the 
testing server having the hardware specifications of 8 GB of 
memory, 2 Intel(R) Xeon(R) 2.66GHz processors with 4 
cores each. 

Tests were performed over one of the captured files for 
Nmin=20. The most relevant features are shown in Table I, 
while Table II shows the results. 

Flow and packet classification times were calculated by 
dividing the classification time for all the flows respectively 
by the number of flows for tfc and by the number of packets 
for tpc. Consequently, the gain in processing time when using 
truncated flows is 9.63%.  . 

 
Figure 1.  Histogram showing the number of detected p2p and non p2p 

flows in function of the flow detection number. Data for detection packet 
number over 100 is negligible and is not shown. 

 

 
Figure 2.  Global flow accuracy as a function of the  packet detection 

number. 

 

 
Figure 3.  Average detection packet number for different protocols in 

the dataset. 
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As shown through the previous results, a computational 
time gain of 9 % can be obtained by classifying the first only 
20 packets while maintaining an accuracy level of more than 
99 %. 

In Table I, the percentage of flows with Np less than Nmin 
is important for the effectiveness of the truncation. In fact, 
the smaller this value is, the bigger the time gain would be 
and the flow truncation will become more effective. In 
showing the importance of this parameter, we have chosen 
Nmin=20 instead of Nmin=10 as the accuracy is slightly 
different between these values, as depicted in Figure2. Then, 
we referred to comparing the quasi-theoretical and 
experimental measured values of the time gain. We 
measured the average for ti=5.35µs, Np=42, with Nmin=20, 
then, when multiplied by the total number of flows, (3) gives 
the total processing time for all the flows. The obtained 
result is a quasi-theoretical value of 11.8 % for the time gain 
instead of 9.63%, which is the measured one. Effectively, 
this difference is due to the assumption we took that all of 
the flows should have theoretically an average number of 
packets (Np=42) more than Nmin=20, which is not exactly the 
case for the capture file we tested, having 30% flows with Np 
less than Nmin as shown in Table I.  

C. Comparison with other sampling schemes  

In comparing our approach (for Nmin=20), with EIM 
(Equidistant Invariable Mode) [7] having a sampling rate of 
7/13, 164084 packet samples are to be inspected, which 

means 36% increase in the classification time due inspecting 
additional 140,634 packets. Figure 1, shows that, for Nmin=7, 
97.96% of accuracy could be obtained, which applies to EIM 
scheme only if the first 7 packets were sampled, otherwise, 
EIM accuracy will drop to an unacceptable value, due to the 
stateful inspection of OpenDPI, as explained next. 

D. Classifying the DPI Classifier 

Although a concrete gain in classification time was 
obtained through flow truncation, still the 9.63% value did 
not meet with our expectations. In fact, if we assume that 
OpenDPI is inspecting all packets over Nmin the gain has to 
be theoretically higher. However, this fact helped in reverse 
engineering an important aspect of the classifier itself, which 
in turn could interpret the moderate gain we obtained. In fact, 
OpenDPI seems to be incorporating DFI (Deep flow 
inspection) beside the DPI classification mechanism. 
Specifically, OpenDPI shows a stateful or PBFS like (Packet 
Based per Flow State) classification behavior. As per the 
taxonomy presented in [24], PBFS based DPI classifiers 
focus on the first packets of each session. Thus, they have a 
built-in feature of requiring less input than other classifiers. 

In this context, the sampling scheme we proposed seems 
to be more convenient to PBFS classifiers as it focuses on 
packets where the PBFS classification decision is being 
made, whereas in most sampling methods, packets have to be 
continuously inspected as long as the flow is under course. In 
this regard, it may be required that all sampling works joint 
with classification should be reconsidered, especially when 
used with PBFS based classifiers. 

E. Special cases 

During experiments, some exceptional cases were 
noticed. Though these cases had no significant impact on the 
presented results, it is worthy to provide a preliminary 
interpretation while detailed explanations should be left for 
future work.  

1) Deviators Flows 
As shown in Figure 2, we calculated the average 

detection packet number for each protocol. However, we 
found some flows which detection number is much deviated 

    
Figure 4.  Histogram showing the number of detected flows in function of packet detection number for: (a) Bittorrent protocol  (b) HTTP protocol. 

 

TABLE I.  CHARACTERISTICS OF THE CAPTURE FILE USED FOR 

TEST 

Total # flows  
# P2P 

flows 

# Flows 

Np< Nmin 

Number of packets  

Under Nmin Over  Nmin 

7337 188 30% 104678 200040 

 

TABLE II.  THE OBTAINED COMPUTATIONAL RESULTS  

File  

Nmin=20 

Classification time (in µs ) 

All flows  Flow (tfc) Packet (tpc) 

Full flows 7300301 995 24 

Truncated flows 6596881 899 21 
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from the calculated average, we call these flows deviators. 
We validated the fact that the presence of most deviators is 
due to flows that were under course during the start of the 
capture. In addition, this highlights the importance of the 
first flow packets to OpenDPI, which when lost, will cause 
flows to be detected at packet numbers deviated from the 
average. 

2) Packets Changing Protocol  
Some minor flows were noticed to be changing their 

protocol even after the first time detection. This may lead to 
an error in classification, and can be considered as one of 

the weaknesses of our approach to be dealt with in future 

enhancements. 

VI.  CONCLUSION AND FUTURE WORK 

This paper aims to optimize DPI-based classifier by 
decreasing the required computational cost while 
maintaining acceptable levels of flow classification accuracy 
for p2p and other application protocols. As opposed to many 
sampling works, our approach is to reduce input requirement 
through inspecting only a fixed number of packets from 
within the flow beginning. Our conducted experiments show 
that when inspecting the first 10 packets for all protocols, 
including p2p, more than 9% of classification time can be 
saved while a flow accuracy level over 99% can be still 
maintained. However, future enhancements may have to deal 
with some weaknesses and special cases detected within our 
approach such as, deviators flows, packets changing protocol 
within the same flow, studying the effect of modifying the 
first packets, distinguishing between packets in the uplink 
and downlink directions and their contribution in the 
classification process. Finally, it is important to note that 
when used jointly with stateful and PBFS based classifiers, 
sampling methods should accommodate to the importance of 
the first packets in classifying the whole flow. This fact 
highlights the importance of our sampling approach which 
accommodates samples to the stateful classifier’s algorithm 
by focusing on the first packets, and takes into consideration 
as well, the characteristics of application protocols being 
classified by sampling a convenient number of 10 packets 
sufficient for identifying most application protocols 
including p2p. In this context, accommodating enhancement 
means to the classifier’s algorithm from one hand, and to the 
classified traffic characteristics, on the other, would be a 
good practice for any related future work.  
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