
On the Performance of OpenDPI in Identifying P2P Truncated Flows

Jawad Khalife, Amjad Hajjar

Faculty of Engineering, IT department

Lebanese University

Beirut, Lebanon

jawad_khalife@hotmail.com, arhajjar@idm.net.lb

 Jesús Díaz-Verdejo

Dept. Signal Theory, Telematics and Commun.

University of Granada

Granada, Spain

jedv@ugr.es

Abstract—This paper aims to show the impact on classification

accuracy and the level of computational gain that could be

obtained in applying deep packet inspection on truncated peer

to peer traffic flows instead of complete ones. Using one of the

latest open source classifiers, experiments were conducted to

evaluate classification performance on full and truncated

network flows for different protocols, focusing on the detection

of peer to peer. Despite minor exceptions, all the results show

that with the latest deep packet inspection classifiers, which

may incorporate different helper technologies, inspecting the

first packets at the beginning of each flow, may still provide

concrete computational gain while an acceptable level of

classification accuracy is maintained. The present paper

discusses this tradeoff and provides some recommendations on

the number of packets to be inspected for the detection of peer

to peer flows and some other common application protocols. As

such, a new sampling approach is proposed, which

accommodates samples to the stateful classifier’s algorithm,

taking into consideration the characteristics of the protocols
being classified.

Keywords-IP traffic classification; p2p; peer to peer; deep

packet inspection; DPI optimization

I. INTRODUCTION

Traffic identification is a hot research topic, especially
when it comes to complex Internet applications, such as P2P
(peer to peer), using port obfuscation, encryption, and
tunneling [1]. As they inspect the full packet payloads to
match specific protocol patterns or signatures, DPI (Deep
Packet Inspection) based methods [2], are characterized by
the high level of classification accuracy they provide.
However, the associated high computational cost and some
user privacy issues arise some concerns regarding their use
in real environments, especially in high-speed networks.

Optimizing DPI based methods, is thus becoming an
important research trend attempting to enhance the classifier
performance in terms of low computation, while maintaining
an acceptable level of accuracy.

Reducing the input size required by the classifier through
sampling can be considered one of DPI optimization means,
which is not only supposed to reduce computational
requirements, but also to ensure an acceptable level of user
privacy. While different sampling policies exist, traffic
sampling could be applied on two different levels: on the
packet payload level, through partial packet payload
inspection, and on the flow level, through inspecting only a
few packets from within the complete traffic flow.

In [3], we studied how far DPI could be optimized
through packet level sampling. Results showed that, unless
just few bytes (not more than 128 Bytes) were truncated
from the end of the packet payload, a sharp decrease in the
accuracy will be apparent.

As part of our work in progress, this paper attempts to
optimize DPI classifiers through flow sampling to which we
will refer as flow truncation. It is important to note that we
consider truncation as a particular case of the sampling
technique, by inspecting a certain number of elements at the
beginning of a stream (first bytes in a packet payload, first
packets in a flow). We focus on P2P applications as we
consider that identifying p2p traffic is one of the most
complex classification tasks, especially when compared with
other common application protocols. In fact, and as shown in
[1], most works were emphasizing on their ability to detect
p2p traffic as a key indicator of the quality of the classifier,
and most importantly, were providing a better understanding
of P2P traffic characteristics as part of the detection
mechanism.

While flow sampling is supposed to decrease the
classification time, it is still a lossy process, which would
affect accuracy. What impact would the flow truncation
process have on DPI accuracy and at which computational
gain? This is the question we are trying to answer in this
work through our conducted experiments and the obtained
results.

Our goal(s) through this work can be defined as follows:

1) To determine a minimum number of packets to be

inspected within a p2p flow to be classified with an

acceptable level of accuracy. To generalize for other

protocols.

2) To discover to what extent per-flow sampling would

optimize DPI classifiers in the sense of decreasing

computational costs while maintaining an acceptable level

of classification accuracy.
The remaining of this paper is organized as follows:

Section II provides an overview of DPI optimization means
and parameters for their evaluation, focusing on flow
sampling techniques and putting our work in perspective
with previous works in the literature. Section III describes
the dataset we used for the experiments, and the OpenDpi [4]
tool in the way it analyzes and labels packets and flows.
Section IV provides a description of the way we used to
truncate the flows. Section V shows our conducted
experiments’ results in terms of accuracy and computational
cost and highlights on some important results and special

79Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

cases. Finally, Section VI presents the conclusion and future
work.

II. STATE OF ART IN DPI OPTIMIZATION

DPI [2] based identification methods have no restrictions
on inspecting the full contents of the payloads. As such, there
are some concerns related to both user privacy and
computational performance.

In this paper, we will focus on software based
optimizations which concept is to reduce the size of DPI
input through sampling techniques [5] that are considered as
a general mean of input reduction. As many works [6] [7] [8]
show, sampling techniques can be integrated within the
traffic classification process.

Amongst the ways of categorizing sampling techniques
we have the per-packet payload sampling [3] [9] [10], i.e.,
sampling bytes from within the packet payload, and the per-
flow packet sampling [7] [8] [11] [12], i.e., sampling a subset
of packets from within the whole traffic flow or a
combination of both [13].

Per-flow packet sampling for DPI classification is shown
in many papers with different sampling policies: Bloom
filters in [8], Deep Packet Inspection using Parallel Bloom
Filters [14] [15], k-ary sketch [16], Related sampling [12],
and Mask-match sampling in [17]. Chen et al. [7] suggested
six sampling strategies and showed how they affect DPI
identification systems.

In [3], we tested per-packet payload sampling. In this
paper, we consider per-flow packet sampling. However, we
did not follow any specific sampling policy. Instead, given
an accuracy level to be maintained, we simply recommend to
only inspect a predetermined number of packets Nmin at the
beginning of a traffic flow (p2p or other protocols). Thus, the
sampling rate will be Nmin packets per flow.

Although an in-depth comparison of different sampling
methods is beyond the scope of this paper, we will briefly
compare the most relevant ones to our work. Our
optimization concept is detailed in Subsection II.C.

Some of the sampling modes discussed in [7] can timely
investigate the traffic load conditions of the links. However,
their results were difficult to generalize since they were
affected by many factors as they concluded.

Sampled NetFlow was mentioned in [11], where Carela-
Español et al. find that packet sampling has a severe impact
on the performance of the classification method. They were
able to achieve an overall flow classification accuracy of
85% for a sampling rate of 1/100.

RelSamp (Related Sampling) [12] proposes that flows,
parts of the same application session, are given higher
probability. However, in [12] RelSamp was compared to
Sampled NetFlow, which is a sampling technique for
network monitoring rather than traffic classification.

Mask-match sampling method discussed in [17],
provided 94% accuracy for UDP flows for a sampling rate of
0.1. However, this method focuses mainly on long flows, and
the validity of the samples is related to the randomness of the
ID field of the IP packets headers.

Similar to our work, Canini et al. [8] used Bloom filter to
sample the first 10 packets of each flow while a negligible

loss in the accuracy was encountered (0.0047%). However,
they used L7 filter and they encountered some false positive
figures due to Bloom Filters. Fernandes et al. [13] also
proposed a similar work, where a combination of per-flow
and per-packet sampling was used to capture only few
packets (7 packets) per flow and a fraction of its payload
without a significant impact on accuracy. However, the
analysis in [13] did not provide protocol oriented results
(such as p2p) and experiments were based on L7-filter tool.

III. OPTIMIZATION THROUGH FLOW TRUNCATION

Our goal in optimizing DPI is to maintain classification
accuracy level as high as possible while trying to decrease
the required computational cost.

In this subsection, we will focus on both the theoretical
concept of optimizing the processing time through flow
truncation, and on the quasi-theoretical estimation for this
parameter as well.

Theoretically, the model of the DPI classifier proposed in
[18] includes 5 processing blocks. Cascarano et al. studied
the cost of each block and concluded that the most important
is the cost of the pattern-matching block, which according to
the study, has a linear dependence on the number of input
characters.

For simplicity reasons, and according to the target of the
experiments, we will model individual packet classification
as a process composed of just two modules or steps:

 A packet-handling module, mainly devoted to preprocess
the packet and identify the flow the packet belongs to
(reading the packet, getting flow identifiers, searching for
the flow in active flow list, etc.). This processing is
mainly related to packet header.

 A packet-inspection module (referred to as “pattern
matching block” in [18]), devoted to the classification of
the packet. This module handles both the header and the
payload of the packet.

Thus, the time cost related to individual packet
classification tpc, can be approximated as:

 tpc=th + ti

where th is the packet handling time, and ti is the packet
inspection time.

In our concept of optimization through flow truncation,
we emphasize on ti as we consider it to be the only sensitive
term to flow truncation. Through flow truncation, we intend
only to classify packets which ordinal number inside the
flow is lower than a predefined threshold (Nmin) within each
flow. However, this does not mean that packets over Nmin are
not be parsed at all. On the contrary, these packets still have
to be handled by the classifier simply for determining to
which flow they belong. The difference is that for these
packets the inspection part is to be omitted. So, it is
important to note that, for these packets, th cannot be avoided
by the classifier, as it is evidently impossible to know if a
given packet belongs to an existing flow without parsing its
header at least. The decision to inspect the packet or not

80Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

depends on its ordinal number being lower or higher than
Nmin.

As a result, with flow truncation, we are supposed to
eliminate packet inspection time ti for packets which position
in the flow is over Nmin. This is supposed to decrease the
global classification time for the whole traffic according to
the following simple approximations:

 With no flow truncation, the time for analyzing a flow
tfc can be approximated as:

 tfc =p∙E[th + ti

where Np is the number of packets in the flow and E[th
+ ti]=E[tpc] is the average packet classification time.
E[tpc] depends on the flow size and the length of the
payloads, and on the protocol to which the flow
belongs.

 With flow truncation, assuming Np > Nmin, the time for
analyzing a flow, t’fc , becomes:

 t’fcp∙E[th]+min∙E[ti

Our proposal, based on Nmin, and to the best of our
knowledge, is different from the other sampling methods in
the following points:

 Most sampling policies were general with no specific
attention on the detection of a particular protocol (or
class of protocols), while our aim is to find the number
of packets Nmin necessary for the detection of each
particular protocol. This approach fits with our long-
term objective, which is the detection of P2P flows.

 Most sampling policies provide sampling rates, which
implies that the number of sampled packets will
increase as long as the flow is under course while in our
proposal, it is fixed to Nmin per flow, which is an
efficient method that yields higher computational gains
for large flows.

 Most sampling policies neglect the effect of non
sampled packets, while in our proposal we have to
parse all packets.

 In some papers, experiments were restricted to DPI as
implemented by L7-filter tool while in the latest
classifiers, such as OpenDPI, the DPI technology is
being enhanced through integration with other helper
methods such as behavioral and statistical analysis.

To conclude with common features for all sampling
methods, Guo et al. [6] showed that as the packet sampling
probability decreases, the false negative rates become higher.
Therefore, it can be stated that: the maximum value of
sampling rate is limited by the affordable computational cost
and the minimum value of sampling rate is limited by the
acceptable accuracy value.

As our sampling rate is defined as: “Nmin packets per
flow”, what is the recommended value for Nmin to identify
p2p and other protocols? The following sections will help in
answering this question through experimental results.

IV. OPENDPI AND TESTBED

For the experiments, we used OpenDPI, which is derived
from the commercial PACE product [19]. The core of
OpenDPI is a software library designed to classify internet
traffic according to application protocols. In its current
version, up to 101 different protocols can be identified,
including some P2P protocols. In addition to pattern
matching, OpenDPI incorporates different techniques such as
behavioral (by searching for known behavioral patterns of an
application in the monitored traffic) and statistical analysis
(by calculating some statistical indicators that can be used to
identify transmission types, as mean, median and variation of
values used in behavioral analysis and the entropy of a flow).
Our experimental setup is described next.

First, we use a customized tool based on the OpenDPI
library, which is able to follow and differentiate the packets
in each flow and to provide both flow and packet based
outputs. Second, we used a dataset of real traffic captured at
the access link of a medium size institution over 3 days.
Complete flows in both directions were captured at a border
router. We have chosen a subset of randomly selected files
(totaling 3 GB) from our original dataset on which we run
classification experiments. Then, by using the customized
OpenDPI tool over the database subset and using complete
flows with full packet payloads, we have built the "ground
truth", i.e., the set of correctly labeled flows and packets
(without truncation) that will be used as the reference for the
analysis of flow truncation as described in the following
section.

V. FLOW TRUNCATION RESULTS AND ANALYSIS

To be able to generate accuracy results without
truncating flows, we customized OpenDPI to output the
packet ordinal number inside the flow the packet belongs to
at which detection is achieved. As described in OpenDPI
documentation, the flow is classified according to the first
recognized packet. In what follows, we will refer to this
number as packet detection number or flow detection
number. Then, to truncate flows, we have customized the
code to be able to classify, within each flow, only packets
with numbers less than Nmin , and as mentioned in Section II,
to solely handle remaining packets just for determining to
which flow they belong. Note that with this customization,
we could obtain computational measurements and validate
accuracy results obtained previously through the flow
detection number.

A. Accuracy Results

As shown in [1], a common framework is not yet defined
for traffic classification methods. Therefore, we referred to
existing works in the literature most of which commonly
considered values above 90% as acceptable levels of
classification accuracy. The distribution (histogram) of the
flow detection number for both P2P and non-P2P protocols
is depicted in Figure 1 for the full dataset, which contains
40340 P2P flows out of 4859208. As shown, there is a big
number of flows for which the detection is achieved with just
a few packets. Proportionally, the number of flows with high

81Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

(i.e., greater than 50) flow detection number is almost
negligible.

In fact, if we represent the percentage of flows that have
been classified vs. the flow detection number (Figure 2), we
can see that an important fraction of the flows can be
classified with Nmin below 20. Moreover, all protocols are
mainly being detected within the first ten packets with a flow
accuracy value of 99.90%.

As depicted also in Figure 2, for Nmin=4, flow accuracy
degrades to 84.35% while it jumps to 99.15%, for Nmin=10. It
is noticed that for Nmin values greater than 10, only a very
slight increase in accuracy is obtained. For example, for
Nmin=20, accuracy becomes 99.54%, with an increase of
0.39% compared to Nmin=10.

Regarding the behavior on a per protocol basis, Figure 3
shows the average flow detection number for most common
protocols in the dataset. Although some protocols like
iMESH and Bitorrent show higher average values, most
protocols averages were below 10 packets. If we further
analyze the results on a per protocol basis, similar results
could also be obtained. As an example, Figure 4 shows the
histogram of the flow detection number for two relevant
protocols: Bittorent (Figure 4.a) and http (Figure 4.b). Thus,

an accuracy value of 99.91% for http and 99.18% for
Bittorrent can be achieved if the 10 packets rule is still being
respected for both protocols.

It is worthy to note that according to [19], OpenDPI in
bandwidth management systems only scans for patterns in
the first 1-3 packets for unencrypted and 3-20 packets for
encrypted communication protocols: A fact which does not
apply to OpenDPI in traffic classification systems, as shown
in our experiments.

As it was clearly noticed from the previous results, in
order to reach 99.15% of p2p flow accuracy, the classifier
should inspect at least 10 packets. The same applies for
remaining protocol. As a result, one optimal value to be
recommended for Nmin is 10. However, this is not mandatory
as it is related to the required level of accuracy.

B. Computational Cost Results

Different set of evaluation tools and parameters were
proposed for comparing classifiers, such as, Netramark [20]
TIE [21] and perfprofiling for Snort [6]. However, according
to [22], a commonly agreed upon workload for the
evaluation of deep packet inspection architectures is still
missing. In our case, we needed higher level evaluation
parameters regardless of the pattern matching technique,
therefore, we have chosen simple processing time as in [7]
[18] using Linux monitoring tools [23]. For this purpose, we
evoked the insertion into the classifier code at the proper
places, of time related function calls providing granular
results at the microseconds’ level. We compiled the classifier
code with GCC v4.4.3 with -O3 optimization level, on the
testing server having the hardware specifications of 8 GB of
memory, 2 Intel(R) Xeon(R) 2.66GHz processors with 4
cores each.

Tests were performed over one of the captured files for
Nmin=20. The most relevant features are shown in Table I,
while Table II shows the results.

Flow and packet classification times were calculated by
dividing the classification time for all the flows respectively
by the number of flows for tfc and by the number of packets
for tpc. Consequently, the gain in processing time when using
truncated flows is 9.63%. .

Figure 1. Histogram showing the number of detected p2p and non p2p

flows in function of the flow detection number. Data for detection packet
number over 100 is negligible and is not shown.

Figure 2. Global flow accuracy as a function of the packet detection

number.

Figure 3. Average detection packet number for different protocols in

the dataset.

82Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

As shown through the previous results, a computational
time gain of 9 % can be obtained by classifying the first only
20 packets while maintaining an accuracy level of more than
99 %.

In Table I, the percentage of flows with Np less than Nmin
is important for the effectiveness of the truncation. In fact,
the smaller this value is, the bigger the time gain would be
and the flow truncation will become more effective. In
showing the importance of this parameter, we have chosen
Nmin=20 instead of Nmin=10 as the accuracy is slightly
different between these values, as depicted in Figure2. Then,
we referred to comparing the quasi-theoretical and
experimental measured values of the time gain. We
measured the average for ti=5.35µs, Np=42, with Nmin=20,
then, when multiplied by the total number of flows, (3) gives
the total processing time for all the flows. The obtained
result is a quasi-theoretical value of 11.8 % for the time gain
instead of 9.63%, which is the measured one. Effectively,
this difference is due to the assumption we took that all of
the flows should have theoretically an average number of
packets (Np=42) more than Nmin=20, which is not exactly the
case for the capture file we tested, having 30% flows with Np
less than Nmin as shown in Table I.

C. Comparison with other sampling schemes

In comparing our approach (for Nmin=20), with EIM
(Equidistant Invariable Mode) [7] having a sampling rate of
7/13, 164084 packet samples are to be inspected, which

means 36% increase in the classification time due inspecting
additional 140,634 packets. Figure 1, shows that, for Nmin=7,
97.96% of accuracy could be obtained, which applies to EIM
scheme only if the first 7 packets were sampled, otherwise,
EIM accuracy will drop to an unacceptable value, due to the
stateful inspection of OpenDPI, as explained next.

D. Classifying the DPI Classifier

Although a concrete gain in classification time was
obtained through flow truncation, still the 9.63% value did
not meet with our expectations. In fact, if we assume that
OpenDPI is inspecting all packets over Nmin the gain has to
be theoretically higher. However, this fact helped in reverse
engineering an important aspect of the classifier itself, which
in turn could interpret the moderate gain we obtained. In fact,
OpenDPI seems to be incorporating DFI (Deep flow
inspection) beside the DPI classification mechanism.
Specifically, OpenDPI shows a stateful or PBFS like (Packet
Based per Flow State) classification behavior. As per the
taxonomy presented in [24], PBFS based DPI classifiers
focus on the first packets of each session. Thus, they have a
built-in feature of requiring less input than other classifiers.

In this context, the sampling scheme we proposed seems
to be more convenient to PBFS classifiers as it focuses on
packets where the PBFS classification decision is being
made, whereas in most sampling methods, packets have to be
continuously inspected as long as the flow is under course. In
this regard, it may be required that all sampling works joint
with classification should be reconsidered, especially when
used with PBFS based classifiers.

E. Special cases

During experiments, some exceptional cases were
noticed. Though these cases had no significant impact on the
presented results, it is worthy to provide a preliminary
interpretation while detailed explanations should be left for
future work.

1) Deviators Flows
As shown in Figure 2, we calculated the average

detection packet number for each protocol. However, we
found some flows which detection number is much deviated

Figure 4. Histogram showing the number of detected flows in function of packet detection number for: (a) Bittorrent protocol (b) HTTP protocol.

TABLE I. CHARACTERISTICS OF THE CAPTURE FILE USED FOR

TEST

Total # flows
P2P

flows

Flows

Np< Nmin

Number of packets

Under Nmin Over Nmin

7337 188 30% 104678 200040

TABLE II. THE OBTAINED COMPUTATIONAL RESULTS

File

Nmin=20

Classification time (in µs)

All flows Flow (tfc) Packet (tpc)

Full flows 7300301 995 24

Truncated flows 6596881 899 21

83Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

from the calculated average, we call these flows deviators.
We validated the fact that the presence of most deviators is
due to flows that were under course during the start of the
capture. In addition, this highlights the importance of the
first flow packets to OpenDPI, which when lost, will cause
flows to be detected at packet numbers deviated from the
average.

2) Packets Changing Protocol
Some minor flows were noticed to be changing their

protocol even after the first time detection. This may lead to
an error in classification, and can be considered as one of

the weaknesses of our approach to be dealt with in future

enhancements.

VI. CONCLUSION AND FUTURE WORK

This paper aims to optimize DPI-based classifier by
decreasing the required computational cost while
maintaining acceptable levels of flow classification accuracy
for p2p and other application protocols. As opposed to many
sampling works, our approach is to reduce input requirement
through inspecting only a fixed number of packets from
within the flow beginning. Our conducted experiments show
that when inspecting the first 10 packets for all protocols,
including p2p, more than 9% of classification time can be
saved while a flow accuracy level over 99% can be still
maintained. However, future enhancements may have to deal
with some weaknesses and special cases detected within our
approach such as, deviators flows, packets changing protocol
within the same flow, studying the effect of modifying the
first packets, distinguishing between packets in the uplink
and downlink directions and their contribution in the
classification process. Finally, it is important to note that
when used jointly with stateful and PBFS based classifiers,
sampling methods should accommodate to the importance of
the first packets in classifying the whole flow. This fact
highlights the importance of our sampling approach which
accommodates samples to the stateful classifier’s algorithm
by focusing on the first packets, and takes into consideration
as well, the characteristics of application protocols being
classified by sampling a convenient number of 10 packets
sufficient for identifying most application protocols
including p2p. In this context, accommodating enhancement
means to the classifier’s algorithm from one hand, and to the
classified traffic characteristics, on the other, would be a
good practice for any related future work.

ACKNOWLEDGMENT

This work has been partially supported by Spanish
MICINN under project TEC2008-06663-C03-02.

REFERENCES

[1] T. Nguyen and G. Armitage, " A Survey of Techniques for
Internet Traffic Classification using Machine Learning", IEEE
Communications Surveys & Tutorials, v. 10, pp. 56-76, 2007.

[2] Allot Communications "Digging Deeper Into Deep Packet
Inspection (DPI)." White paper. Available at
https://www.dpacket.org 14.09.2011

[3] J. Khalife, A. Hajjar, and J. Díaz-Verdejo, "Performance of
Opendpi To Identify Truncated Network Traffic", In Proc.
DCNET 2011, pp. 51-56, Seville.

[4] http://www.opendpi.org 14.09.2011

[5] R. Jurga and M. Hulbój, "Packet Sampling for Network
Monitoring”, Technical Report, CERN | HP Procurve openlab
project. Available at http://www.zdnetasia.com 14.09.2011

[6] Z. Guo and Z. Qiu, "Identification Peer-to-Peer Traffic for
High Speed Networks Using Packet Sampling and
Application Signatures", In Proc. ICSP2008, pp. 2013-2019.

[7] H. Chen, F. You, X. Zhou, and C. Wang, "The study of DPI
identification technology based on sampling", ICIECS 2009,
2009, pp. 1-4.

[8] M. Canini, D. Fay, D. Miller, A. Moore, and R. Bolla, "Per
Flow Packet Sampling for High-Speed NetworkMonitoring”,
In Proc. COMSNETS'09, 2009, pp. 1-10.

[9] D. Ficara, G. Antichi, A. Di Pietro, S. Giordano, G. Procissi,
and F. Vitucci "Sampling Techniques to Accelerate Pattern
Matching in Network Intrusion Detection Systems”, In Proc.
ICC2010, 2010, pp. 1-5.

[10] G. Aceto, A. Dainotti, W. de Donato, and A. Pescapé,
"PortLoad: taking the best of two worlds in traffic
classification”, In Proc. of INFOCOM 2010,2010, pp. 1-5.

[11] V. Carela-Español, P. Barlet-Ros, A. Cabellos-Aparicio, and
J. Solé-Pareta, "Analysis of the impact of sampling on
NetFlow traffic classification”, Computer Networks, Volume
55, Issue 5, 1 April 2011, pp. 1083-1099 .

[12] M. Lee, M. Hajjat, R. Kompella, and S. Rao, "RelSamp:
Preserving Application Structure in Sampled Flow
Measurements”, In Proc. INFOCOM 2011, 2011, pp. 2354-
2362.

[13] S. Fernandes, R. Antonello, T. Lacerda, A. Santos, D. Sadok,
and T. Westholm, "Slimming Down Deep Packet Inspection
Systems”, In Proc. INFOCOM Workshops 2009, 2009, pp. 1-
6.

[14] S. Dharmapurikar, P. Krishnamurthy, T.Sproull, and J.
Lockwood, "Deep Packet Inspection using Parallel Bloom
Filters", In Proc. High Performance Interconnects 2003, 2003,
pp. 44-51.

[15] Y. Li "Memory Efficient Parallel Bloom Filters for String
Matching", In Proc. NSWCTC 2009, 2009, pp.485-488.

[16] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-
based change detection: methods, evaluation, and
applications”, In Proc. of ACM SIGCOMM Internet
Measurement Conference IMC’03, October 2003.

[17] R. Cong, J. Yang and G. Cheng, "Research of Sampling
Method Applied To Traffic Classification", In Proc. ICCT
2010, 2010, pp. 112-115.

[18] N. Cascarano, A. Este, F. Gringoli, F. Risso, and L. Salgarelli,
"An Experimental Evaluation of the Computational Cost of a
DPI Traffic Classifier", Proc. GLOBECOM’09, 2009, pp. 1-8.

[19] http://www.ipoque.com 14.09.2011

[20] S. Lee, H. Kim, D. Barman, S. Lee, C. Kim, and T. Kwon,
"NeTraMark: A Network Traffic Classification Benchmark",
ACM SIGCOMM Computer Communication Review,
Volume 41 Issue 1, January 2011.

[21] http://www.grid.unina.it 14.09.2011

[22] M. Becchi, M. Franklin, and P. Crowley, "A Workload for
Evaluating Deep Packet Inspection Architectures", In Proc.
IISWC 2008, pp.79-89.

[23] http://www.tldp.org 14.09.2011

[24] F. Risso, M. Baldi, O. Morandi, A. Baldini, and P. Monclus
"Lightweight, Payload-Based Traffic Classification: An
Experimental Evaluation", In Proc. ICC 2008, 2008, pp.
5869-5875.

84Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

